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Abstract—Imperialist Competitive Algorithm (ICA) is a recent 
meta-heuristic method that is inspired by the social evolutions for 
solving NP-Hard problems. The ICA is a population-based algorithm 
which has achieved a great performance in comparison to other meta-
heuristics. This study is about developing enhanced ICA approach to 
solve the Cell Formation Problem (CFP) using sequence data. In 
addition to the conventional ICA, an enhanced version of ICA, 
namely EICA, applies local search techniques to add more 
intensification aptitude and embed the features of exploration and 
intensification more successfully. Suitable performance measures are 
used to compare the proposed algorithms with some other powerful 
solution approaches in the literature. In the same way, for checking 
the proficiency of algorithms, forty test problems are presented. Five 
benchmark problems have sequence data, and other ones are based on 
0-1 matrices modified to sequence based problems. Computational 
results elucidate the efficiency of the EICA in solving CFP problems. 
 

Keywords—Cell formation problem, Group technology, 
Imperialist competitive algorithm, Sequence data. 

I. INTRODUCTION 

ELLULAR MANUFACTURING SYSTEM (CMS) is 
one of the famous manufacturing systems which uses 

Group Technology (GT) concept to merges flexibility of job 
shops and high production rate of lines environments. The 
CMS take the advantages of reduced setup times and work in 
process, improved product quality, shorter lead times, less tool 
requirements, enhanced productivity, better overall control of 
operations, etc., (see [20], [22]). The well-known problem in 
CMS that seeks to group similar parts/components and 
different machines needed for processing these components in 
a same cell, called cell formation problem (CFP). The goal of 
this problem is finding such cells in order to optimize the 
chosen performance measures. There are various types of CF 
problems considering different aspects of cellular 
manufacturing systems, including: workers, products route, 
scheduling, layout, etc., for more information one can refer to 
[14], [21].  
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The basic form of CFPs is one that uses binary machine-
component incident matrices, in which, components must be 
processed on related machines, where the corresponding array 
is 1. Many researchers have mentioned in their works [24], 
[27] that CFPs are NP-hard, and then cannot be solved 
optimally in real and large sizes. Therefore, heuristic and 
meta-heuristic approaches have been considered thoroughly to 
solve the CFPs in reasonable computational times. In this 
sense, [8] used Genetic Algorithm (GA) to solve the CFP. Wu 
et al. [28] presented a Simulated Annealing (SA) algorithm for 
these problems and called it SACF; the algorithm improves 
the grouping efficacy in most of test problems. Wu et al. [26] 
have introduced a heuristic algorithm applying water flow-like 
algorithm (WFA) logic to solve the CFP called WFACF. 
WFA is mimicking water flowing behavior from higher to 
lower levels and dynamically changing number of flows in 
this movement. That is, changing number of water flows make 
WFA an agent population-varying method. Recently, [5] 
designed a hybrid GA that uses large neighborhood search and 
GA together. 

Studies based on binary machine-component incident 
matrices do not contain processing routes. This information is 
critical in real world; therefore, incident matrices that 
demonstrate the sequence of operations to finish a component 
have been considered as other main form of CFPs. These 
kinds of CFPs try to reach a feasible solution with least inter-
cell and/or intra-cell travels movements. Some researchers 
have considered this vital information in solving CF problems. 
Nair and Narendran [18] developed a new clustering method 
(CASE) and some new performance measures for CFP using 
sequence data. Spiliopoulos and Sofianopoulou [24] employed 
an efficient ant colony approach to deal with similar problems. 
A heuristic based on bacteria foraging algorithm (BFA) called 
BASE is presented by [20]. BASE was compared with CASE 
and modified ART (ART1 in [20]), and showed better 
performance of proposed algorithm. Mahdavi and Mahavedan 
[15] have introduced a heuristic called CLASS that not only 
identifies components families and machines groups but also 
outlines the layout (sequence) of the machines within each 
cell. Moreover, they compared their work with solutions of the 
CASE. More studies and articles about CFPs, solving methods 
and performance measures can be found in [21]. 

Imperialist Competitive Algorithm (ICA) is one of the 
population-based algorithms presented by [2] to solve a 
problem in continues fashion. This algorithm has been also 
recently adopted to exploit solution space of discrete 
problems, among them you can refer to: [3], [6], [10], [12], 
[17], [23]. On the other hand, good capability of ICA dealing 
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with various types of engineering optimization problems has 
studied, e.g., scheduling: [3], [6], [10], [17], [23]; balancing 
and sequencing problem: [12], [29]; process planning: [13]; 
portfolio optimization: [25]; skeletal structures: [9]; 
outsourcing: [19]; quadratic assignment problem: [16], etc. 

In this study, ICA is adapted to solve the CF problem using 
sequence data. The proposed ICA contains two types of 
moves, designed in move-toward procedure. The ICA has a 
good ability to guide the searching agents (countries/colonies) 
within the solution space with a satisfactory convergence 
speed and then obtains good quality solutions itself; while 
local search (LS) concept may be included in the proposed 
algorithm to improve its performance. That is, an iterative 
local search is embedded in enhanced ICA, using different 
tested search strategies which bring good ability to the main 
algorithm in refining the explored regions of the solution 
space. The ICA in EICA plays the global search role, whereas 
the integrated LS mechanism applies the local search to 
balance the intensification and diversification aspects of the 
search. 

Proposed algorithms, adopted ICA and EICA, solve two 
different sets of test problems; (1) benchmark sequential 
incident matrices and (2) modified binary incident matrices. 
Besides, bond efficiency (β) and group technology efficiency 
(GTE) are two of well-known measures applied for SFPs with 
sequence data, which are considered in this study. 

The remainder of paper is organized as follows: Section II 
explains the original imperialist competitive algorithm (ICA). 
The proposed enhanced ICA for the CFP using sequence data 
are presented in Section III. Section IV includes the 
computational results which demonstrate and compare the 
efficiency of our algorithms. Finally, conclusion remarks are 
given in Section V. 

II. ORIGINAL IMPERIALIST COMPETITIVE ALGORITHM 

Imperialist competitive algorithm (ICA) is a social inspired 
algorithm that uses the concept of imperialism. Imperialism is 
a policy of extending power and rule of a government beyond 
its own boundaries [2]. ICA is known as a population-based 
algorithm in which each solution is called country. It simulates 
different aspects of a country like culture, religion, military 
power, art, and so on. Thus, total cost of a country contains all 
these factors. ICA works with the power of countries or their 
scores based on corresponding imposed costs. As explained in 
[23], countries are divided into imperialists and colonies 
regarding their powers. Colonies are distributed among 
imperialists to create empires. Empires compete to conquer 
more colonies; weak empires lose their colonies and they 
collapse at last. This collapse mechanism will hopefully cause 
all countries to converge to a state where just one empire will 
be survived, whereas all other countries become the colonies 
of that empire. This situation means that there is no more 
competition, and algorithm is ended. 

Procedure and formulations of original ICA in this paper 
are like [2] the architect of ICA. Based on cost of countries, 
they are divided into colonies and imperialists; imperialists are 
the most powerful countries and rules over other countries 

(colonies). An imperialist and its colonies are called an empire 
too. Imperialists with more power will have more chance to 
govern more colonies. Power of each imperialist is calculated 

by normalized cost  nC  as (1): 

 

 maxn i n
i

C c c 
                                                            

(1) 

 

where nc is the cost of nth imperialist and  max i
i

c
 

is 

maximum cost of all imperialists. Probability and number of 
colonies that an imperialist will rule are calculated by (2), (3): 
 

Probability n

i
i

C

C

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(2) 

 

 
Number of colonies in an empire

Probability Number of all coloniesround



                         
(3) 

 

 

Fig. 1 Best colony becomes imperialist 
 

 

Fig. 2 New empire after exchanging 
 

The colonies are forced to be like their imperialist, so they 
are moved toward their imperialist to resemble their leader in 
different aspects. Any time any of colonies reaches a higher 
score in its empire, it becomes the new imperialist itself (Figs. 
1 and 2). 

An empire score depends on two factors: imperialist score 
and colonies’ score, in (4). 

 

 
Total cost of an empire

imprialist colonies of empireCost mean Cost



                           
(4) 

 
In (4),   is a predefined coefficient to impose the 

percentage effect of colonies’ cost on empire’s cost. The cost 
of empires will be normalized by (5); these normalized costs 
are used as their power (score). 

Imperialist 

Best Colony 

 
Imperialist 

Colony 
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 maxn i n
i

NTC TC TC                                                  (5) 

 
Empires compete and some of them are getting weakened. 

Ergo, they lose their colonies until they will be eliminated, and 
one empire ultimately remains. Atashpaz-Gargari and Lucas 
[2] have presented a new Roulette Wheel method to choose 
the empire which will possess the weakest colony of the 
weakest empire in each evolution (iteration of the main ICA 
procedure). Computational effort of this method is much less 
than the conventional Roulette Wheel. Equation (6) shows the 
weights calculated for each empire. 

 

Weight of empire n

i
i

NCE

NCE



                                              

 (6) 

 

 1 2, ,..., iW w w w
 

 
Then, a random vector, the same size as the empires, is 
generated between 0 and 1 (R). 

 

 1 2, ,..., iR r r r  

 
Finally, a new vector will be calculated by (7): 

 
D W R                                                                         (7) 

 

 1 2, ,..., iD d d d
 

 

where the biggest id shows the best empire that occupies the 

weakest colony of the weakest empire. According to [2], ICA 
flowchart is shown in Fig. 3. 

As far as we know, ICA has never been used to solve CFP 
using sequence data. Since CFPs are discrete type problems, 
some adaptation on original ICA has been done to achieve a 
suitable algorithm. In this paper, we provide a new meta-
heuristic method step by step to find better solutions for the 
considered CFP. 

III. ENHANCED ICA FOR THE CFPS 

In this section, some modifications are done on the original 
ICA so as to be capable for solving the CFP using sequence 
data. To illustrate the proposed algorithm, we gradually follow 
the basic steps of the ICA as given in [23]. The original ICA 
was not designed for problems with discrete space. So, we 
first turned the ICA to an algorithm which can deal with the 
CFP’s solution space, and then we also add a new local search 
procedure to help the algorithm to find better solutions, called 
EICA. There are different parameters in this algorithm that 
affect on quality of solutions. Like most other evolutionary 
algorithms, ICA is concerned with size of population 
(Popsize). Other main parameters of ICA are Number of 
empires or number of imperialists (NumImp), colonies 
participant in total cost of empire   , predefined probability 

for choosing the local search type   , Number of evolutions 

and Number of local searches. 
 

 

Fig. 3 Original ICA Flowchart presented in [2] 

A. Representation 

Different representations have been developed for CFP’s 
solution. For instance, [4] used a suitable representation for 
their algorithm CF-GGA: a grouping genetic algorithm for the 
cell formation problem. In our paper, representation method is 
a string of numbers that show components, machines and their 
corresponding cells. ICA solutions called countries. Based on 
CF problem, a country includes components, machines and 
cells. For example, suppose six components going to be 
processed on four machines in tree cells. Component 1 is 
assigned to cell number 2, Machine 1 is located in cell number 
3, and the other components and machines are assigned to 
their cell’s number as illustrated in Fig. 4. 

 

 

Fig. 4 A feasible solution representation 

B. Generating Initial Empires (Population) 

As previously mentioned, ICA is a population-based 

2 2 1 2 3 3 3 2 1 2 
 
 

Components Machines 
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algorithm; so it should generate Popsize number of countries 
in the beginning of algorithm procedure. Each solution must 
satisfy minimum and maximum limits on the number of 
components in a cell (LnC and MnC). There are also similar 
restrictions for machines (LnM and MnM). Whenever a 
solution violates these limits, it is defined as an infeasible one 
and needs to be fixed. Fig. 5 shows an infeasible solution 
where there is no component, nor any machine in Cell 1. In 
this figure, rows and columns represent components and 
machines respectively. In addition, ordinal numbers show the 
number of processes for each component and highlighted 
block-diagonals refer to the manufacturing cells. To generate 
least infeasible solutions in initial population, number of 
components/machines for each cell is determined based on 
predefined limits, and the algorithm accordingly assigns 
components/machines to considered cells. So, it creates a 
string of cells number. Generated countries will be evaluated 
and divided into imperialists and colonies. After that, colonies 
and their related imperialist will create empires. During the 
search procedure or initial population generating, infeasible 
solutions may be created. Here, a repairing mechanism as 
described follows will be utilized. 

 
Fig. 5 An infeasible solution 

C. Evaluation 

In ICA, total cost of any country contains different aspects 
or parameters (e.g. culture, religion, etc.). Total cost or fitness 
function in our algorithm contains two elements: void 
elements (V E ) and inter-cell travels ( ICT ) ((8)). Nouri et al. 
[20] have also tried to minimize the VE and ICT. 

 

n n nc VE ICT                                                                  (8) 
 
After evaluation of colonies, ICA uses total cost of 

imperialists to calculate the normalized cost by (1). The 
algorithm finds the most powerful countries and names them 
imperialists, then allots other countries to them (NumImp 
imperialists) based on their power. The countries belonged to 
the imperialists called colonies. An imperialist and its colonies 
are defined as an empire together. 

D. Moving the Colonies of an Empire toward Imperialist 
(Assimilating) 

Every imperialist seeks to improve its colonies and as a 
result improves its empire. Two different ways to move 
colony members toward imperialists have designed here. 
Approach one focuses on reducing the void elements; for this 

reason, a number of components change their cells to 
imperialist pattern (Fig. 6). For example, components number 
1, 3, 4 and 6 are selected to be in a cell that imperialist says. 
Other approach of moving diminishes the void elements and 
inter-cell travels as well. Hence, some components and their 
related machines gathered into one cell. Consider Colony B 
where component number 1 is going to process on machines 
number 1, 2 and 4. It is moving toward its imperialist (Fig. 7). 

 

 
Fig. 6 Moving-toward for colony A considering voids 

 

 

Fig. 7 Moving-toward for colony B considering voids and inter-cell 
travels 

E. Local Search Operators 

A new phase (local search) is added to the proposed ICA 
which did not exist in basic ICA. The LS mechanism has 
shown a good ability to provide search heuristics with better 
intensification characteristics [1].  

The ICA is a social adopted algorithm and uses different 
social and political concepts. In like manner, local search (LS) 
resembles revolution in countries that has a great effect on 
different aspects and cost parameters of them. Integration of 
LS strategies into the ICA could control the balance between 
diversification and intensification in the EICA. The LS 
operators are exactly same as operators used in [28]: a single-
move and an exchange-move. These changes happen with a 
probability of   in our proposed algorithm, and they are used 
in both components and machines to find better solutions. 

Single-move: Considering the solution presented in Fig. 8; 
algorithm chooses component number 3, and transfers it from 
cell 1 to cell 2. 

Exchange-move regarding another solution; algorithm 
chooses two components and exchanges their cells (Fig. 9). 
These operators can also be established on machines grouping 
of cell formation. When local searches execute, the algorithm 
checks whether the new colony is more powerful than the old 
one. If yes, the new colony replaces the old one. Otherwise, 
nothing happens. Fig. 10 represents the local search pseudo 
code in the proposed EICA. 

The proposed algorithm is run with three different local 
search strategies and different Number of local searches 
(NumLS). Local search strategies are as fallows. Random local 
search operator: after moving-toward imperialist section, 
random local search operator chooses one of the local search 

 
Infeasible solution: 2 3 2 2 2 3 3 2 2 2 

 
 2 3 4 1 
1 0 3 2 1 
3 0 1 0 2 
4 0 1 3 2 
5 1 2 0 0 
2 1 0 0 0 
6 0 2 1 0 

 

Imperialist: 2 2 1 2 3 3 3 2 1 2 
           

Colony A: 1 3 2 1 1 2 2 3 1 2 
           
           

New colony A: 2 3 1 2 1 3 2 3 1 2 

Imperialist: 2 2 1 2 3 3 3 2 1 2 
           

Colony B: 1 3 2 2 1 3 2 3 2 1 
           
           

New colony B: 2 3 2 2 1 3 3 2 2 2 
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operators and uses it for each colony. Best of all local 
searches: this form of local search does several local searches 
and evaluates all of new colonies. The most powerful new 
colony will be compared with the old colony and decision will 
be made to replace the new one or not. First better of local 
searches: algorithm starts to perform a fix number of local 
searches until it finds a better solution than the old one. 

 
Fig. 8 Single-move local search 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Exchange-move local search 
 
 

 
 
 

Procedure Local search 

for each selected country do 
r := rand (0,1); 
if r <= α (predefined probability for choosing the local search … 
type) do 
Single-move operator on its components; 
Single-move operator on its Machines; 
else  
Exchange-move operator on its components; 
Exchange-move operator on its Machines; 
end if; 

end for;

Fig. 10 Pseudo code of local search 

F. Repairing Mechanism 

After all changes like moving-toward and local search 
operators, countries maybe exceed the limits and bring about 
infeasible solutions. Other kind of infeasible solutions are ones 
in which there are no components or any machines in a cell. 
There are two strategies to deal with this situation. The first 
one is to assign a very high penalty for these solutions and as a 
result reduce their probability of being selected as new 
imperialist or solutions that create other solutions. The second 
approach is trying to fix the expected number of components 
and machines in cells. In small size problems that are more 
likely to create infeasible solutions, the second approach is 
used. Increasing size of problems, the latter is no more useful 
and needs exponential amount of computational effort; thus, 
the former is applied. Instead of these two approaches, 
operators can be designed so to only generate feasible 
solutions. 

There are several studies which have been considered some 
kinds of repairing operators. Spiliopoulos and Sofianopoulou 
[24] proposed a heuristic method that always put a minimum 
number of components and machines in each cell. Brown and 
Sumichrast [4] repaired solutions and called it replacement 
operator that increases machines utilization. Keeling et al. [11] 
also developed a similar operator to make infeasible solutions 
feasible. 

Repairing procedure needs some information to show that 
each machine and component cause how many void elements 
and inter-cell travels in each solution. Before colonies move 
toward imperialist, each colony is checked and components 
and machines situation are updated. Updated situations are 
used for further changes and repairing. The algorithm employs 
this information to transfer components or machines to better 
cells in order to avoid infeasible solutions and improve them 
as well. To illustrate how repairing operators work, an 
infeasible solution is figured out in Fig. 5. In considered 
solution, Cell 1 is empty; that is, there are no machines or 
components in that cell and the limit number of 
components/machines is not satisfied. Therefore, at least one 
of the components must be moved to the mentioned cell, and 
the algorithm makes a decision based on components 
situation. While Cell 2 has the most components, thus one of 
its components must be shifted to Cell 1. Components 1, 3 and 
4 create the most number of void elements and inter-cell 
travels, so one of these components is better to leave Cell 2 

 
The country before 

local search: 
2 3 1 2 1 3 2 3 1 2 

 
 3 1 4 2 
3 1 2 0 0 
5 2 0 0 1 
1 3 1 2 0 
4 1 2 3 0 
2 0 0 0 1 
6 2 0 1 0 

 
 

The country after 
local search: 

2 3 2 2 1 3 2 3 1 2 

 
 3 1 4 2 
5 2 0 0 1 
1 3 1 2 0 
3 1 2 0 0 
4 1 2 3 0 
2 0 0 0 1 
6 2 0 1 0 

 
The country before 

local search: 
2 3 2 2 1 3 3 2 1 2 

 
 3 2 4 1 
5 2 1 0 0 
1 3 0 2 1 
3 1 0 0 2 
4 1 0 3 2 
2 0 1 0 0 
6 2 0 1 0 

 
 

The country after 
local search: 

1 3 2 2 2 3 3 2 1 2 

 
 3 2 4 1 
1 3 0 2 1 
3 1 0 0 2 
4 1 0 3 2 
5 2 1 0 0 
2 0 1 0 0 
6 2 0 1 0 
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(e.g. component 3 can move to Cell 1 as illustrated in Fig. 11). 
 

 
Fig. 11 The solution is still infeasible after components repairing 

 
LnC and MnC can be satisfied in the same way, but there is 

still a problem; cell number 1 needs machines to process 
components. Therefore, the algorithm must move at least one 
machine to Cell 1, now the machine should be determined. 
After components repairing, machines 4 and 1 cause the most 
number of void elements and inter-cell travels. Thus, machine 
4 is instantly chosen to move to Cell 1 (Fig. 12). Pseudo code 
of repairing mechanism is presented in Fig. 13. 

 
Fig. 12 Feasible solution after component and machine repairing 

G. Exchanging Positions of Imperialist and a Colony 

After moving-toward and local search steps, all colonies 
and their imperialist are evaluated again to identify that if any 
colony gets better than its imperialist. The better colony will 
become the new imperialist of considered empire and the 
previous one will be an ordinary colony like others at the end 
of evolution (iteration). Colonies of the empire now will move 
toward the new imperialist. 

 
Procedure Repairing 
for each country which must be repaired do 
             #Components repair# 
        while (MnC <= number of components in each cell <= LnC ) do 
                       Rearrange the components based on their situation 
         end while; 
            #Machines repair# 
         while (MnC <= number of machines in each cell <= LnC ) do 
                       Rearrange the machines based on their situation 
         end while; 
end for; 

Fig. 13 Pseudo code of repairing mechanism 

H. Total Power of an Empire and Empires Competition 

Total power of an empire is calculated based on imperialist 
power and its colonies (see (4)). After each iteration, the 
empires’ power changes and the weakest empire losses its 

weakest colony. This colony will join to another empire based 
on their power and chance. 

 
EICA for manufacturing cell formation problems using sequence data 

begin 
initialize parameters for ICA;               #Table I# 
generate random solutions (colonies); 
Evaluate colonies and initialize the empires; 
current number of empires:=initial number of empires; 
while stopping criteria (running time or number of evolutions) 
is not met do 

for i=1 to current number of empires do  
current number of colonies in empire:= number of 
colonies in empire i; 
for j=1 to current number of colonies in empire i 
do 

Move the colonies toward the imperialist;           
#Assimilating# 
procedure Repairing; 
procedure Local search; 
procedure Repairing; 
evaluate colonies; 

end for; 
update the weakest colony; 
If (there is a colony in empire which has lower 
cost than imperialist) do 

exchange the position of that colony and the 
imperialist; 

end if; 
update the empire power; 

end for; 
Pick the weakest colony/colonies from the weakest 
empire and give it/them to the empire that has the most 
likelihood to possess it;      #imperialist competition# 
Eliminate the powerless empire(s); 
If there is just one empire (the main criterion of ICA) 
do 
stop; 
end if; 

end while; 
end; 

Fig. 14 Pseudo code of proposed EICA 

I. Eliminating the Powerless Empires (Imperialist 
Competition) 

In ICA, the algorithm continues until empires lose all their 
colonies and just one empire remains. Section II described the 
procedure of moving weakest colony of weakest empire to one 
of other empires, as well as the new Rolette Wheel 
mechanism. The pseudo code of proposed EICA for the CFP 
is presented in Fig. 14. 

Besides the primary termination criterion of ICA, one 
remaining empire, we can use or define some criteria for this 
algorithm such as number of iterations (number of evolution) 
or CPU time too. 

IV. COMPUTATIONAL RESULTS AND DISCUSSIONS 

A. Parameters Tuning 

Based on the problems we deal with, different levels of 
parameters are needed. There are many parameters in our 
proposed algorithms which affect the solutions; these 

 

An infeasible solution: 2 3 1 2 2 3 3 2 2 2 
 

 2 3 4 1 
3 0 1 0 2 
1 0 3 2 1 
4 0 1 3 2 
5 1 2 0 0 
2 1 0 0 0 
6 0 2 1 0 

 
The feasible solution: 2 3 1 2 2 3 3 2 2 1 
 

 4 2 3 1 
3 0 0 1 2 
1 2 0 3 1 
4 3 0 1 2 
5 0 1 2 0 
2 0 1 0 0 
6 1 0 2 0 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3520

 

 

parameters are presented in Table I. 
 

TABLE I 
VALUES USED FOR ICA PARAMETERS 

Parameter Level 
Zeta (  ) 0.1 
Alpha ( ) 0.55-0.6 

Number of imperialists (NumImp) 10-30* 

Number of counties (Popsize) 100-600* 

Number of evolutions 100-500* 

Number of local searches 10-20* 

* First values are used for small size test problems and greater values for 
bigger size problems 

B. Experimental Results and Performance Measures 

Some of performance measures can be found in [18] that 
shows how measures work, and use them in a grouping 
genetic algorithm (GGA). Some of these measures are 
practical for the CFPs dealing with the binary incidence 
matrices and some others are suitable for the CFPs using 
sequence data [18]. Bond efficiency (β) and grouping 
technology efficiency (GTE) calculation procedures are 
presented in [18] and [20]; despite this citing, the procedures 
are explained again here. 

For calculating GTE, maximum number of inter-cell travels 
possible ( pI ), and number of inter-cell travels required by the 

system ( rI ) is calculated by (9) and (10), respectively. 
 

 
1

1
N

p
j

I n


                                                                        (9) 

 
1

1 1

N n

r njw
j w

I t


 

                                                                  (10) 

 
So, (11) calculates the grouping technology efficiency (GTE): 
 

p r

p

I I
GTE

I




                                                                  

 (11) 

 

where, 0njwt 
 
if the consecutive operations w and w + 1 are 

performed in the same cell; = 1 otherwise. n= number of 
operations (w= 1, 2, 3,…, n). N= number of components.

 
The second measure (β) needs compactness of the system in 

addition to GTE. This value is defined by (12), while the 
measure itself is calculated by (13). 
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where kTOTOP   

Total number of operations in the kth cell. 

kNOP   
Total number of non-operations (void elements) in 

the kth cell. 
 

     1 , 0 1q GTE q Compactness q                            (13) 

 

TABLE II 
TEST PROBLEMS 

Prob. 
No. 

Source Cells Components Machines

1 King and Nakornchai [30]) 2 7 5 

2 Waghodekar and Sahu [45] 2 7 5 

3 Kusiak [46] 2 8 6 

4 
Nair, G. Jayakrishnan and 

Narendran, T. T. [18] 
3 7 7 

5 Kusiak and Chow [31] 3 11 7 

6 Boctor [47] 3 11 7 

7 Seiffodini [32] 2 18 5 

8 Seiffodini and Wolfe [51] 3 12 8 

9 Mosier and Taube [33] 3 10 10 

10 
Sudhakara Pandian R, Mahapatra 

SS. [48] 
3 12 10 

11 Chan and Milner [34] 3 15 10 

12 
Chandrasekaran and Rajagopalan 

[35] 
3 20 8 

13 
Chandrasekaran and Rajagopalan 

[36] 
2 20 8 

14 Nair et al. [18] 3 20 8 

15 Askin and Subramanian [37] 5 23 14 

16 Stanfel [49] 5 24 14 

17 McCormick et al. [50] 6 24 16 

18 Mosier and Taube [38] 5 20 20 

19 Nair et al. [18] 5 20 20 

20 Carrie [39] 6 24 18 

21 Kumar et al. [40] 5 23 20 

22 King [41] 5 43 16 

23 Carrie [39] 4 35 20 

24 Boe and Cheng [42] 5 35 20 

25 McCormick et al. [50] 4 27 27 

26 
Chandrasekaran and Rajagopalan 

[43]- Matrix5 
9 40 24 

27 
Chandrasekaran and Rajagopalan 

[43] - Matrix7 
9 40 24 

28 
Spiliopoulos and  Sofianopoulou 

[24] 
8 40 24 

29 Nair et al. [18] 8 40 25 

30 
Chandrasekaran and Rajagopalan 

[44] 
10 100 40 

 

The proposed algorithms were tested on several problems. 
Results of all runs were organized into two sub sections: 
benchmark problems and modified problems. 

C. Test Problems 

Most heuristic approaches for the CFP using sequence data 
have been solved the benchmark problems presented in [18]; 
furthermore, 25 more problems that are different are presented 
in this paper to check the proposed ICA algorithms. These 
problems are based on binary incident component-machine 
matrices that their solutions are available in [7]. To modify 
these binary problems, we employ the same method applied in 
[24]. Whole test problems in this research are shown in Table 
II.  
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TABLE III 
PERFORMANCE OF THE PROPOSED ICAS COMPARED WITH CASE, ART AND 

BFA ON BENCHMARK INSTANCES 

CASE 

4   3 6 53.85 76.92  NA Basic ICA 

10   - - - -  -  EICA 

14   10 17 58.54 79.27  0.03  EICA 

19   15 19 67.80 73.90  0.17  EICA 

29   35 37 60.21 71.63  0.45  EICA 

ART 

4   3 6 53.85 76.92  0.08 Basic ICA 

10   4 8 69.23 76.08  NA  EICA 

14   10 17 58.54 79.27  0.29  EICA 

19   16 18 69.49 NA  0.55  EICA 

29   35 37 60.21 71.63  0.95  EICA 

BFA 

4   6 5 61.54 74.52  0.12 Basic ICA 

10   5 5 80.8 80.63  NA  EICA 

14   10 17 58.54 79.27  0.12  EICA 

19   19 16 72.88 73.90  0.56  EICA 

29   36 35 62.40 71.92  5.4  EICA 

Proposed ICAs* 

4   3 6 53.85 76.92  0.10 Basic ICA 

10   5 5 80.08 80.63  0.23  EICA 

14   10 17 58.54 79.27  0.27  EICA 

19   16 18 69.49 73.30  2.12  EICA 

29   36 35 62.40 71.91  5.44  EICA 

D. Benchmark Problems 

This set of well-known benchmark problems has been used 
multiple times in literature of solving the CFPs. Summary of 
results for these problems is presented in Table III; some of 
information about CASE [18], Modified ART [8] named 
ART1 [20], and BFA [20] results are collected from [20] 
compared with best solutions found by the proposed ICA 
algorithms.  

Table III contains number of exception elements (EE), 
inter-cell travels (ICT) and two performance measures: group 
technology efficiency (GTE) and bond efficiency ( ) for each 

algorithm. In addition to all these information, CPU time for 
considered algorithms is presented. 

Bold values in Table III show which algorithm is better in 
performance measures; furthermore, the highlighted values 
identify the algorithm which found the best solution in least 
elapsed time. As Table III points out, proposed algorithms in 
this paper have a great performance. Our methods can reach 
the best-known solutions presented in [20]; even in test 
problems 10 and 29, they find the best-known solutions in less 
time. 
 

 

Fig. 15 Comparison of GTE performance measure of different 
methods for the benchmark instances 

 

 

Fig. 16 Comparison of ߚ performance measure of different methods 
for the benchmark instances 

 

 
Fig. 17 Binary incidence matrix modification 

E. Modified Problems 

The method used to modify the binary incidence matrices to 
sequential matrices is so simple; it assumes that the processing 
sequence of each component increases with machine number 
(Fig. 17) [24]. 
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 1 2 3 4 5    1 2 3 4 5 

1 0 1 1 0 1   1 0 1 2 0 3 
2 1 0 0 1 0   2 1 0 0 2 0 
3 0 1 1 0 0   3 0 1 2 0 0 
4 1 0 0 1 0   4 1 0 0 2 0 
5 1 0 0 0 1   5 1 0 0 0 2 
6 1 0 1 1 0   6 1 0 2 3 0 
7 0 0 1 0 1   7 0 0 1 0 2 
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TABLE IV 
COMPARISON OF COMPUTATIONAL RESULTS OF THE BASIC ICA VS. EICA ON MODIFIED PROBLEMS 

Prob. 
No. 

Best found solution 
Basic ICA EICA 

GTE β GTE β 

EE ICT GTE β ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec 

1 2 3 66.67 74.5 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

2 5 7 46.15 64.7 100% 100% 100% 100% 100% 100% 99% 100% 100% 99% 100% 100% 

3 2 3 78.57 84.7 99% 100% 100% 99% 100% 100% 98% 100% 100% 98% 99% 100% 

5 6 6 50 56.3 99% 99% 100% 98% 99% 99% 99% 99% 100% 99% 100% 100% 

6 2 2 80 78 100% 100% 100% 99% 100% 100% 99% 100% 100% 99% 100% 100% 

7 7 14 50 71.4 99% 99% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100% 

8 7 6 73.91 78.1 99% 100% 100% 99% 100% 100% 97% 100% 100% 97% 100% 100% 

9 0 0 100 86.4 99% 100% 100% 99% 99% 100% 99% 99% 100% 99% 99% 100% 

11 0 0 100 96 98% 99% 99% 98% 99% 99% 98% 99% 100% 98% 100% 100% 

12 9 12 70.73 85.4 97% 98% 99% 97% 98% 99% 95% 99% 100% 95% 99% 100% 

13 27 43 39.44 58.7 98% 99% 100% 98% 99% 99% 97% 98% 99% 97% 99% 99% 

15 7 7 80 78.6 97% 99% 100% 96% 98% 99% 96% 99% 100% 97% 99% 100% 

16 9 8 78.38 78.6 98% 99% 100% 98% 99% 99% 97% 100% 100% 97% 99% 100% 

17 33 42 31.15 54 97% 98% 99% 97% 98% 98% 98% 100% 100% 98% 99% 100% 

18 53 64 26.44 48.8 97% 98% 100% 97% 99% 100% 97% 99% 100% 97% 99% 100% 

20 27 25 60.94 66.4 98% 99% 99% 98% 99% 100% 96% 100% 100% 96% 99% 100% 

21 43 56 37.78 54.6 97% 99% 99% 97% 99% 99% 97% 100% 100% 97% 100% 100% 

22 30 45 45.78 56 95% 96% 96% 95% 96% 96% 95% 98% 100% 95% 98% 100% 

23 1 2 98 87.5 97% 99% 100% 97% 99% 99% 97% 100% 100% 97% 100% 100% 

24 41 55 51.75 63.1 96% 98% 98% 96% 98% 98% 96% 99% 100% 96% 99% 100% 

25 60 52 72.92 75.2 96% 98% 98% 96% 98% 98% 95% 99% 100% 95% 99% 100% 

26 47 57 37.36 54.9 95% 97% 97% 96% 97% 97% 92% 96% 100% 92% 96% 100% 

27 5 66 27.47 47.4 93% 94% 96% 93% 94% 96% 93% 95% 100% 93% 95% 99% 

28 2 60 34.07 47.5 92% 95% 96% 92% 94% 96% 91% 97% 100% 91% 97% 98% 

30 7 56 82.5 86.9 91% 93% 93% 91% 93% 93% 90% 96% 100% 89% 96% 100% 

 
Table IV is about the performance of ICAs for the modified 

problems. In this table, relative percentage deviation (RPD) of 
performance measures derived from the best found solutions 
and the proposed algorithms’ solutions is presented. RPD 
value is calculated by (14): 

 

lg
100mea mea

mea

Max A
RPD

Max


                                                 (14) 

 
where 

m eaM ax  is the performance measure of best found 

solution and lg meaA  is the proposed algorithms’ performance 

measure. 
Table IV shows the RPD of GTE of different proposed ICA 

algorithms in less than 1 second, 5 and 10 seconds for all 
modified test problems. Algorithms’ behaviors are so alike for 
GTE and β metrics. These values illustrate that algorithms 
perform better in longer runs as it is expected. Algorithms’ 
results are almost the same in less than 1 second. Table IV 
demonstrates that the EICA outperforms the basic ICA clearly. 
The EICA finds most well-known solutions, and in a few large 
scale problems there are little deviation to the best solutions. 

V. CONCLUSION 

This paper presented new versions of imperialist 
competitive algorithm (ICA) as perfect solver for the CFP 
using sequence data component-machine incident matrices. 
Besides the modifications done on the conventional ICA to 

deal with the considered problem, an enhanced version of ICA 
(EICA), that make use of local search operators, have been 
proposed too. The proposed ICAs solved the CFP 
substantially more efficient than other state of the art 
algorithms. Operators of the main ICA and embedded local 
search have been successfully designed to improve 
intensification and diversification features of proposed 
algorithms. ICA algorithms were implemented on some 
benchmark problems in literature and some others modified to 
sequence data. Results showed that the presented methods 
work as well as other satisfactory algorithms in some cases, 
even better than other ones. Moreover, it is obvious that EICA 
outperforms basic ICA in large size problems; whereas in 
smaller sizes, they have the same results with less deviation. 
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