
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3514



Abstract—Imperialist Competitive Algorithm (ICA) is a recent
meta-heuristic method that is inspired by the social evolutions for
solving NP-Hard problems. The ICA is a population-based algorithm
which has achieved a great performance in comparison to other meta-
heuristics. This study is about developing enhanced ICA approach to
solve the Cell Formation Problem (CFP) using sequence data. In
addition to the conventional ICA, an enhanced version of ICA,
namely EICA, applies local search techniques to add more
intensification aptitude and embed the features of exploration and
intensification more successfully. Suitable performance measures are
used to compare the proposed algorithms with some other powerful
solution approaches in the literature. In the same way, for checking
the proficiency of algorithms, forty test problems are presented. Five
benchmark problems have sequence data, and other ones are based on
0-1 matrices modified to sequence based problems. Computational
results elucidate the efficiency of the EICA in solving CFP problems.

Keywords—Cell formation problem, Group technology,
Imperialist competitive algorithm, Sequence data.

I. INTRODUCTION

ELLULAR MANUFACTURING SYSTEM (CMS) is
one of the famous manufacturing systems which uses

Group Technology (GT) concept to merges flexibility of job
shops and high production rate of lines environments. The
CMS take the advantages of reduced setup times and work in
process, improved product quality, shorter lead times, less tool
requirements, enhanced productivity, better overall control of
operations, etc., (see [20], [22]). The well-known problem in
CMS that seeks to group similar parts/components and
different machines needed for processing these components in
a same cell, called cell formation problem (CFP). The goal of
this problem is finding such cells in order to optimize the
chosen performance measures. There are various types of CF
problems considering different aspects of cellular
manufacturing systems, including: workers, products route,
scheduling, layout, etc., for more information one can refer to
[14], [21].

H. Borghei is with the department of Industrial Engineering, Mazandaran

University of Science and Technology, Babol, Iran (e-mail
address: hborgheiir@gmail.com)

E. Teymourian is with the School of Mechanical, Industrial, and
Manufacturing Engineering, Oregon State University, Corvallis, OR 97331-
6001, USA (e-mail address: ehsan.teymorian@gmail.com)

M. Mobin is with the Department of Industrial Engineering and
Engineering Management, Western New England University, Springfield, MA
01119 USA (Phone: 413-801-7845; e-mail: mm337076@wne.edu)

M. Komaki is with Case Western Reserve University, Cleveland, OH
44106 USA (phone: 216-368-4114; e-mail: gxk152@ case.edu).

S. Sheikh is with the Department of Management Science at New York
Institute of Technology, New York, NY 10023 USA (e-mail:
shaya.sheikh@case.edu).

The basic form of CFPs is one that uses binary machine-
component incident matrices, in which, components must be
processed on related machines, where the corresponding array
is 1. Many researchers have mentioned in their works [24],
[27] that CFPs are NP-hard, and then cannot be solved
optimally in real and large sizes. Therefore, heuristic and
meta-heuristic approaches have been considered thoroughly to
solve the CFPs in reasonable computational times. In this
sense, [8] used Genetic Algorithm (GA) to solve the CFP. Wu
et al. [28] presented a Simulated Annealing (SA) algorithm for
these problems and called it SACF; the algorithm improves
the grouping efficacy in most of test problems. Wu et al. [26]
have introduced a heuristic algorithm applying water flow-like
algorithm (WFA) logic to solve the CFP called WFACF.
WFA is mimicking water flowing behavior from higher to
lower levels and dynamically changing number of flows in
this movement. That is, changing number of water flows make
WFA an agent population-varying method. Recently, [5]
designed a hybrid GA that uses large neighborhood search and
GA together.

Studies based on binary machine-component incident
matrices do not contain processing routes. This information is
critical in real world; therefore, incident matrices that
demonstrate the sequence of operations to finish a component
have been considered as other main form of CFPs. These
kinds of CFPs try to reach a feasible solution with least inter-
cell and/or intra-cell travels movements. Some researchers
have considered this vital information in solving CF problems.
Nair and Narendran [18] developed a new clustering method
(CASE) and some new performance measures for CFP using
sequence data. Spiliopoulos and Sofianopoulou [24] employed
an efficient ant colony approach to deal with similar problems.
A heuristic based on bacteria foraging algorithm (BFA) called
BASE is presented by [20]. BASE was compared with CASE
and modified ART (ART1 in [20]), and showed better
performance of proposed algorithm. Mahdavi and Mahavedan
[15] have introduced a heuristic called CLASS that not only
identifies components families and machines groups but also
outlines the layout (sequence) of the machines within each
cell. Moreover, they compared their work with solutions of the
CASE. More studies and articles about CFPs, solving methods
and performance measures can be found in [21].

Imperialist Competitive Algorithm (ICA) is one of the
population-based algorithms presented by [2] to solve a
problem in continues fashion. This algorithm has been also
recently adopted to exploit solution space of discrete
problems, among them you can refer to: [3], [6], [10], [12],
[17], [23]. On the other hand, good capability of ICA dealing

Enhanced Imperialist Competitive Algorithm for the
Cell Formation Problem Using Sequence Data

S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh

C

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3515

with various types of engineering optimization problems has
studied, e.g., scheduling: [3], [6], [10], [17], [23]; balancing
and sequencing problem: [12], [29]; process planning: [13];
portfolio optimization: [25]; skeletal structures: [9];
outsourcing: [19]; quadratic assignment problem: [16], etc.

In this study, ICA is adapted to solve the CF problem using
sequence data. The proposed ICA contains two types of
moves, designed in move-toward procedure. The ICA has a
good ability to guide the searching agents (countries/colonies)
within the solution space with a satisfactory convergence
speed and then obtains good quality solutions itself; while
local search (LS) concept may be included in the proposed
algorithm to improve its performance. That is, an iterative
local search is embedded in enhanced ICA, using different
tested search strategies which bring good ability to the main
algorithm in refining the explored regions of the solution
space. The ICA in EICA plays the global search role, whereas
the integrated LS mechanism applies the local search to
balance the intensification and diversification aspects of the
search.

Proposed algorithms, adopted ICA and EICA, solve two
different sets of test problems; (1) benchmark sequential
incident matrices and (2) modified binary incident matrices.
Besides, bond efficiency (β) and group technology efficiency
(GTE) are two of well-known measures applied for SFPs with
sequence data, which are considered in this study.

The remainder of paper is organized as follows: Section II
explains the original imperialist competitive algorithm (ICA).
The proposed enhanced ICA for the CFP using sequence data
are presented in Section III. Section IV includes the
computational results which demonstrate and compare the
efficiency of our algorithms. Finally, conclusion remarks are
given in Section V.

II. ORIGINAL IMPERIALIST COMPETITIVE ALGORITHM

Imperialist competitive algorithm (ICA) is a social inspired
algorithm that uses the concept of imperialism. Imperialism is
a policy of extending power and rule of a government beyond
its own boundaries [2]. ICA is known as a population-based
algorithm in which each solution is called country. It simulates
different aspects of a country like culture, religion, military
power, art, and so on. Thus, total cost of a country contains all
these factors. ICA works with the power of countries or their
scores based on corresponding imposed costs. As explained in
[23], countries are divided into imperialists and colonies
regarding their powers. Colonies are distributed among
imperialists to create empires. Empires compete to conquer
more colonies; weak empires lose their colonies and they
collapse at last. This collapse mechanism will hopefully cause
all countries to converge to a state where just one empire will
be survived, whereas all other countries become the colonies
of that empire. This situation means that there is no more
competition, and algorithm is ended.

Procedure and formulations of original ICA in this paper
are like [2] the architect of ICA. Based on cost of countries,
they are divided into colonies and imperialists; imperialists are
the most powerful countries and rules over other countries

(colonies). An imperialist and its colonies are called an empire
too. Imperialists with more power will have more chance to
govern more colonies. Power of each imperialist is calculated

by normalized cost  nC as (1):

 maxn i n
i

C c c 

(1)

where nc is the cost of nth imperialist and  max i
i

c

is

maximum cost of all imperialists. Probability and number of
colonies that an imperialist will rule are calculated by (2), (3):

Probability n

i
i

C

C



(2)

 
Number of colonies in an empire

Probability Number of all coloniesround




(3)

Fig. 1 Best colony becomes imperialist

Fig. 2 New empire after exchanging

The colonies are forced to be like their imperialist, so they
are moved toward their imperialist to resemble their leader in
different aspects. Any time any of colonies reaches a higher
score in its empire, it becomes the new imperialist itself (Figs.
1 and 2).

An empire score depends on two factors: imperialist score
and colonies’ score, in (4).

 
Total cost of an empire

imprialist colonies of empireCost mean Cost



   
(4)

In (4),  is a predefined coefficient to impose the

percentage effect of colonies’ cost on empire’s cost. The cost
of empires will be normalized by (5); these normalized costs
are used as their power (score).

Imperialist

Best Colony

Imperialist

Colony

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3516

 maxn i n
i

NTC TC TC  (5)

Empires compete and some of them are getting weakened.

Ergo, they lose their colonies until they will be eliminated, and
one empire ultimately remains. Atashpaz-Gargari and Lucas
[2] have presented a new Roulette Wheel method to choose
the empire which will possess the weakest colony of the
weakest empire in each evolution (iteration of the main ICA
procedure). Computational effort of this method is much less
than the conventional Roulette Wheel. Equation (6) shows the
weights calculated for each empire.

Weight of empire n

i
i

NCE

NCE



 (6)

 1 2, ,..., iW w w w

Then, a random vector, the same size as the empires, is
generated between 0 and 1 (R).

 1 2, ,..., iR r r r

Finally, a new vector will be calculated by (7):

D W R  (7)

 1 2, ,..., iD d d d

where the biggest id shows the best empire that occupies the

weakest colony of the weakest empire. According to [2], ICA
flowchart is shown in Fig. 3.

As far as we know, ICA has never been used to solve CFP
using sequence data. Since CFPs are discrete type problems,
some adaptation on original ICA has been done to achieve a
suitable algorithm. In this paper, we provide a new meta-
heuristic method step by step to find better solutions for the
considered CFP.

III. ENHANCED ICA FOR THE CFPS

In this section, some modifications are done on the original
ICA so as to be capable for solving the CFP using sequence
data. To illustrate the proposed algorithm, we gradually follow
the basic steps of the ICA as given in [23]. The original ICA
was not designed for problems with discrete space. So, we
first turned the ICA to an algorithm which can deal with the
CFP’s solution space, and then we also add a new local search
procedure to help the algorithm to find better solutions, called
EICA. There are different parameters in this algorithm that
affect on quality of solutions. Like most other evolutionary
algorithms, ICA is concerned with size of population
(Popsize). Other main parameters of ICA are Number of
empires or number of imperialists (NumImp), colonies
participant in total cost of empire   , predefined probability

for choosing the local search type   , Number of evolutions

and Number of local searches.

Fig. 3 Original ICA Flowchart presented in [2]

A. Representation

Different representations have been developed for CFP’s
solution. For instance, [4] used a suitable representation for
their algorithm CF-GGA: a grouping genetic algorithm for the
cell formation problem. In our paper, representation method is
a string of numbers that show components, machines and their
corresponding cells. ICA solutions called countries. Based on
CF problem, a country includes components, machines and
cells. For example, suppose six components going to be
processed on four machines in tree cells. Component 1 is
assigned to cell number 2, Machine 1 is located in cell number
3, and the other components and machines are assigned to
their cell’s number as illustrated in Fig. 4.

Fig. 4 A feasible solution representation

B. Generating Initial Empires (Population)

As previously mentioned, ICA is a population-based

2 2 1 2 3 3 3 2 1 2

Components Machines

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3517

algorithm; so it should generate Popsize number of countries
in the beginning of algorithm procedure. Each solution must
satisfy minimum and maximum limits on the number of
components in a cell (LnC and MnC). There are also similar
restrictions for machines (LnM and MnM). Whenever a
solution violates these limits, it is defined as an infeasible one
and needs to be fixed. Fig. 5 shows an infeasible solution
where there is no component, nor any machine in Cell 1. In
this figure, rows and columns represent components and
machines respectively. In addition, ordinal numbers show the
number of processes for each component and highlighted
block-diagonals refer to the manufacturing cells. To generate
least infeasible solutions in initial population, number of
components/machines for each cell is determined based on
predefined limits, and the algorithm accordingly assigns
components/machines to considered cells. So, it creates a
string of cells number. Generated countries will be evaluated
and divided into imperialists and colonies. After that, colonies
and their related imperialist will create empires. During the
search procedure or initial population generating, infeasible
solutions may be created. Here, a repairing mechanism as
described follows will be utilized.

Fig. 5 An infeasible solution

C. Evaluation

In ICA, total cost of any country contains different aspects
or parameters (e.g. culture, religion, etc.). Total cost or fitness
function in our algorithm contains two elements: void
elements (V E) and inter-cell travels (ICT) ((8)). Nouri et al.
[20] have also tried to minimize the VE and ICT.

n n nc VE ICT  (8)

After evaluation of colonies, ICA uses total cost of

imperialists to calculate the normalized cost by (1). The
algorithm finds the most powerful countries and names them
imperialists, then allots other countries to them (NumImp
imperialists) based on their power. The countries belonged to
the imperialists called colonies. An imperialist and its colonies
are defined as an empire together.

D. Moving the Colonies of an Empire toward Imperialist
(Assimilating)

Every imperialist seeks to improve its colonies and as a
result improves its empire. Two different ways to move
colony members toward imperialists have designed here.
Approach one focuses on reducing the void elements; for this

reason, a number of components change their cells to
imperialist pattern (Fig. 6). For example, components number
1, 3, 4 and 6 are selected to be in a cell that imperialist says.
Other approach of moving diminishes the void elements and
inter-cell travels as well. Hence, some components and their
related machines gathered into one cell. Consider Colony B
where component number 1 is going to process on machines
number 1, 2 and 4. It is moving toward its imperialist (Fig. 7).

Fig. 6 Moving-toward for colony A considering voids

Fig. 7 Moving-toward for colony B considering voids and inter-cell
travels

E. Local Search Operators

A new phase (local search) is added to the proposed ICA
which did not exist in basic ICA. The LS mechanism has
shown a good ability to provide search heuristics with better
intensification characteristics [1].

The ICA is a social adopted algorithm and uses different
social and political concepts. In like manner, local search (LS)
resembles revolution in countries that has a great effect on
different aspects and cost parameters of them. Integration of
LS strategies into the ICA could control the balance between
diversification and intensification in the EICA. The LS
operators are exactly same as operators used in [28]: a single-
move and an exchange-move. These changes happen with a
probability of  in our proposed algorithm, and they are used
in both components and machines to find better solutions.

Single-move: Considering the solution presented in Fig. 8;
algorithm chooses component number 3, and transfers it from
cell 1 to cell 2.

Exchange-move regarding another solution; algorithm
chooses two components and exchanges their cells (Fig. 9).
These operators can also be established on machines grouping
of cell formation. When local searches execute, the algorithm
checks whether the new colony is more powerful than the old
one. If yes, the new colony replaces the old one. Otherwise,
nothing happens. Fig. 10 represents the local search pseudo
code in the proposed EICA.

The proposed algorithm is run with three different local
search strategies and different Number of local searches
(NumLS). Local search strategies are as fallows. Random local
search operator: after moving-toward imperialist section,
random local search operator chooses one of the local search

Infeasible solution: 2 3 2 2 2 3 3 2 2 2

 2 3 4 1
1 0 3 2 1
3 0 1 0 2
4 0 1 3 2
5 1 2 0 0
2 1 0 0 0
6 0 2 1 0

Imperialist: 2 2 1 2 3 3 3 2 1 2

Colony A: 1 3 2 1 1 2 2 3 1 2

New colony A: 2 3 1 2 1 3 2 3 1 2

Imperialist: 2 2 1 2 3 3 3 2 1 2

Colony B: 1 3 2 2 1 3 2 3 2 1

New colony B: 2 3 2 2 1 3 3 2 2 2

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3518

operators and uses it for each colony. Best of all local
searches: this form of local search does several local searches
and evaluates all of new colonies. The most powerful new
colony will be compared with the old colony and decision will
be made to replace the new one or not. First better of local
searches: algorithm starts to perform a fix number of local
searches until it finds a better solution than the old one.

Fig. 8 Single-move local search

Fig. 9 Exchange-move local search

Procedure Local search

for each selected country do
r := rand (0,1);
if r <= α (predefined probability for choosing the local search …
type) do
Single-move operator on its components;
Single-move operator on its Machines;
else
Exchange-move operator on its components;
Exchange-move operator on its Machines;
end if;

end for;

Fig. 10 Pseudo code of local search

F. Repairing Mechanism

After all changes like moving-toward and local search
operators, countries maybe exceed the limits and bring about
infeasible solutions. Other kind of infeasible solutions are ones
in which there are no components or any machines in a cell.
There are two strategies to deal with this situation. The first
one is to assign a very high penalty for these solutions and as a
result reduce their probability of being selected as new
imperialist or solutions that create other solutions. The second
approach is trying to fix the expected number of components
and machines in cells. In small size problems that are more
likely to create infeasible solutions, the second approach is
used. Increasing size of problems, the latter is no more useful
and needs exponential amount of computational effort; thus,
the former is applied. Instead of these two approaches,
operators can be designed so to only generate feasible
solutions.

There are several studies which have been considered some
kinds of repairing operators. Spiliopoulos and Sofianopoulou
[24] proposed a heuristic method that always put a minimum
number of components and machines in each cell. Brown and
Sumichrast [4] repaired solutions and called it replacement
operator that increases machines utilization. Keeling et al. [11]
also developed a similar operator to make infeasible solutions
feasible.

Repairing procedure needs some information to show that
each machine and component cause how many void elements
and inter-cell travels in each solution. Before colonies move
toward imperialist, each colony is checked and components
and machines situation are updated. Updated situations are
used for further changes and repairing. The algorithm employs
this information to transfer components or machines to better
cells in order to avoid infeasible solutions and improve them
as well. To illustrate how repairing operators work, an
infeasible solution is figured out in Fig. 5. In considered
solution, Cell 1 is empty; that is, there are no machines or
components in that cell and the limit number of
components/machines is not satisfied. Therefore, at least one
of the components must be moved to the mentioned cell, and
the algorithm makes a decision based on components
situation. While Cell 2 has the most components, thus one of
its components must be shifted to Cell 1. Components 1, 3 and
4 create the most number of void elements and inter-cell
travels, so one of these components is better to leave Cell 2

The country before

local search:
2 3 1 2 1 3 2 3 1 2

 3 1 4 2
3 1 2 0 0
5 2 0 0 1
1 3 1 2 0
4 1 2 3 0
2 0 0 0 1
6 2 0 1 0

The country after
local search:

2 3 2 2 1 3 2 3 1 2

 3 1 4 2
5 2 0 0 1
1 3 1 2 0
3 1 2 0 0
4 1 2 3 0
2 0 0 0 1
6 2 0 1 0

The country before

local search:
2 3 2 2 1 3 3 2 1 2

 3 2 4 1
5 2 1 0 0
1 3 0 2 1
3 1 0 0 2
4 1 0 3 2
2 0 1 0 0
6 2 0 1 0

The country after
local search:

1 3 2 2 2 3 3 2 1 2

 3 2 4 1
1 3 0 2 1
3 1 0 0 2
4 1 0 3 2
5 2 1 0 0
2 0 1 0 0
6 2 0 1 0

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3519

(e.g. component 3 can move to Cell 1 as illustrated in Fig. 11).

Fig. 11 The solution is still infeasible after components repairing

LnC and MnC can be satisfied in the same way, but there is

still a problem; cell number 1 needs machines to process
components. Therefore, the algorithm must move at least one
machine to Cell 1, now the machine should be determined.
After components repairing, machines 4 and 1 cause the most
number of void elements and inter-cell travels. Thus, machine
4 is instantly chosen to move to Cell 1 (Fig. 12). Pseudo code
of repairing mechanism is presented in Fig. 13.

Fig. 12 Feasible solution after component and machine repairing

G. Exchanging Positions of Imperialist and a Colony

After moving-toward and local search steps, all colonies
and their imperialist are evaluated again to identify that if any
colony gets better than its imperialist. The better colony will
become the new imperialist of considered empire and the
previous one will be an ordinary colony like others at the end
of evolution (iteration). Colonies of the empire now will move
toward the new imperialist.

Procedure Repairing
for each country which must be repaired do
 #Components repair#
 while (MnC <= number of components in each cell <= LnC) do
 Rearrange the components based on their situation
 end while;
 #Machines repair#
 while (MnC <= number of machines in each cell <= LnC) do
 Rearrange the machines based on their situation
 end while;
end for;

Fig. 13 Pseudo code of repairing mechanism

H. Total Power of an Empire and Empires Competition

Total power of an empire is calculated based on imperialist
power and its colonies (see (4)). After each iteration, the
empires’ power changes and the weakest empire losses its

weakest colony. This colony will join to another empire based
on their power and chance.

EICA for manufacturing cell formation problems using sequence data

begin
initialize parameters for ICA; #Table I#
generate random solutions (colonies);
Evaluate colonies and initialize the empires;
current number of empires:=initial number of empires;
while stopping criteria (running time or number of evolutions)
is not met do

for i=1 to current number of empires do
current number of colonies in empire:= number of
colonies in empire i;
for j=1 to current number of colonies in empire i
do

Move the colonies toward the imperialist;
#Assimilating#
procedure Repairing;
procedure Local search;
procedure Repairing;
evaluate colonies;

end for;
update the weakest colony;
If (there is a colony in empire which has lower
cost than imperialist) do

exchange the position of that colony and the
imperialist;

end if;
update the empire power;

end for;
Pick the weakest colony/colonies from the weakest
empire and give it/them to the empire that has the most
likelihood to possess it; #imperialist competition#
Eliminate the powerless empire(s);
If there is just one empire (the main criterion of ICA)
do
stop;
end if;

end while;
end;

Fig. 14 Pseudo code of proposed EICA

I. Eliminating the Powerless Empires (Imperialist
Competition)

In ICA, the algorithm continues until empires lose all their
colonies and just one empire remains. Section II described the
procedure of moving weakest colony of weakest empire to one
of other empires, as well as the new Rolette Wheel
mechanism. The pseudo code of proposed EICA for the CFP
is presented in Fig. 14.

Besides the primary termination criterion of ICA, one
remaining empire, we can use or define some criteria for this
algorithm such as number of iterations (number of evolution)
or CPU time too.

IV. COMPUTATIONAL RESULTS AND DISCUSSIONS

A. Parameters Tuning

Based on the problems we deal with, different levels of
parameters are needed. There are many parameters in our
proposed algorithms which affect the solutions; these

An infeasible solution: 2 3 1 2 2 3 3 2 2 2

 2 3 4 1
3 0 1 0 2
1 0 3 2 1
4 0 1 3 2
5 1 2 0 0
2 1 0 0 0
6 0 2 1 0

The feasible solution: 2 3 1 2 2 3 3 2 2 1

 4 2 3 1
3 0 0 1 2
1 2 0 3 1
4 3 0 1 2
5 0 1 2 0
2 0 1 0 0
6 1 0 2 0

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3520

parameters are presented in Table I.

TABLE I
VALUES USED FOR ICA PARAMETERS

Parameter Level
Zeta () 0.1
Alpha () 0.55-0.6

Number of imperialists (NumImp) 10-30*

Number of counties (Popsize) 100-600*

Number of evolutions 100-500*

Number of local searches 10-20*

* First values are used for small size test problems and greater values for
bigger size problems

B. Experimental Results and Performance Measures

Some of performance measures can be found in [18] that
shows how measures work, and use them in a grouping
genetic algorithm (GGA). Some of these measures are
practical for the CFPs dealing with the binary incidence
matrices and some others are suitable for the CFPs using
sequence data [18]. Bond efficiency (β) and grouping
technology efficiency (GTE) calculation procedures are
presented in [18] and [20]; despite this citing, the procedures
are explained again here.

For calculating GTE, maximum number of inter-cell travels
possible (pI), and number of inter-cell travels required by the

system (rI) is calculated by (9) and (10), respectively.

 
1

1
N

p
j

I n


  (9)

1

1 1

N n

r njw
j w

I t


 

 (10)

So, (11) calculates the grouping technology efficiency (GTE):

p r

p

I I
GTE

I




 (11)

where, 0njwt 

if the consecutive operations w and w + 1 are

performed in the same cell; = 1 otherwise. n= number of
operations (w= 1, 2, 3,…, n). N= number of components.

The second measure (β) needs compactness of the system in

addition to GTE. This value is defined by (12), while the
measure itself is calculated by (13).

 
1

1

c

k
k

c

k k
k

T OT OP
Com pactness

T OT OP N OP











 (12)

where kTOTOP 

Total number of operations in the kth cell.

kNOP 
Total number of non-operations (void elements) in

the kth cell.

     1 , 0 1q GTE q Compactness q      (13)

TABLE II
TEST PROBLEMS

Prob.
No.

Source Cells Components Machines

1 King and Nakornchai [30]) 2 7 5

2 Waghodekar and Sahu [45] 2 7 5

3 Kusiak [46] 2 8 6

4
Nair, G. Jayakrishnan and

Narendran, T. T. [18]
3 7 7

5 Kusiak and Chow [31] 3 11 7

6 Boctor [47] 3 11 7

7 Seiffodini [32] 2 18 5

8 Seiffodini and Wolfe [51] 3 12 8

9 Mosier and Taube [33] 3 10 10

10
Sudhakara Pandian R, Mahapatra

SS. [48]
3 12 10

11 Chan and Milner [34] 3 15 10

12
Chandrasekaran and Rajagopalan

[35]
3 20 8

13
Chandrasekaran and Rajagopalan

[36]
2 20 8

14 Nair et al. [18] 3 20 8

15 Askin and Subramanian [37] 5 23 14

16 Stanfel [49] 5 24 14

17 McCormick et al. [50] 6 24 16

18 Mosier and Taube [38] 5 20 20

19 Nair et al. [18] 5 20 20

20 Carrie [39] 6 24 18

21 Kumar et al. [40] 5 23 20

22 King [41] 5 43 16

23 Carrie [39] 4 35 20

24 Boe and Cheng [42] 5 35 20

25 McCormick et al. [50] 4 27 27

26
Chandrasekaran and Rajagopalan

[43]- Matrix5
9 40 24

27
Chandrasekaran and Rajagopalan

[43] - Matrix7
9 40 24

28
Spiliopoulos and Sofianopoulou

[24]
8 40 24

29 Nair et al. [18] 8 40 25

30
Chandrasekaran and Rajagopalan

[44]
10 100 40

The proposed algorithms were tested on several problems.
Results of all runs were organized into two sub sections:
benchmark problems and modified problems.

C. Test Problems

Most heuristic approaches for the CFP using sequence data
have been solved the benchmark problems presented in [18];
furthermore, 25 more problems that are different are presented
in this paper to check the proposed ICA algorithms. These
problems are based on binary incident component-machine
matrices that their solutions are available in [7]. To modify
these binary problems, we employ the same method applied in
[24]. Whole test problems in this research are shown in Table
II.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3521

TABLE III
PERFORMANCE OF THE PROPOSED ICAS COMPARED WITH CASE, ART AND

BFA ON BENCHMARK INSTANCES

CASE

4 3 6 53.85 76.92 NA Basic ICA

10 - - - - - EICA

14 10 17 58.54 79.27 0.03 EICA

19 15 19 67.80 73.90 0.17 EICA

29 35 37 60.21 71.63 0.45 EICA

ART

4 3 6 53.85 76.92 0.08 Basic ICA

10 4 8 69.23 76.08 NA EICA

14 10 17 58.54 79.27 0.29 EICA

19 16 18 69.49 NA 0.55 EICA

29 35 37 60.21 71.63 0.95 EICA

BFA

4 6 5 61.54 74.52 0.12 Basic ICA

10 5 5 80.8 80.63 NA EICA

14 10 17 58.54 79.27 0.12 EICA

19 19 16 72.88 73.90 0.56 EICA

29 36 35 62.40 71.92 5.4 EICA

Proposed ICAs*

4 3 6 53.85 76.92 0.10 Basic ICA

10 5 5 80.08 80.63 0.23 EICA

14 10 17 58.54 79.27 0.27 EICA

19 16 18 69.49 73.30 2.12 EICA

29 36 35 62.40 71.91 5.44 EICA

D. Benchmark Problems

This set of well-known benchmark problems has been used
multiple times in literature of solving the CFPs. Summary of
results for these problems is presented in Table III; some of
information about CASE [18], Modified ART [8] named
ART1 [20], and BFA [20] results are collected from [20]
compared with best solutions found by the proposed ICA
algorithms.

Table III contains number of exception elements (EE),
inter-cell travels (ICT) and two performance measures: group
technology efficiency (GTE) and bond efficiency () for each

algorithm. In addition to all these information, CPU time for
considered algorithms is presented.

Bold values in Table III show which algorithm is better in
performance measures; furthermore, the highlighted values
identify the algorithm which found the best solution in least
elapsed time. As Table III points out, proposed algorithms in
this paper have a great performance. Our methods can reach
the best-known solutions presented in [20]; even in test
problems 10 and 29, they find the best-known solutions in less
time.

Fig. 15 Comparison of GTE performance measure of different
methods for the benchmark instances

Fig. 16 Comparison of ߚ performance measure of different methods
for the benchmark instances

Fig. 17 Binary incidence matrix modification

E. Modified Problems

The method used to modify the binary incidence matrices to
sequential matrices is so simple; it assumes that the processing
sequence of each component increases with machine number
(Fig. 17) [24].

40

50

60

70

80

90

4 10 14 19 29

GTE comparison

CASE ART BFA ICA

70

72

74

76

78

80

82

4 10 14 19 29

β comparison

CASE ART BFA ICA

 1 2 3 4 5 1 2 3 4 5

1 0 1 1 0 1 1 0 1 2 0 3
2 1 0 0 1 0 2 1 0 0 2 0
3 0 1 1 0 0 3 0 1 2 0 0
4 1 0 0 1 0 4 1 0 0 2 0
5 1 0 0 0 1 5 1 0 0 0 2
6 1 0 1 1 0 6 1 0 2 3 0
7 0 0 1 0 1 7 0 0 1 0 2

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3522

TABLE IV
COMPARISON OF COMPUTATIONAL RESULTS OF THE BASIC ICA VS. EICA ON MODIFIED PROBLEMS

Prob.
No.

Best found solution
Basic ICA EICA

GTE β GTE β

EE ICT GTE β ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec ≤1 sec 5 sec 10 sec

1 2 3 66.67 74.5 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100%

2 5 7 46.15 64.7 100% 100% 100% 100% 100% 100% 99% 100% 100% 99% 100% 100%

3 2 3 78.57 84.7 99% 100% 100% 99% 100% 100% 98% 100% 100% 98% 99% 100%

5 6 6 50 56.3 99% 99% 100% 98% 99% 99% 99% 99% 100% 99% 100% 100%

6 2 2 80 78 100% 100% 100% 99% 100% 100% 99% 100% 100% 99% 100% 100%

7 7 14 50 71.4 99% 99% 100% 100% 100% 100% 99% 100% 100% 100% 100% 100%

8 7 6 73.91 78.1 99% 100% 100% 99% 100% 100% 97% 100% 100% 97% 100% 100%

9 0 0 100 86.4 99% 100% 100% 99% 99% 100% 99% 99% 100% 99% 99% 100%

11 0 0 100 96 98% 99% 99% 98% 99% 99% 98% 99% 100% 98% 100% 100%

12 9 12 70.73 85.4 97% 98% 99% 97% 98% 99% 95% 99% 100% 95% 99% 100%

13 27 43 39.44 58.7 98% 99% 100% 98% 99% 99% 97% 98% 99% 97% 99% 99%

15 7 7 80 78.6 97% 99% 100% 96% 98% 99% 96% 99% 100% 97% 99% 100%

16 9 8 78.38 78.6 98% 99% 100% 98% 99% 99% 97% 100% 100% 97% 99% 100%

17 33 42 31.15 54 97% 98% 99% 97% 98% 98% 98% 100% 100% 98% 99% 100%

18 53 64 26.44 48.8 97% 98% 100% 97% 99% 100% 97% 99% 100% 97% 99% 100%

20 27 25 60.94 66.4 98% 99% 99% 98% 99% 100% 96% 100% 100% 96% 99% 100%

21 43 56 37.78 54.6 97% 99% 99% 97% 99% 99% 97% 100% 100% 97% 100% 100%

22 30 45 45.78 56 95% 96% 96% 95% 96% 96% 95% 98% 100% 95% 98% 100%

23 1 2 98 87.5 97% 99% 100% 97% 99% 99% 97% 100% 100% 97% 100% 100%

24 41 55 51.75 63.1 96% 98% 98% 96% 98% 98% 96% 99% 100% 96% 99% 100%

25 60 52 72.92 75.2 96% 98% 98% 96% 98% 98% 95% 99% 100% 95% 99% 100%

26 47 57 37.36 54.9 95% 97% 97% 96% 97% 97% 92% 96% 100% 92% 96% 100%

27 5 66 27.47 47.4 93% 94% 96% 93% 94% 96% 93% 95% 100% 93% 95% 99%

28 2 60 34.07 47.5 92% 95% 96% 92% 94% 96% 91% 97% 100% 91% 97% 98%

30 7 56 82.5 86.9 91% 93% 93% 91% 93% 93% 90% 96% 100% 89% 96% 100%

Table IV is about the performance of ICAs for the modified

problems. In this table, relative percentage deviation (RPD) of
performance measures derived from the best found solutions
and the proposed algorithms’ solutions is presented. RPD
value is calculated by (14):

lg
100mea mea

mea

Max A
RPD

Max


  (14)

where

m eaM ax is the performance measure of best found

solution and lg meaA is the proposed algorithms’ performance

measure.
Table IV shows the RPD of GTE of different proposed ICA

algorithms in less than 1 second, 5 and 10 seconds for all
modified test problems. Algorithms’ behaviors are so alike for
GTE and β metrics. These values illustrate that algorithms
perform better in longer runs as it is expected. Algorithms’
results are almost the same in less than 1 second. Table IV
demonstrates that the EICA outperforms the basic ICA clearly.
The EICA finds most well-known solutions, and in a few large
scale problems there are little deviation to the best solutions.

V. CONCLUSION

This paper presented new versions of imperialist
competitive algorithm (ICA) as perfect solver for the CFP
using sequence data component-machine incident matrices.
Besides the modifications done on the conventional ICA to

deal with the considered problem, an enhanced version of ICA
(EICA), that make use of local search operators, have been
proposed too. The proposed ICAs solved the CFP
substantially more efficient than other state of the art
algorithms. Operators of the main ICA and embedded local
search have been successfully designed to improve
intensification and diversification features of proposed
algorithms. ICA algorithms were implemented on some
benchmark problems in literature and some others modified to
sequence data. Results showed that the presented methods
work as well as other satisfactory algorithms in some cases,
even better than other ones. Moreover, it is obvious that EICA
outperforms basic ICA in large size problems; whereas in
smaller sizes, they have the same results with less deviation.

ACKNOWLEDGEMENT

The authors express sincere thanks to Zahra Booyavi whose
valuable remarks and comments helped to improve the paper.

REFERENCES
[1] E. Aarts, E., Lenstra, J.K., 1997. Local Search in Combinatorial

Optimization. John Wiley & Sons, New York, ISBN: 0471948225.
[2] E. Atashpaz-Gargari, C. Lucas, “Imperialist competitive algorithm: An

algorithm for optimisation inspired by imperialistic competition,” In:
IEEE Congress on Evolutionary Computation, pp. 4661–4667, 2007.

[3] A.H. Banisadr, M. Zandieh, I. Mahdavi, “A hybrid imperialist
competitive algorithm for single-machine scheduling problem with
linear earliness and quadratic tardiness penalties,” Int. J. Adv. Manuf.
Technol., vol. 65, no. 5-8, pp.981–989, 2013.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3523

[4] E.C. Brown, R.T. Sumichrast, “CF-GGA: a grouping genetic algorithm
for the cell formation problem,” Int. J. Prod. Res., vol. 39, no. 16, 3651-
3669, 2001.

[5] B.A. Elbenani, J. Ferland, J. Bellemare, “Genetic algorithm and large
neighborhood search to solve the cell formation problem,” Expert Syst.
Appl., vol. 39, no. 3,pp. 2408–2414, 2012.

[6] S. Forouharfard, M. Zandieh, “An imperialist competitive algorithm to
schedule of receiving and shipping trucks in cross-docking systems,” Int.
J. Adv. Manuf. Technol., vol. 51, no. 9-12, pp. 1179–1193, 2010.

[7] J.F. Gonçalves, M.G.C. Resende, “An evolutionary algorithm for
manufacturing cell formation,” Comput. Ind. Eng., vol. 47, no. 2-3, pp.
247–273, 2004.

[8] M. Gravel, A.L. Nsakanda, W. Price, “Efficient solutions to the cell-
formation problem with multiple routings via a double-loop genetic
algorithm,” Eur. J. Oper. Res., vol. 109, no. 2, pp. 286–298, 1998.

[9] Kaveh, A., Talatahari, S., 2010. Optimum design of skeletal structures
using imperialist competitive algorithm. Computers and Structures,
88(21-22), 1220–1229, 2010.

[10] V. Kayvanfar, M. Zandieh, “The economic lot scheduling problem with
deteriorating items and shortage: an imperialist competitive algorithm,”
Int. J. Adv. Manuf. Technol., vol. 62, no. 5-8, pp. 759-773, 2012.

[11] K.B. Keeling, E.C. Brown, T.L. James, “Grouping efficiency measures
and their impact on factory measures for the machine-part cell formation
problem: A simulation study,” Eng. Appl. Artif. Intel., vol. 20, no. 1, pp.
63–78,2007.

[12] K. Lian, C. Zhang, L. Gao, X. Shao, “A modified colonial competitive
algorithm for the mixed-model U-line balancing and sequencing
problem,” Int. J. Prod. Res., vol. 50, no. 18, pp. 5117-5131, 2011.

[13] K. Lian, C. Zhang, X. Shao, L. Gao, “Optimization of process planning
with various flexibilities using an imperialist competitive algorithm,”
Int. J. Adv. Manuf. Technol., vol. 59, no. 5-8, pp. 815–828, 2012.

[14] I. Mahdavi, E. Teymourian, N. Tahami Baher, V. Kayvanfar, “An
integrated model for solving cell formation and cell layout problem
simultaneously considering new situations,” J. Manuf. Sys., vol. 32, no.
4, 655-663, 2013

[15] I. Mahdavi, B. Mahadevan, “CLASS: An algorithm for cellular
manufacturing system and layout design using sequence data,” Robot.
Com-Int. Manuf., vol. 24, no. 3, pp. 488–497, 2008.

[16] A.S. Mamaghani, M.R. Meybodi, “An application of Imperialist
Competitive Algorithm to solve the quadratic assignment problem,” In:
Internet Technology and Secured Transactions (ICITST), International
Conference, pp. 562-565, 2011.

[17] H. Moradi, M. Zandieh, “An imperialist competitive algorithm for a
mixed-model assembly line sequencing problem,” J. Manuf. Sys., vol.
32, no. 1, pp.46–54, 2013.

[18] G.J. Nair, T.T. Narendran, “CASE: A clustering algorithm for cell
formation with sequence data,” Int. J. Prod. Res., vol. 36, no. 1, pp.
157–180, 1998.

[19] S. Nazari-Shirkouhi, H. Eivazy, R. Ghodsi, K. Rezaie, E. Atashpaz-
Gargari, “Solving the integrated product mix-outsourcing problem using
the Imperialist Competitive Algorithm,” Expert Syst. Appl., vol. 37, no.
12, pp. 7615–7626, 2010.

[20] H. Nouri, S.H. Tanga, B.T. Hang Tuaha, M.K. Anuara, “BASE: A
bacteria foraging algorithm for cell formation with sequence data,” J.
Manuf. Sys., vol. 29, no. 2-3, pp. 102–110, 2010.

[21] G. Papaioannou, J.M. Wilson, “The evolution of cell formation problem
methodologies based on recent studies (1997–2008): review and
directions for future research,” Eur. J. Oper. Res., vol. 206, no. 3, pp.
509–521, 2010.

[22] D.T. Pham, A.A. Afify, E. Koç, 2007. Manufacturing cell formation
using the Bees Algorithm. In: innovation production machines and
systems virtual conference. Cardiff, UK.

[23] E. Shokrollahpour, M. Zandieh, B. Dorri, “A novel imperialist
competitive algorithm for bi-criteria scheduling of the assembly
flowshop problem,” Int. J. Prod. Res., vol. 49, no. 11, pp. 3087–3103,
2010.

[24] K. Spiliopoulos, S. Sofianopoulou, “An efficient ant colony optimization
system for the manufacturing cells formation problem,” Int. J. Adv.
Manuf. Technol., vol. 36, no. 5-6, pp.589–597, 2008.

[25] A. Talebi, M.A. Molaei, B. Ashrafi, “Application of an Imperialist
Competitive Algorithm in Portfolio Optimization,” World Appl. Sci. J.,
vol. 14, no. 10, pp. 1576-1598, 2011.

[26] T.-H. Wu, S.-H., Chung, C.-C., Chang, “A water flow-like algorithm for
manufacturing cell formation problems,” Expert Syst. Appl., vol. 205,
no. 2, pp. 346–360, 2010.

[27] T.-H. Wu, C. Low, W.-T. Wu, “A tabu search approach to the cell
formation problem,” Int. J. Adv. Manuf. Technol., vol. 23, no. 1, pp.
916–924, 2004.

[28] T-H. Wu, C-C. Chang, S-H. Chung, “A simulated annealing algorithm
for manufacturing cell formation problems,” Eur. J. Oper. Res., vol. 34,
no. 3, pp. 1609–1617, 2008.

[29] M. Yousefi-khoshbakht, M. Sedighpour, “A New Imperialist
Competitive Algorithm to Solve the Traveling Salesman Problem,” Int.
J. Comput. Math., vol. 90, no. 7, pp. 1495-1505. 2013

[30] J.R. King, and V. Nakornchai, “Machine-component group formation in
group technology: Review and extension,” Int. J. Prod. Res., vol. 20, no.
2, pp. 117-133, 1982.

[31] A. Kusiak, W. and Chow, “Efficient solving of the group technology
problem,” J. Manuf. Sys., vol. 6, no. 2, pp. 117-124, 1987.

[32] H. Seifoddini, “Single linkage versus average linkage clustering in
machine cells formation applications”, Comput. Ind. Eng., vol. 16, no. 3,
pp. 419-426, 1989.

[33] C.T. Mosier, L. Taube, “The facets of group technology and their impact
on implementation,” OMEGA, vol. 13, no. 6, pp. 381-391, 1985.

[34] H.M. Chan, D. A. Milner, “Direct clustering algorithm for group
formation in cellular manufacture,” J. Manuf. Sys., vol. 1, pp. 65-75,
1982.

[35] M. P. Chandrashekharan, R. Rajagopalan, “An ideal seed non-
hierarchical clustering algorithm for cellular manufacturing,” Int. J.
Prod. Res., vol. 24, no. 2, pp. 451-464, 1986.

[36] M. P. Chandrashekharan, R. Rajagopalan, “MODROC: An extension of
rank order clustering for group technology,” Int. J. Prod. Res., vol. 24,
no. 5, pp. 1221-1233, 1986.

[37] R. G. Askin, S. Subramanian, “A cost-based heuristic for group
technology configuration,” Int. J. Prod. Res., vol. 25, no. l, pp. 101-113,
1987.

[38] C.T. Mosier, L. Taube, “Weighted similarity measure heuristics for the
group technology machine clustering problem,” OMEGA, vol. 13, no. 6,
pp. 577-583, 1985.

[39] S. Carrie, “Numerical Taxonomy applied to Group Technology and
Plant Layout,” Int. J. Prod. Res., vol. 11, pp. 399-416, 1973.

[40] K.R. Kumar, A. Kusiak, A. Vannelli, “Grouping of parts and
components in flexible manufacturing systems,” Eur. J. Oper. Res., vol.
24, pp. 387-397, 1986.

[41] J.R. King, “Machine-component grouping in production flow analysis:
An approach using a rank order clustering algorithm,” Int. J. Prod. Res.,
vol. 18, no. 2, pp. 213-232, 1980.

[42] W. Boe, C.H. Cheng, “A close neighbor algorithm for designing cellular
manufacturing systems,” Int. J. Prod. Res., vol. 29, no. 10, pp. 2097-
2116, 1991.

[43] M.P. Chandrasekharan, R. Rajagopalan, “GROUPABILITY: Analysis of
the properties of binary data matrices for group technology,” Int. J.
Prod. Res., vol. 27, no. 6, pp. 1035-1052, 1989.

[44] M.P. Chandrasekharan, R. Rajagopalan, “ZODIAC - An algorithm for
concurrent formation of part families and machine cells,” Int. J. Prod.
Res., vol. 25, no. 6, pp. 835-850, 1987.

[45] P. H. Waghodekar, S. Sahu, “Machine-component cell formation in
group technology: MACE,” Int. J. Prod. Res., vol. 22, no. 6, pp. 937-
948, 1984.

[46] A. Kusiak, Group technology: Models and solution approaches. In First
Industrial Engineering Research Conference (pp. 349-352), 1992.

[47] F. F. Boctor, “A linear formulation of the machine-part cell formation
problem,” Int. J. Prod. Res., vol. 29, no. 2, pp. 343-356, 1991.

[48] R.S. Pandian, S. S. Mahapatra, “Manufacturing cell formation with
production data using neural networks,” Comput. Ind. Eng., vol. 56, no.
4, pp. 1340-1347, 2009.

[49] L.E. Stanfel, “Machine clustering for economic production,” Eng. Costs
Prod. Econ., vol. 9, no. 1, pp. 73-81, 1985.

[50] W. T. McCormick, P. J. Schweitzer, T. W. White, “Problem
decomposition and data reorganization by a clustering technique,” Oper.
Res., vol. 20, no. 5, pp. 993–1009, 1972.

[51] H. Seifoddini, P.M. Wolfe, “Application of the similarity coefficient
method in group technology,” IIE Trans., vol. 18, no. 3, pp. 271–277,
1986.

