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Abstract—A theoretical investigation from the view point of 

gas-dynamics and thermodynamics was carried out, in order to clarify 
the energy separation mechanism in a viscous compressible vortex, as 
a primary flow element in a uni-flow vortex tube. The mathematical 
solutions of tangential velocity, density and temperature in a viscous 
compressible vortical flow were used in this study. It is clear that a 
total temperature in the vortex core falls well below that distant from 
the vortex core in the radial direction, causing a region with higher 
total temperature, compared to the distant region, peripheral to the 
vortex core.  
 

Keywords—Energy separation mechanism, theoretical analysis, 
vortex tube, vortical flow. 

I. INTRODUCTION 
vortex tube is a simple fluid-dynamic device which can 
separately discharge cold and hot gases from a pressurized 

gas at room temperature. This device is also called a 
Ranque-Hilsch vortex tube since its invention by G. Ranque [1] 
and its investigation by Hilsch [2].  

The VT is generally categorized into two types, (a) uni-flow 
type and (b) counter flow type, as shown in Fig. 1. In the 
uni-flow type VT, compressed air enters the VT through a 
single tangential nozzle or multiple tangential nozzles and 
produces a high-speed vortical flow in the vortex chamber. The 
rotational flow follows the tube wall to the opposite end. Then, 
the core flow exits the VT at a lower temperature, the peripheral 
flow exits at a higher temperature. In the counter flow VT, the 
peripheral flow exits with a higher temperature, and the core is 
forced back to the vortex chamber by a control valve, and exits 
the VT as a cold flow. 

At the present time, several theories have been proposed for 
the thermal energy separation mechanism in the VT by several 
researchers [3], [4].It is generally accepted from those theories 
that, the cold flow temperature reduction is caused by an 
adiabatic expansion of the compressed gas. However, details of 
the physics explaining the cold flow generation, from the fluid 
dynamic view point still remain unclear. 

In this study, a viscous compressible vortex model based on 
the Navier-Stokes equations is examined in order to clarify the 
physical reasons for the total energy separation phenomena 
which occurs in VT. Since it is difficult to obtain a 
mathematical solution for theNavier-Stokes equations with 
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axial reverse flow, which occurs in the counter flow VT, a 
uni-flow type VT is the focus in this study. Another reason for 
analyzing the uni-flow type in this study is that the flow 
structure in the uni-flow VT is simpler compared to that in the 
counter flow type. Therefore, first the flow mechanism of the 
uni-flow VT should be clarified. 
 

 
(a) Uni-flow type 

 

 
(b) Counter flow type 

Fig. 1 Schematic diagram of vortex tube 

II. VORTEX MODEL [5] 
The basic equations for compressible axisymmetric vortex 

are the equations of mass continuity, Navier-Stokes, and energy 
in cylindrical coordinate (r, θ, z), and are written as; 
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where, t is the time, ρ is the density, p is the pressure, T is the 
temperature, (Vr, Vθ, Vz) is the velocity of (r, θ, z) component, cp 
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is the specific heat at constant pressure, k is the thermal 
conductivity, respectively. The normal stress σ and tangential 
stress τ are expressed as; 
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where, μ is the coefficient of viscosity, Φ is the dissipation 
function expressed as; 
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The mathematical operators used in(2)-(6) are; 
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The physical properties used in the above equations are 

normalized as follows; 
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where, rc is the core radius of the vortex. Vθc is the tangential 
velocity at r = rc, which is written as; 
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where, ∞Γ  is the vortex circulation. The subscript ∞ shows the 
properties distant from the vortex center. 

In order to derive the solutions of the basic equations, the 
following assumptions are used; 1) The flow is steady and 
axisymmetric, 2) rV ′ and h′ << θV ′ . Then, (1)-(4) are simplified 
as follows using the simplification based on the same order 
magnitude consideration of the governing equations outlined in 
[6], [7]; 
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where, 
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The equation of state for a calorically perfect gas in 

nondimensional form is written as; 
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The required boundary conditions are 
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A set of most practical solutions of (16)-(18), under the 

boundary conditions of 1) and 2), are 
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The normalized temperature, which satisfies (19) with 

temperature boundary conditions, can be written as; 
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In this case, the Prandtl number =rP 2/3 is assumed, to obtain 
(29). The normalized density is obtained by (17), (26), (24) and 
(29) as; 
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The tangential velocity calculated by (26), along with that of 

the Rankine vortex, is shown in Fig. 2. The figure shows that 
θV ′  of the Vatistas and Aboelkassem (VA) model has a rounded 

peak compared to the Rankine vortex sharp peak at r′ =1.  
The static pressure distributions are calculated using (25), 

(29), (30) and are shown in Fig. 3 with solid curves for Mo= 0.6, 
0.8 and 1.0, along with the static pressure distributions of the 
Rankine vortex using broken lines. Fig. 3 shows that the static 
pressure of the VA model does not decrease as sharply as the 
Rankine vortex in the core region 0 < r ′ < 1. 

The static temperature distributions are calculated using (29) 
and are shown in Fig. 4. The figure shows that the static 
temperature decreases below ∞T ( 1<′T ) in the radial inward 
direction. In addition, the larger the Mach number Mo is, the 
smaller the nondimensional temperature T ′  is. 

 

 
Fig. 2 Normalized tangential velocity 

 
Fig. 3 Normalized static pressure  

 

 
Fig. 4 Normalized static temperature 

III. RESULTS AND DISCUSSION 
The authors believe that understanding the total enthalpy or 

total temperature distribution in a compressible vortex helps to 
clarify the energy separation mechanism in a uni-flow vortex 
tube. When discussing the thermodynamic performance of a 
VT, the total temperature is one of the most important physical 
properties. A local total temperature in nondimensional form 
can be written as; 
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The solid line in Fig. 5 shows the nondimensional total 

temperature distribution, in the radial direction calculated by 
(31) along with (26) and (29) at Mo=1.0 and γ =1.40. The dotted 
lines in the figure show the first and second terms in (31). From 
(31), 0T ′ has a minimum value at 0=′r , and is derived as; 
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Likewise, the maximum value of 0T ′  can be expressed as; 
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Equations (32) and (33) clearly show that if the flow is 

compressible, that is Mo> 0, the total (or static) temperature is  
smaller than ∞T at the center of the vortex, and the total 
temperature is greater than ∞T at outside the vortex core, 

4 3=′r , regardless the values of γ and Mo. In addition, the 
greater the Mach number Mo is, the smaller min,0T ′  is, and also 
the greater max,0T ′  is. If ∞T  is regarded as a room temperature in 
the actual uni-flow VT case, it can be said that the phenomenon 
of total temperature separation occurs essentially due to the 
existence of the gas flow compressibility. 

In order to discuss the effect of viscosity on the total 
temperature distribution in the compressible vortex, the value 
of a dissipation function, Φ, is examined. The nondimensional 
form of the function, (10), is simplified as; 
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Fig. 6 shows the result calculated by (34). The maximum 

value of the function is obtained at ≅=′ 4 2r 1.19.Thisvalue is 

close to ≅=′ 4 3r 1.32, where the total temperature reaches the 
maximum value. This result implies that the energy dissipation 
due to viscosity has a contribution to the total temperature 
increase over ∞T  outside the vortex core. 
 

 
Fig. 5 Normalized total/static/dynamic temperatures at Mo=1.0 

 

 

Fig. 6 Normalized dissipation function 

IV. CONCLUSIONS 
A viscous compressible vortex model was examined in order 

to clarify the physical reason for total energy separation 
phenomena which occurs in a uni-flow VT. The results 
obtained in this study are summarized as follows; 
1) If the flow is compressible, the total temperature at the 

center of the vortex is smaller than ∞T , the static 
temperature distant from the vortex center, and is greater 
than ∞T  at the outside the of vortex core. 

2) The greater the representative Mach number Mo is, the 
smaller the total temperature at the center is, and the 
greater the maximum total temperature is over ∞T . 

3) The value of the dissipation function reaches its maximum 
value at a radial point close to the point where the total 
temperature is at maximum. 
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