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Abstract—The energy-level structure of a pair of electron and 

positron confined in a quasi-one-dimensional nano-scale potential 
well has been investigated focusing on its trend in the small limit of 
confinement strength ω, namely, the Wigner molecular regime. An 
anisotropic Gaussian-type basis functions supplemented by high 
angular momentum functions as large as l = 19 has been used to obtain 
reliable full configuration interaction (FCI) wave functions. The 
resultant energy spectrum shows a band structure characterized by ω 
for the large ω regime whereas for the small ω regime it shows an 
energy-level pattern dominated by excitation into the in-phase motion 
of the two particles. The observed trend has been rationalized on the 
basis of the nodal patterns of the FCI wave functions.  
 
Keywords—Confined systems, positron, wave function, Wigner 

molecule, quantum dots. 

I. INTRODUCTION 
ECENT advances in semiconductor technology allows us 
to fabricate nano-sized objects in which a small number of 

electrons are confined in artificially designed low-dimensional 
potential wells. These confined electron systems, referred to as 
quantum dots or artificial atoms [1]-[3], have been studied 
intensively in the last decade because of their potential 
applicability for quantum computers, quantum cryptography, or 
quantum-dot lasers.  

The energy-level structure of the quantum dots is known to 
change strongly for different strength of confinement in accord 
with the strong variation in the relative importance of the 
one-electron vs. two-electron operators [4]. For understanding 
this complicated energy-level structure of artificial atoms in a 
unified way we have investigated in our previous studies the 
energy spectra of quasi-two- and quasi-one-dimensional 
artificial atoms with a few number of electrons (N = 2 ~ 4) in 
detail and have shown that their energy-level patterns can be 
characterized by the so-called polyad quantum numbers for all 
regimes of the strength of confinement ω [5]-[9]. It was also 
shown in this course of studies that the quasi-one-dimensional 
quantum dots are particularly interesting because of an 
appearance of the so-called Wigner lattice or Winger molecular 
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states in the weak limit of confinement [10].  
On the one hand, recent development in experimental 

techniques to produce and manipulate antiparticles has 
triggered studies in the rapidly growing field of exotic atoms 
and molecules that contains a few number of anti-particles, 
such as a positron, for the most common example, in atoms and 
molecules. These new systems could be a new source for 
understanding the nature of confined quantum systems as well 
as matter-antimatter interaction.  

In the present study we have investigated the most simple 
confined matter-antimatter system, namely, a pair of electron 
and positron that is confined in a quasi-one-dimensional 
nanostructure. We have particularly focused on the 
energy-level structure in the weak limit of confinement and 
examined if there appears a new type of quantum state 
analogous to the Wigner molecular state. Atomic units have 
been used throughout this paper. 

II. THEORETICAL MODEL AND COMPUTATIONAL METHOD 
The Hamiltonian for the quasi-one-dimensional two-electron 

quantum dot and that for the quasi-one-dimensional 
electron-positron quantum dot have the following respective 
forms, 
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where ri = (xi,yi,zi) for i=1,2, whereas ωz and ωxy represent the 
strength of confinement along the z and xy coordinates, 
respectively. Thanks to the identity between electron and 
positron except for their sign of charge, the only difference in 
the Hamiltonians between the electron-electron and 
electron-positron pairs [(1) and (2), respectively] is the sign in 
front of the two-particle potentials.  

In the above equations the so-called effective atomic units 
have been adopted in which the reduced Planck constant ħ, 
elementary charge e, effective mass of electron me, and 
effective Coulomb's constant in the matter 1/4πε*, are all set to 
unity. In the case of GaAs quantum dots, for example, this 
definition gives one unit of length (effective Bohr radius a0

*) 
and energy (effective Hartree energy Eh

*) being equal to 9.79 
nm and 11.9 meV, respectively [11]-[12].  

For a sufficiently large value of ωxy with respect to ωz the two 
particles in the systems are strongly confined in the xy 
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directions and can have degrees of freedom only in the z 
direction. In the present study the value ofωz is varied in the 
range between 0.1 and 10.Since the result of calculation is not 
qualitatively different for different values ofωxy on condition 
that ωxy>>ωz, the value of ωxy is chosen arbitrarily such as 200 
and is not explicitly noted hereafter.  

Cartesian anisotropic Gaussian-type functions [13]-[15] of 
the form 

 

]exp[)( 222, zyxzyx zyx
aaa zyx ξξξχ −−−=rξa

  
(3) 

 
have been used to expand the one-electron orbitals for the 
Hamiltonians (1) and (2). Following the quantum chemical 
convention these functions are classified as s-, p-, d-type, etc. 
for l = ax+ay+az = 0, 1, 2, etc., respectively.  

In our previous studies a basis set having one function for 
each angular momentum shell, i.e., a [1s1p1d1f1g…] basis set 
with large angular momentum functions such as l≥ 10, was 
shown to give accurate and reliable results for 
quasi-one-dimensional quantum dots unless their exponents [ξ 
in (3)] are properly chosen [7]-[8].  

The exponents of these basis functions for two-electron 
quantum dots have been chosen to be half of ωz for ξz and half 
of ωxy for ξx and ξy. Since ωxy is at least 20 times larger than ωz 
only functions with ax=ay=0 have been selected and used in the 
basis sets. In case of the electron-electron pair the maximum l 
value in the basis set is chosen as 14 whereas in case of the 
electron-positron pair it is chosen as large as 19 so as to take 
care of contraction of the electron and positron density 
distributions due to their mutual attraction. The eigenfunctions 
and the corresponding energies for the relevant states have been 
obtained by diagonalising the full configuration interaction 
(FCI) Hamiltonian matrix. 

III. RESULTS AND DISCUSSION 

A. Energy Spectra and Two-Particle Wave Functions 
The energy spectra of low-lying states of a pair of electron 

and positron confined in a quasi-one-dimensional 
harmonic-oscillator potential has been calculated and are 
plotted in Fig. 1 for ωz= 10, 4, and 1. In the same figure the 
two-particle wave functions of the corresponding states 
projected onto the z1−z2 plane have been also displayed where 
the z1 and z2 are either the z coordinates of electron or positron, 
respectively. Unlike the case of two electron quantum dots, 
namely, a pair of two electrons confined in 
quasi-one-dimensional harmonic-oscillator potentials, 
examined in an earlier study [7], different spin states, singlet 
and triplet, are always degenerate in the case of the 
electron-positron pair, since Pauli principle for 
indistinguishable particles is not applied in this case. Therefore, 
the label for spin multiplicity is omitted in the assignments of 
the states given in Fig. 1.  

 

 
Fig. 1 Correspondence of the low-lying energy levels and wave 

functions of a pair of electron and positron confined in a 
quasi-one-dimensional harmonic potential. The vertical axis for all 

three energy diagrams is divided by ωz so that the excitation energy of 
one quantum of ωz are on the same level. The two-particle wave 

functions are plotted as the square density in the z coordinates (in a.u.) 
of electron and positron, z1 and z2, respectively 

 
Assignments of quantum numbers to the wave functions of 

ωz = 10 displayed in Fig. 1 are made by counting the number of 
nodes along the normal-mode coordinates [6]-[8] in the wave 
functions. An illustrative example for the correspondence 
between the wave functions and their assignments is given in 
Fig. 2. Two types of normal-mode coordinates are indicated by 
dotted orange lines in Fig. 2 (a): one is the line starting from the 
left and bottom end towards the upper and right corner, which is 
called the symmetric-stretch normal-mode coordinate, 
zsym≡ 2)( 21 zz + , whereas the line orthogonal to it is called the 
antisymmetric-stretch normal-mode coordinate, zasym≡ 

2)( 21 zz − . As their names indicate, the symmetric-stretch 
coordinate represents the coordinate along which the two 
particles undergo in-phase motion, whereas the antisymmetric 
one represents the coordinate along which they undergo 
out-of-phase motion, respectively. It is noted that this 
symmetric-stretch normal-mode coordinate is parallel to the 
center-of-mass coordinate. 

The wave function (a) in Fig. 2 has one and four nodes along 
the symmetric-stretch and antisymmetric-stretch coordinates, 
respectively. Therefore, this wave function can be 
characterized by a set of two quantum numbers, [vs,va] = [1,4], 
where vs and va represent the number of nodes along the 
symmetric-stretch and antisymmetric-stretch coordinates, 
respectively. In the case of the wave function (b) it has two and 
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three nodes along the symmetric- and antisymmetric-stretch 
coordinates, respectively. Therefore, this wave function 
represents the state with an assignment [2], [3]. Similar 
arguments can be made to the assignment of quantum numbers 
to the wave functions of ωz =10 in Fig. 1. 

 

 
Fig. 2 An illustrative example of the correspondence between the 

nodal patterns in the two-particle wave functions and their 
assignments The contour plots (a)and (b) represent, respectively, the 
probability density distributions of the wave functions for the [1,4] 

state and the [2,3] state projected onto the z1−z2 coordinate space. The 
dotted orange lines represent the normal-mode coordinates of a pair of 
two particles confined in an one-dimensional space: the diagonal line 
starting from the left and bottom end and pointing to the upper-right 

corner represents the symmetric-stretch normal-mode coordinate, 
whereas the line orthogonal to it the antisymmetric-stretch 

normal-mode coordinate (See text) 
 
The energy-level structure for large values of ωz, such as ωz= 

10 as displayed in Fig. 1, is similar to that of the pair of two 
electrons displayed in Fig. 1 of [7] except for the reversed 
ordering of the two states, [1,0] and [0,1], that correspond to the 
1[1,0] and 3[0,1] states of two electrons, respectively. In this 
large regime ofωzthe dominance of the harmonic-oscillator 
confining potential over the inter-particle interaction explains 
their similarity.  

The reversed order of the [1,0] and [0,1] states is caused by 
the attractive nature of the inter-particle interaction. As 
displayed in Fig. 1, the probability density distribution of the 
[0,1] state has a node on the line where zasym = 0 whereas that of 
the [1,0] state does not. Since the inter-particle interaction is 
attractive for the positron-electron pair in contrast to the 
electron-electron pair, the nonzero probability density at zasym = 
0 makes the [1,0] state to have a lower energy than the [0,1] 
state.  

The ωz-scaled excitation energy ΔE/ωz for the [1,0]and [2,0] 
states is almost constant irrespective of ωz with the values 1 and 
2, respectively. This is a consequence of the generalized Kohn 
theorem [16] as has been observed for the pair of two electrons. 
Since the Hamiltonian of (2) for the positron-electron pair is 
also separable with respect to the zsym and zasym coordinates as 
for the electron-electron pair of (1) and since these [1,0] and 
[2,0] states have an excitation of one and two quanta, 
respectively, into the symmetric-stretch mode, namely, the 
center-of-mass mode, the excitation energy from the ground 

state should be equal to one and two times of ωz, respectively.  
A small deviation of ΔE/ωz for these states from 1 and 2, 

respectively, for decreasing ωz is caused by insufficiency of the 
employed basis set. As seen in the plots of the wave functions 
for ωz = 1 in Fig. 1, the probability density distribution is 
strongly compressed along the zasym axis owing to the strongly 
attractive positron-electron interaction potential that diverges to 
−∞ at zasym = 0. As ωz decreases the positron-electron 
interaction potential increasingly dominates the total energy 
over the one-particle confining potential. Therefore, a 
computational methodology based on one-particle orbitals as 
commonly used in standard quantum chemical approaches 
becomes increasingly worse even though the present basis set 
includes functions having a large number of nodes, as many as, 
such as 19.  

B. Weak Limit of Confinement 
The variation of the energy-level structure of the confined 

positron-electron pair for decreasing ωz shows a distinct trend 
than does the confined electron pair. First, in the case of the 
electron pair the energy levels tend to form degenerate pairs of 
singlet and triplet states for decreasing ωz (formation of Wigner 
molecule) as has been observed in [7], whereas those of the 
positron-electron pair in the present study do not. Second, in the 
case of the electron-electron pair the energy levels of those 
states having excitations into the antisymmetric-stretch mode, 
such as the [0,1] state, get stabilized, whereas the energy levels 
of the corresponding states in the positron-electron pair instead 
increases rapidly as ωz decreases as displayed in Fig. 1. These 
distinct trends in the variation of the energy-level structure for 
the small regime of ωz can be rationalized as follows.  

As ωz decreases, the magnitude of the positron-electron 
interaction becomes effectively larger as for the electron pair. 
Since the two-particle wave functions of those states having 
excitations only into the symmetric-stretch mode, such as [n,0] 
(n=1,2, …), have nonzero probability density at zasym = 0, their 
energy levels get stabilized thanks to the strong 
positron-electron attraction that diverges to −∞at zasym = 0. On 
the other hand, since the wave functions of those states having 
excitations of odd quanta into the antisymmetric-stretch mode 
have a node at zasym = 0, these states can hardly get a benefit of 
the energy-lowering by the positron-electron attraction.  

The electron density distributions of the four lowest states at 
ωz = 10 and those of the corresponding states at ωz = 1 are 
displayed in Fig. 3. The electron density distributions of the 
ground [0,0] state for ωz = 10 and 1 look quite similar to each 
other except that the distribution for ωz = 1 is narrower than for 
ωz = 10. This observation is in contrast to the electron pair 
where the distribution of the ground state is a single maximum 
for large ωz but a double maximum for small ωz[7]. In case of 
the [1,0] and [2,0] states the nodal structure of the electron 
density distributions gets increasingly enhanced as ωz decreases 
as observed for the electron pair. However, in case of the 
electron pair the emergence of clear nodal structure in the 
electron density distributions indicates a signature of formation 
of Wigner molecule states whereas in case of the 
positron-electron pair the emergence of a similar nodal 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:2, 2014

320

 

 

structure does not mean Wigner molecule states but a 
preference of excitations into the symmetric-stretch mode. 

 

 
Fig. 3 Electron density distribution of a pair of electron and positron 
confined in a quasi-one-dimensional harmonic potential for different 
ωz: ωz = 10 (left) and ωz = 1 (right). The assignment of wave functions 

has been made by counting the number of nodal lines along the 
symmetric and antisymmetric electron coordinates for ωz= 10 (see 

text) 
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