
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

628

Abstract—Wireless sensor networks (WSNs) consist of number

of tiny, low cost and low power sensor nodes to monitor some

physical phenomenon. The major limitation in these networks is the

use of non-rechargeable battery having limited power supply. The

main cause of energy consumption in such networks is

communication subsystem. This paper presents an energy efficient

Cluster Cooperative Caching at Sensor (C3S) based upon grid type

clustering. Sensor nodes belonging to the same cluster/grid form a

cooperative cache system for the node since the cost for

communication with them is low both in terms of energy

consumption and message exchanges. The proposed scheme uses

cache admission control and utility based data replacement policy to

ensure that more useful data is retained in the local cache of a node.

Simulation results demonstrate that C3S scheme performs better in

various performance metrics than NICoCa which is existing

cooperative caching protocol for WSNs.

Keywords—Cooperative caching, cache replacement, admission

control, WSN, clustering.

I. INTRODUCTION

ACHING is a potential technique where frequently

accessed data items are generally stored closer to the

requester than to the original source of the information. This

technique is employed in traditional areas such as operating

systems, virtual memory, distributed systems, and Web

environments to enhance the system performance by

improving the data availability and query response time.

Queries can be answered faster if the requested information is

in the cache rather than sending the request to the original

source, which may be remotely located. Cooperative caching

is a technique where a group of caches at different nodes work

in coordination to achieve better performance.

Due to deployment of wireless sensors in unattended harsh

environment, it is not possible to charge or replace their

batteries. Therefore, energy efficient operation of wireless

sensors to prolong the lifetime of overall WSN is of utmost

importance. Energy consumption mainly occurs due to three

types of operations (i) sensing, (ii) data processing, and (iii)

data communication. Various applications in WSNs demand

reduction in the number of communications among the sensors

to serve the requested data with lower latency and minimum

energy consumption. Network lifetime of WSN can be

enhanced if the rate of nodes’ energy depletion is reduced,

which is possible if the amount of communication is reduced.

This can be achieved by caching useful data for each sensor

either in its local flash memory or in the nearby neighborhood.

A lot of research in data routing [1], [2], data compression

Narottam Chand is Associate Professor at the Department of Computer

Science & Engineering, National Institute of Technology, Hamirpur, 177 005

India (e-mail: nar.chand@gmail.com).

[3], and in-network aggregation [4] has been carried out in

WSNs during recent years. This paper targets the problem of

efficient data dissemination and tries to solve it by utilizing

the memory of sensor nodes by caching the data items in it.

Caching if implemented optimally can reduce network traffic

and enhance data availability to the users through sink.

In this paper we have proposed a technique called Cluster

Cooperative Caching at Sensor (C3S) in wireless sensor

network. The sensor field is divided into equal size clusters

and each cluster is monitored and controlled by a node called

cluster head (CH). These CHs can communicate directly with

the sink or base station (BS) in a single hop or through other

CHs to form multi hop routing of data to the sink/BS. The

sensor nodes (SN) within a cluster sense the environment and

forward the sensed data to their CH. The CH first aggregates

the data received from all the sensor nodes within the cluster

and then finally forwards it directly or through other CH to the

sink. Since the CH has to collect the data, perform data

aggregation and has to involve in long distance transmission

as compared to normal sensor nodes, therefore its energy

depletes at faster rate than the other nodes within the cluster.

The role of the CH, therefore, is changed whenever its energy

falls below threshold value and can be assigned to other node

within a cluster which is more powerful.

Rest of the paper is organized as follows. Section II

describes the related work. System model has been explained

in Section III. Section IV describes proposed C3S scheme.

Section V defines various simulation parameters, performance

metrics and explains simulation results. Section VI gives

concluding remarks of the paper.

II. RELATED WORK

Various researches have been carried out by exploiting data

caching either in some intermediate nodes or at a location

nearer to the sink in the wireless sensor networks. Jinbao Li et

al. [6] proposes a caching scheme for the multi-sink sensor

network. The sensor network forms a network tree for

particular sink. A common subtree is formed out of such trees

and the root of the common subtree is selected as the data

caching node to reduce the communication cost.

Md. A. Rahman et al. [7] propose effective caching by data

negotiation between base station and the sensors, developing

expectancy of data change and data vanishing. J. Xu et al. [5]

proposed a waiting cache scheme which waits for the data of

same cluster until it becomes available within a threshold,

aggregating it with the packet from the lower cluster and then

sending it to the sink, thus reducing number of packets

travelling in the network. K.S. Prabh et al. [8] consider the

whole network to be a Steiner Data Caching Tree which

actually is a binary tree and buffers data at some intermediate

Energy Efficient Cooperative Caching in WSN
Narottam Chand

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

629

node (data cache) such that it reduces the network traffic

during multicast. In [9], M.N. Al-Ameen et al. exploit caching

for faulty nodes in WSNs and propose a mechanism to handle

the packets when node fails. T.P. Sharma et al. [4] proposed a

cooperative caching scheme which exploits cooperation

among various sensor nodes in a defined region. Apart from

its own local storage, a node utilizes memory of nodes from

certain region around it to form larger cache storage known as

cumulative cache. A token based cache admission control

scheme is devised where node holding the token can cache or

replace data item. Disadvantage of proposed model is that,

there are overheads to maintain and rotate the token. N.

Dimokas et al. [10], [11] have identified various goals which

are required to be optimized such as energy consumption,

access latency, and number of copies of data items to be

placed at different locations. Disadvantage of schemes is that

node importance (NI) considers neighborhood of a particular

node. So, overhead to find NI for all the nodes consumes

energy which in turn reduces the lifetime of sensor network.

III. SYSTEM MODEL

We assume a wireless sensor network (WSN) consisting of

sensor nodes (SNs) that interact with the environment and

sense the physical data. A SN that senses and holds the

original copy of a data item is called source for that particular

data item. A data request initiated by a sink is forwarded hop-

by-hop along the routing path until it reaches the source and

then the source sends back the requested data. Sensor nodes

frequently access the data, and cache some data locally to

reduce network traffic and data access delay. As sensor nodes

do not have sufficient cache storage e.g. for multimedia data,

cooperative caching may be more useful where cached data at

sensor node may also be shared by the neighboring nodes.

WSN comprises a group of sensor nodes communicating

through omni-directional antennas with the same transmission

range. The WSN topology is thus represented by an undirected

graph G = (V, E), where V is the set of sensor nodes SN1, SN2,

..., and E⊆V×V is the set of links between nodes. The

existence of a link (SNi, SNj)∈E also means (SNj, SNi)∈E,

and that nodes SNi and SNj are within the transmission range

of each other, and are called one-hop neighbors of each other.

The set of one hop neighbors of a node SNi belonging to the

same cluster/grid is denoted by 1SNi
 and forms a cooperative

region. The combination of nodes and transitive closure of

their cluster neighbors forms a wireless sensor network. The

sensor nodes might be turned off/on at any time, so the set of

live nodes varies with time. We make the following

assumptions in this system environment:

− Sensor nodes are static, the communication links are

bidirectional, and the nodes communicate using multi

hop.

− The WSN is homogeneous i.e. the computation,

communication and energy capabilities are the same for

all sensor nodes.

− Each sensor node is aware of its geographical coordinates

(x, y) through some localization method [12].

− Unique node identification is assigned to each sensor

node in the system. The system has total of M nodes and

SNi (1≤ i≤ M) is node identification.

− The set of data items is denoted by D = {d1, d2, …… dN},

where N is the total number of data items and dj (1≤ j≤N)

is a data identifier. Di denotes the actual data for item di.

− All the data items have same size.

− The original of each data item is at particular source.

− Each sensor node has a cache space of C bytes and can

cache a number of data items depending upon the size of

items.

− Data value sensed at a source may change with time.

After a data item is updated, its cached copy maintained

on one or more nodes may become invalid.

IV. C3S COOPERATIVE CACHING

This section describes our C3S caching scheme that uses

the above described model. C3S exploits cooperation among

various sensor nodes inside a cluster. The design rationale of

C3S is that, for a sensor node, all other nodes within its cluster

domain form a cooperative cache system for the sensor node

since local caches of the nodes virtually form a cumulative

cache. In each cluster, the cluster head (CH) is selected to act

as the Cache Index Node (CIN), which is responsible for

recording the information about cached items by all the nodes

within its cluster. When a node in any cluster stores/deletes

some data item into/from its cache, it sends the information to

its CIN so that the corresponding index value can be updated.

For each cached item its Time To Live (TTL) information is

also maintained at the CIN. Whenever, cluster head is rotated,

the responsibility of CIN is transferred to new CH.

In C3S, when a node experiences cache miss (called local

cache miss), the node will look up the required data item from

the cluster members by sending a request to the CIN. Only

when the node cannot find the data item in the cluster

members’ caches (called cluster cache miss), it will request

the data from the CIN that lies on the routing path towards

source. If a cluster along the path to the source has the

requested data (called remote cache hit), then it can serve the

request without forwarding it further towards the source.

Otherwise, the request will be satisfied by the source.

Fig. 1 shows the behavior of C3S caching strategy for a data

request. For each request, one of the following four cases

holds:

Local hit: when copy of the requested data item is stored in

the cache of the requester. If the data item is valid, it is

retrieved to serve the query and no cooperation is necessary.

Cluster hit: when the requested data item is stored by a node

within the cluster of the requester. The requester sends a

request to the CIN and the CIN returns the address of the node

that has cached the data item.

Remote hit: when the data is found with a node belonging

to a cluster (other than home cluster of the requester) along the

routing path to the data source.

Global hit: data item is retrieved from the source.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

630

A. Cache Discovery

C3S uses a cache discovery algorithm to find the node who

has cached the requested data item. When a data request is

initiated at a node, it first looks for the data item in its own

cache. If there is a local cache miss, the node confirms with

the CIN if the data item is cached in other nodes within its

home cluster. In case of a cluster cache miss, the request is

forwarded to the next hop node along the routing path. Before

forwarding a request, each node along the path searches the

item in its local/cluster cache. If the data item is not found on

the clusters along the routing path, the request finally reaches

the data source and the data source sends back the requested

data.

Using this strategy, we describe the cache discovery steps to

determine the data access path to the node having the

requested cached data or to the data source. In Fig. 2, let us

assume SNi needs to access a data item dx. It sends a request

for data item dx to SNk located along the path through which

the request travels to the data source SNs, where k∈{a, b, c}.

The discovery process is described as follows:

1. When SNi needs dx, it first checks its own cache. If the data

item is not available in its local cache, it sends a lookup

packet to the CIN SNa in its cluster. Upon receiving the
lookup message, the CIN searches the index for the

requested data item. If the item is found, the CIN replies

with an ack packet containing id of the node who has

cached the item. SNi sends a confirm packet to the node

whose id is returned by SNa and the node responds with

reply packet that contains the requested data item. If no

node has cached the item, the request message is forwarded

towards next CIN SNb that lies along the routing path

towards data source SNs.

2. When SNj (j∈{b, c}, in the order b then c) receives a

request packet, it searches its CIN whether some node has

cached the item dx within the cluster. When SNj locates an

entry for dx in its index, it sends confirm packet to the node

within cluster or request packet to next hop node as

described in Step 1 above.

3. When a node/SNs receives a confirm packet, it sends the

reply packet to the requester.

The reply packet containing item id dx, actual data Dx and

TTLx, is forwarded hop-by-hop along the routing path until it

reaches the original requester. Once a node receives the

requested data, it triggers the cache admission control

procedure to determine whether it should cache the data item.

B. Cache Admission Control

When a sensor node receives the requested data or a data

item passes through it, a cache admission control is triggered

to decide whether it should be stored into the cache of the

node or not. Inserting a data item into cache might not always

be favorable because incorrect decision can lower the

probability of cache hits and also makes poor utilization of the

limited storage. In C3S, the cache admission decision at a

node SNi is based on two distance parameters (i) number of

hops Hi between SNi and sensor/source of the data item from

where the cached copy is shared, and (ii) number of hops Hs

between SNi and sink.

Fig. 1 Working of C3S cooperative caching strategy

If the sensor/source is less than ∆ hops away from the

requesting node SNi i.e. Hi < ∆, then it does not cache the data;

otherwise it caches the data item. In general, same data items

are cached at least ∆ hops away. A tradeoff exists between

query latency and data accessibility. With a small ∆, the

number of replicas for each data item is high and access delay

for this data item is low. On the other hand, with a larger ∆,

each data item has a small number of replicas, and the access

delay can be little longer. Advantage is that sensor nodes can

cache more distinct data items and still serve requests when

the data source is not accessible. In C3S, we have used ∆= 2,

i.e. if the cache/source of the data resides in the same cluster

of the requesting node, then the item is not cached, because it

is unnecessary to replicate data item in the same cluster since

cached data can be used by closely located sensors. So in C3S,

the same data item is replicated at least two hops away.

A node SNi is allowed to cache a data item only if Hs is

having a value lower than the specified threshold Ω i.e. Hs< Ω.

To increase proximity of the data items nearer to sink, it is

better to start caching data items at the sink. Initially all the

data items are cached at sink and the next level for cache

storage will be a SN along the routing path towards source.

Initially we assume Ω= 1 and value is gradually increased

with the decreasing free cache space on the sensor nodes

located nearer to the sink.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

631

 SNi

 SNs

 SNc

 SNb

 SNa

 request

 lookup

Fig. 2 Request packet from SNi is forwarded to the data source SNs

C. Cache Consistency

Cache consistency ensures that sensor nodes only access

valid data and no stale data is used to serve the queries. Due to

multi hop environment, limited bandwidth and energy

constraints in wireless sensor networks, the weak consistency

model is more attractive [13]. The C3S caching uses a simple

weak consistency model based on Time To Live (TTL), in

which a SN considers a cached copy up-to-date if its TTL has

not expired. The node considers a data item as victim for

replacement if its TTL expires. A SN refreshes a cached data

item and updates its TTL if a fresh copy of the same data

passes by.

D. Cache Replacement Policy

A cache replacement policy determines which data item

should be deleted from the cache when the cache does not

have enough free space to store a new item. Such policies

apply a value function to each of the cached items, and select

as victims, those items which satisfy some criteria. We have

developed utility based cache replacement policy, where data

item with the lowest utility is removed from the cache. Three

factors are considered while computing utility value of a data

item at a node:

1. Popularity

The access probability reflects the popularity of a data item

for a node. An item with lower access probability should be

chosen for replacement. At a node, the access probability Pi

for data item di is given as

N

i i k

k=1

P =a / a∑

where ai is the mean access rate to data item di.

2. Distance

Distance (δ) is measured as the number of hops between the

requesting node and the responding node (data source or

cache). This policy incorporates the distance as an important

parameter in selecting a victim for replacement. The greater

the distance, the greater is the utility value of the data item.

This is because caching data items which are further away,

saves bandwidth and reduces latency for subsequent requests.

3. Consistency

A data item di is valid for a limited lifetime, which is known

using the TTLi field. An item which is valid for shorter period

should be preferred for replacement.

Based on the above factors, the utilityi for a data item di is

computed using the following expression

i i i iutility P .δ .TTL=

The idea is to maximize the total utility value for the data

items kept in the cache. Therefore remove the cached data

item di having minimum utilityi value until the free cache

space is sufficient to accommodate the incoming data.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed

C3S protocol through simulating. We compare the

performance of our protocol with NICoCa [10] which is

cooperative caching protocol for wireless sensor networks.

A. Simulation Parameters

We consider a sensor field of size 100 × 100m
2
 in which

SNs are randomly deployed. All nodes are homogeneous.

Various simulation parameters are listed in Table I.

TABLE I

SIMULATION PARAMETERS
Parameter Default Value Range

Network size (100×100)m2 (50×50)~(400×400)m2

Number of nodes 400 100~500

Transmission range (r) 100m 20~140m

Sink location (0, 0)

Initial Energy of node 2 Joule

Data packet size 100 byte

Mean query generate time (Tq) 5sec 2~100sec

Cache size (C) 800KB 200~1400KB

TTL 300sec 100~300sec

Skewness parameter (θ) 0.8 0~1

Eelect 50nJ/bit

εfs 10pJ/bit/m2

εamp 0.00134pJ/bit/m4

Data aggregation (EDA) 5nJ/bit/signal

B. Performance Metrics

1. Network Lifetime

Network lifetime of wireless sensor network is the time

span from the deployment to the instant the network works

and is able to achieve its objectives. During our simulation, we

have used the following parameters to measure network

lifetime:

− FND: number of rounds after which first node dies.

− HND: number of rounds after which 50% nodes die.

2. Average Query Latency (Ta)

The query latency is the time elapsed between the query is

sent and the data is transmitted back to the sink, and average

query latency (Ta) is the query latency averaged over all the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

632

queries.

3. Byte Hit Ratio (B)

Byte hit ratio is defined as the ratio of the number of data

bytes retrieved from the cache to the total number of requested

data bytes. It is used as a measure of the efficiency of the

cache management. Here byte hit ratio (B) includes local byte

hit (Blocal), cluster byte hit (Bcluster) and remote byte hit

(Bremote).

C. Results

Here we study the effect of cache size on various

performance metrics on our proposed protocol C3S and

compare the results with existing cooperative caching protocol

NICoCa [10] for WSN.

1. Effect of Cache Size on Network Lifetime

Figs. 3 and 4 show the results of network lifetime as a

function of cache size of sensor node. To see the effect of

cache size on the network lifetime, the number of nodes and

the network size is kept fixed at its default values. Both the

schemes exhibit better network lifetime with increasing cache

size. This is because more required data items can be found in

the local cache as the cache gets larger. Due to cooperation

within a cluster, the remote byte hit ratio of C3S increases

with increasing cache size because each node shares caches of

its neighbors within the cluster. When the cache size is small,

the contribution due to cluster hit and remote hit is more

significant. Due to increase in local, cluster and remote byte

hit ratio with increasing cache size, the overall byte hit ratio

increases in the proposed protocol C3S. As byte hit ratio

increases, more data may be shared from the nearby sensor

nodes, thus reducing the number of transmissions and hence

prolonging the network lifetime.

C3S always has better lifetime than NICoCa. This is due to

the fact that to compute node importance (NI) in NICoCa, the

message overhead is large and energy of a node depletes in

exchanging these messages.

Also, due to cumulative caching within a cluster and better

replacement policy, the C3S scheme outperforms NICoCa

scheme under different cache size settings. We deploy utility

based replacement in C3S which retains more useful data in

the caches of nodes and thus query may be satisfied from local

cache or nearby nodes.

2. Effect of Cache Size on Average Query Latency

Fig. 5 shows the effect of cache size on average query

latency for proposed protocol C3S and the NICoCa [10]

protocol. With increasing cache size, the average query

latency decreases as more number of requests is satisfied from

the cache. This is because more required data items can be

found in the local cache as the cache gets larger. As cache size

is small, the local byte hit ratio is low, and the requests need to

travel large number of hops thus average query latency is quite

high.

The proposed protocol C3S demonstrates lower query

latency than NICoCa because of large size of cumulative

cache due to cooperation within a cluster. Also, due to utility

based replacement, the C3S scheme outperforms NICoCa

scheme under different cache sizes.

Cache Size (KB)

200 400 600 800 1000 1200 1400

N
e
tw
o
rk
 L
e
if
e
ti
m
e
 (
F
N
D
)

500

600

700

800

900

1000

C3S

NiCoCa

Fig. 3 Effect of cache size on FND

Cache Size (KB)

200 400 600 800 1000 1200 1400

N
e
tw
o
rk
 L
e
if
e
ti
m
e
 (
H
N
D
)

5000

6000

7000

8000

9000

10000

C3S

NiCoCa

Fig. 4 Effect of cache size on HND

Cache Size (KB)

200 400 600 800 1000 1200 1400

A
v
e
ra
g
e
 Q
u
e
ry
 L
a
te
n
c
y
 (
m
s
)

20

30

40

50

60

70

80

90

100

C3S

N iCoCa

Fig. 5 Effect of cache size on average query latency

3. Effect of Cache Size on Byte Hit Ratio

Fig. 6 shows effect of cache size on byte hit ratio. Both the

schemes exhibit better byte hit ratio with increasing cache

size. This is because more required data items can be found in

the local cache as the cache gets larger. Local byte hit ratio

increases with the increasing cache size because with large

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:5, 2013

633

cache size more data can be shared locally. Due to cooperation

within a cluster, the remote byte hit ratio of C3S increases

with increasing cache size because each node shares caches of

its neighbors within the cluster. When the cache size is small,

the contribution due to cluster hit and remote hit is more

significant. Due to increase in local, cluster and remote byte

hit ratio with increasing cache size, the overall byte hit ratio

increases in the proposed protocol C3S. Due to cumulative

caching within a cluster and better replacement policy, the

C3S scheme outperforms NICoCa scheme under different

cache size settings. We deploy utility based replacement in

C3S which retains more useful data in the caches of nodes and

thus increasing the overall byte hit ratio. From Fig. 6, it is

worth noting that C3S and NICoCa always reach their best

performance when the cache size is 800 KB. This

demonstrates their low cache space requirement. After the

cache size increases beyond 800KB, sensor nodes in have

enough size and byte hit ratio does not increase significantly.

Cache Size (KB)

200 400 600 800 1000 1200 1400

B
y
te
 H
it
 R
a
ti
o

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C3S

NiCoCa

Fig. 6 Effect of cache size on byte hit ratio

VI. CONCLUSION

A cooperative caching scheme C3S for supporting efficient

data dissemination and query processing in WSNs has been

proposed. The scheme enables nodes to cooperatively share

their data which helps alleviate the longer average query

latency and limited data accessibility. As a part of cache

management, cache discovery, cache admission control, utility

based replacement policy and cache consistency techniques

are developed. It has been observed that lifetime of WSN is

enhanced through cooperative caching. The proposed cache

discovery algorithm ensures that a requested data is returned

from the nearest cache or source. The admission control

prevents high data replication by enforcing a minimum

distance between the same data item, while the replacement

policy helps in improving the byte hit ratio and accessibility.

Cache consistency ensures that nodes only access valid states

of the data. Simulation results show that the C3S caching

scheme performs better in terms of various performance

metrics in comparison with NICoCa strategy.

REFERENCES

[1] Tripathi, P. Gupta, Aditya Trivedi and Rahul Kala, “Wireless Sensor

Node Placement Using Hybrid Genetic Programming and Genetic

Algorithms,” International Journal of Intelligent Information

Technologies, Vol. 7, No. 2, pp. 63-83, 2011.

[2] Abbasi and M. Younis, “A Survey on Clustering Algorithms for

Wireless Sensor Networks,” ACM Journal of Computer

Communications, Vol. 30, No. 14-15, pp. 2826-2841, 2007.

[3] N. Kimura and S. Latifi, “A Survey on Data Compression in Wireless

Sensor Networks,” International Conference on Information

Technology: Coding and Computing, Vol. 2, pp. 8-13, 2005.

[4] T.P. Sharma, R.C. Joshi and M. Misra, “Dual Radio Based Cooperative

Caching for Wireless Sensor Networks,” IEEE International Conference

on Networking, pp. 1-7, 2008.

[5] J. Xu, K. Li, Y. Shen and J. Liu, “An Energy-Efficient Waiting Caching

Algorithm in Wireless Sensor Network,” International Conference on

Embedded and Ubiquitous Computing, Vol. 1, pp. 323-329, 2008.

[6] J. Li, S. Li and J. Zhu, “Data Caching Based Queries in Multi-Sink

Sensor Networks,” International Conference on Mobile Ad-hoc and

Sensor Networks, pp. 9-16, 2009.

[7] Md. A. Rahman and S. Hussain, “Effective Caching in Wireless Sensor

Network,” International Conference on Advanced Information

Networking and Applications Workshops, Vol. 1, pp. 43-47, 2007.

[8] K. Prabh and T. Abdelzaher, “Energy-Conserving Data Cache

Placement in Sensor Networks,” ACM Transactions on Sensor

Networks, Vol. 1, No. 2, pp. 178–203, 2005.

[9] M.N. Al-Ameen and Md. R. Hasan, “The Mechanisms to Decide on

Caching a Packet on Its Way of Transmission to a Faulty Node in

Wireless Sensor Networks Based on the Analytical Models and

Mathematical Evaluations,” International Conference on Sensing

Technology, pp. 336-341, 2008.

[10] N. Dimokas, D. Katsaros, L. Tassiulas and Y. Manolopoulos, “High

Performance, Low Complexity Cooperative Caching for Wireless

Sensor Networks,” Springer International Journal of Wireless Networks,

Vol. 17, No. 3, pp. 717-737, 2011.

[11] N. Dimokas, D. Katsaros and Y. Manolopoulos,“Cooperative Caching in

Wireless Multimedia Sensor Networks,” Springer Journal of Mobile

Network Applications, pp. 337-356, 2008.

[12] Xiao, H. Chen and S. Zhou, “Distributed Localization Using a Moving

Beacon in Wireless Sensor Networks”, IEEE Transactions on Parallel

and Distributed Systems, Vol. 19, No. 5, pp. 587-600, 2008.

[13] L. Yin and G. Cao, “Supporting Cooperative Caching in Ad Hoc

Networks,” IEEE Transactions on Mobile Computing, Vol. 5, No. 1, pp.

77–89, 2006.

Dr. Narottam Chand received his Ph.D. degree from IIT Roorkee in

Computer Science and Engineering. Previously he received M.Tech. and

B.Tech. degrees in Computer Science and Engineering from IIT Delhi and

NIT Hamirpur, respectively.

Presently he is working as Associate Professor, Department of Computer

Science and Engineering, NIT Hamirpur. He has served as Head, Department

of Computer Science & Engineering, during Feb 2008 to Jan 2011 and Head,

Institute Computer Centre, during Feb 2008 to July 2009.

His current research areas of interest include mobile computing, mobile ad

hoc networks and wireless sensor networks. He has published more than 150

research papers in International/National journals & conferences and guiding

PhDs in these areas. He is member of ACM, IEEE, ISTE, CSI, International

Association of Engineers and Internet Society.

