
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1595

Abstract—The importance of low power consumption is widely

acknowledged due to the increasing use of portable devices, which
require minimizing the consumption of energy. Energy dissipation is
heavily dependent on the software used in the system. Applying
design patterns in object-oriented designs is a common practice
nowadays. In this paper we analyze six design patterns and explore
the effect of them on energy consumption and performance.

Keywords—Design Patterns, Embedded Systems, Energy

Consumption, Performance Evaluation, Software Design and
Development, Software Engineering.

I. INTRODUCTION

HE vast majority of microprocessors being produced
today are incorporated in embedded systems, which are

mainly included in portable devices. The later ones require the
lowest power operation achievable, since they rely on
batteries for power supply. Furthermore, high power
consumption raises other important issues, such as the cost
associated with cooling the system, due to the heat generated.
A lot of optimization efforts have been made, regarding the
hardware used, to decrease power consumption [1]. However,
recent research has proved that software is the dominant factor
in the power consumption of a computing system [12].

 Design patterns name, abstract and identify the key aspects
of a common design structure that make it useful for creating a
reusable object-oriented design [5]. Modern software design
practice points towards the direction of design patterns, thanks
to the advantages they ensue. Indeed, the software generated
is reusable and flexible thus being much of a help to
designers. For the aforementioned reasons, it is strongly
recommended in the designers’ community that they use
design patterns whenever possible.

 In this paper, we take a rather unconventional approach in
evaluating the application of design patterns: We compare the
energy being consumed in six C++ [11] code examples,

Manuscript received May 10, 2005.
Andreas Litke is with the Applied Infromatics Department, University of

Macedonia, 54006 Thessaloniki, Greece (e-mail: litke@uom.gr).
Kostas Zotos is with the Applied Infromatics Department, University of

Macedonia, 54006 Thessaloniki, Greece (e-mail: zotos@uom.gr).
Alexander Chatzigeorgiou is with the Applied Infromatics Department,

University of Macedonia, 54006 Thessaloniki, Greece (phone: +30 2310
891886; fax: +30 2310 891875; e-mail: achat@uom.gr).

George Stephanides is with the Applied Infromatics Department,
University of Macedonia, 54006 Thessaloniki, Greece (e-mail:
steph@uom.gr).

before the application of the appropriately chosen design
pattern and afterwards. The aim is to quantify one aspect of
software, namely the energy consumption of the underlying
hardware, in cases where quality is substantially improved by
the use of design patterns. We draw some useful conclusions
regarding whether the energy consumption is increased with
the use of design patterns (and if so, to what extent) or not. Of
course, this is a first investigation and we by no means infer
that the use of patterns generally increases or not the power
consumption in a system.

II. ENERGY CONSUMPTION
In this section, we describe basic elements that characterize

the energy consumption in a system. To clarify the reasons
why energy consumption of a program varies, it is necessary
to name the main sources of power consumption in an
embedded system. The system power falls into mainly two
categories, each of which is described in the following
paragraphs.

A. Processor Power

When instructions are fetched, decoded or executed in the
processor, the nodes in the underlying CMOS digital circuits
switch states. For any computing system, the switching
activity associated with the execution of instructions in the
processing unit, constitutes the so-called base energy cost. The
change in circuit state between consecutive instructions is
captured by the overhead or inter-instruction cost. To
calculate total energy, which is dissipated, all that is needed is
to sum up all base and overhead costs for a given program.

B. Memory Power

We assume that the system architecture consists of two
memories, namely the instruction memory and data memory
(Harvard architecture). Having presumed that, the energy
consumption has to be calculated on a twofold basis, one for
each memory. The energy consumption of the instruction
memory depends on the code size and on the number of
executed instructions that correspond to instruction fetches,
whereas that of the data memory depends on the volume of
data being processed by the application and on how often the
later accesses data.

III. DESIGN PATTERNS
The need to design reusable and flexible object-oriented

software, so that future possible problems can be overcome,

Energy Consumption Analysis of Design
Patterns

Andreas Litke, Kostas Zotos, Alexander Chatzigeorgiou, and George Stephanides

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1596

has led to the use of design patterns. Patterns are ways to
describe best practices, good designs, and capture experience
in a way that it is possible for others to reuse this experience
[6]. Each design pattern focuses on a particular problem or
issue. Designers with design patterns can reuse solutions that
have worked well in previous similar situations and so they do
not need rediscover new ones. Design patterns even help
improve the documentation of object-oriented software by
explicitly specifying the class and object interactions and their
intent [5]. There are a lot of different design patterns for
common or not situations that need to be handled by the
software designer. They have to pick up the appropriate one
and adjust it to the given situation to gain reusability and
flexibility.

IV. FRAMEWORK SETUP
To evaluate the energy cost of software design decisions

generalized target architecture was considered. It was based
on the ARM7 integer processor core [7], which is widely used
in embedded applications due to its promising MIPS/mW
performance [4]. The process that has been followed during
the conduction of the aforementioned experiments begins with
the compilation of each C++ code with the use of the compiler
of the ARM Developer Suite [2]. At this stage, we were able
to obtain the code size. Next and after the debugging, a trace
file was produced which logged instructions and memory
accesses. The debugger provided the total number of cycles. A
profiler was specially developed for parsing the trace file
serially, in order to measure the memory accesses to the
instruction memory (OPCODE accesses) and the memory
accesses to the data memory (DATA accesses). The profiler
calculated also the dissipated energy (base + interinstruction
energy) within the processor core. Finally, with the use of an
appropriate memory simulator (provided by an industrial
vendor), the energy consumed in the data and instruction
memories was measured. The results we will present in the
following section regard the number of cycles, the OPCODE
Memory Accesses, the DATA Memory Accesses, the energy
consumed in the processor, the data memory energy and the
instruction memory energy. Our initial assumption was that
the power consumption of the pattern solution would be
greater than that of the non-pattern solution. We also show the
class diagram of each design pattern, using UML (Unified
Modeling Language) [8], [9].

The design patterns selected for the experiments where of
all three categories, namely Creational (Factory Method),
Structural (Adapter), as well as Behavioral (Observer).
Creational design patterns abstract the instantiation process.
The system created is independent of how its objects are
created, composed and represented. The intention of the
Factory Method is to define an interface for creating an object,
but to let the subclasses decide which class to instantiate. So,
it lets a class defer instantiation to the subclasses. The Adapter
pattern makes one interface conform to another, so that they
are not incompatible. Behavioral patterns are mainly
concerned with algorithms and the assignment of
responsibilities between objects. The Observer pattern defines

a one-to-many dependency between objects so that one object
alters its state, all its dependents are notified and updated
automatically. We have also investigated the Bridge and the
Composite patterns which belong to the Structural patterns.
However, they both showed very little to none difference in
power consumption and performance.

V. RESULTS
In this section we will present the results of the

experiments. Starting with the Creational Pattern, we will first
demonstrate the performance and energy consumption (Table
I) before and after the application of the Factory Method
design pattern (Fig. 2). It should be mentioned that in the non-
pattern solution we have four classes in total (including three
concrete products each of which having one method) while in
the pattern solution there is an additional Creator class with
one public static factoryMethod. Essentially what
happens in the above example, is that code that is being
executed within the client (function main()) in order to
create instances of the three products, is moved within the
Factory class method. Consequently, the code size is
expected to increase to a small extent but the number of
executed instructions remains almost unchanged. This is
evident in Table I, where the accesses to the instruction
memory do not increase significnantly, while the instruction
memory energy consumption increases more due to the small
increase in the code size. However, the increase in the total
energy consumption is insignificant. Thus we can infer that
the application of the Factory Method pattern does not worsen
the energy consumption neither the performance of the
program using it.

The next pattern we will examine is a Structural one, the
Adapter design pattern (Fig. 1) and the corresponding results
are shown in Table II.

In the non-pattern solution, the Adapter class invokes the
methods of the parent Adapted class, while in the pattern
solution Adapter class invokes the methods of “contained”
Adapted class. The code in both solutions is similar and
therefore there is no significant difference in the energy
consumed and the performance between the two cases.
“Heavy lifting” in both cases is delegated to the Adapter
class. However, according to the well-defined Design
Heuristic “favor composition over inheritance” the pattern
solution should be the design of choice.

The last pattern we will examine is the Observer (Fig. 3),
which is classified as a Behavioral design pattern. Again, we
summarize the results measured in the Table III.

An object-oriented design that employs the Observer
pattern, introduces one additional class to the system, namely
the abstract Observer class. Consequently the code size
increases therefore increasing in turn the instruction memory
energy consumption, as it can be observed from Table III. The
number of methods also increases (by the addition of the
attach and notify methods) and consequently the number
of executed assembly instruction also increases. Another

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1597

observation is that the number of load/store instructions in the
pattern solution is larger. Load and store instructions require
more than one cycle per instruction and in addition have a
larger energy cost than arithmetic or branch instructions [10].
As a result, the number of executed cycles was greater when
using the design pattern and we expected the energy
consumed to be much different. This has been proved by
measurements, since the difference between the two solutions
is significant, with the pattern solution consuming a lot more
energy than the non-pattern.
 However, there is clear advantage by the use of
polymorphism: the ability for objects of different classes
related by inheritance to respond differently to the same
message. As known, in C++ polymorphism is implemented
via virtual functions: when a request is made through a base-
class pointer to invoke a virtual function, C++ chooses the
correct overridden function in the appropriate derived class. In
our example, at pattern solution we used a virtual class. Every
virtual function call not only requires additional execution
time, but the Vtable constructs and Vtable pointers added to
each object containing a virtual function, increase
significantly the required memory and moreover lead to a
tremendous increase of memory accesses. Judging from the
increase in energy consumption, the decision lies to the
designers whether such a solution is acceptable or not. They
must balance the benefits of applying a design pattern and
opting for a low power solution.

VI. CONCLUSIONS
The power consumption of an embedded system depends

heavily on the executing software. The necessity to consider
low energy consumption arises from the wide use of portable
devices, which obviously require low power operation. The
application of design patterns is a common practice due to the
benefits they ensue. In this paper, we have explored the
energy consumed and the performance before and after the
application of design patterns on sample systems. We have
observed that except for one example where the energy
consumption of the pattern solution increased significantly
(and thus making the application of the pattern questionable
from a power point of view), the use of design patterns does
not necessarily impose a significant penalty on power
consumption. However, further research is required in order to
investigate the effect of other design patterns on performance
and power.

REFERENCES
[1] A. Chandrakasan, and R. Brodersen, “Low Power Digital CMOS

Design”, Kluwer Academic Publishers, Boston, 1995.
[2] A. Chatzigeorgiou, D. Andreou, and S. Nikolaidis, Description of the

software power estimation framework, IST-2000-30093/EASY Project,
Deliverable 24, February 2003, Available:
http://electronics.physics.auth.gr/easy.

[3] H.M. Deitel, and P.J. Deitel, “C++: How to Program”, Prentice Hall,
Upper Saddle River, 2001.

[4] S. Furber, “ARM System-on-Chip Architecture”, Addison-Wesley,
Harlow, UK, 2000.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley,
1995.

[6] http://hillside.net/patterns/.
[7] http://www.arm.com/armtech/ARM7TDMI?OpenDocument

.
[8] OMG Unified Modeling Language Specification, version 1.3, June

1999, Available: http://www.rational.com.
[9] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling

Language Reference Manual”, Addison-Wesley, 1999.
[10] G. Sinevriotis, and Th. Stouraitis, Power Analysis of the ARM 7

Embedded Microprocessor, 9th Int. Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS’99), Kos, Greece,
(1999), 261-270.

[11] B. Stroustrup, “The C++ Programming Language”, 3rd Edition, Addison-
Wesley, 1997.

[12] V. Tiwari, S. Malik, and A. Wolfe, Power Analysis of Embedded
Software: A First Step Towards Software Power Minimization, IEEE
Transactions on VLSI Systems, vol. 2 (1994), 437-445.

Client Adapter Adapted

Pattern Solution

Non-Pattern Solution

Client Adapter

Adapted

1 *

Fig. 1Adapter Design Pattern diagrams

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1598

TABLE II
PERFOMANCE AND POWER FOR ADAPTER

 Non-pattern solution Pattern solution Difference

Cycles 14312 14346 0,237%

OPCODE Memory Accesses 9608 9639 0,322%

DATA Memory Accesses 3186 3188 0,063%

Processor Energy 0,016087601 mJ 0,016123306 mJ 0,221%

Instr_mem Energy 0,032076 mJ 0,032179 mJ 0,320%

Data_mem Energy 0,043716 mJ 0,043744 mJ 0,064%

TABLE I
PERFOMANCE AND POWER FOR FACTORY METHOD PATTERN

 Non-pattern
solution

Pattern solution Difference

Cycles 17336 17358 0,127%

OPCODE Memory Accesses 10999 11005 0,055%

DATA Memory Accesses 4314 4322 0,185%

Processor Energy 0,019224856 mJ 0,019235994 mJ 0,058%

Instr_mem Energy 0,033464 mJ 0,03352 mJ 0,167%

Data_mem Energy 0,053743 mJ 0,053922 mJ 0,333%

+foo()

Product

+foo()

ConcreteProduct1

+foo()

ConcreteProduct2

+foo()

ConcreteProduct3

Client

Non-Pattern Solution

+foo()

Product

+foo()

ConcreteProduct1

+foo()

ConcreteProduct2

+foo()

ConcreteProduct3

Client

Pattern Solution

+Product* factoryMethod()

Creator
<<creates>>

Fig. 2 Factory Method Design Pattern class diagrams

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1599

TABLE III
PERFORMANCE AND POWER FOR OBSERVER PATTERN

 Non-pattern
solution

Pattern solution Difference

Cycles 37218 53615 44,06%

OPCODE Memory Accesses 23592 34027 44,23%

DATA Memory Accesses 9486 13618 43,56%

Processor Energy 0,04120657 mJ 0,059416259 mJ 44,19%

Instr_mem Energy 0,078097 mJ 0,112819 mJ 44,46%

Data_mem Energy 0,129948 mJ 0,187006 mJ 43,91%

+update()

Subject

+update()

Observer1

+update()

Observer2

Client

+attach()
+notify()

Subject ClientObserver

+update()

Observer1

+update()

Observer2

Non-Pattern Solution

Pattern Solution

Fig. 3 Observer Design Pattern class diagrams

