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Abstract—In this paper a new control strategy based on Brain 

Emotional Learning (BEL) model has been introduced. A modified 
BEL model has been proposed to increase the degree of freedom, 
controlling capability, reliability and robustness, which can be 
implemented in real engineering systems. 

The performance of the proposed BEL controller has been 
illustrated by applying it on different nonlinear uncertain systems, 
showing very good adaptability and robustness, while maintaining 
stability. 
 

Keywords—Learning control systems, emotional decision 
making, nonlinear systems, adaptive control.  

I. INTRODUCTION 
IOLOGICALY motivated intelligent controllers have 
been widely used for controlling uncertain dynamical 

systems in recent years [1]-[5]. Fuzzy logic and neural 
networks are among the most popular tools for control 
applications in complex nonlinear settings.  

In Fuzzy system approach, control laws are being designed 
based on some prior knowledge or through learning and 
automatic rule induction schemes. In addition, an appropriate 
Fuzzy logic controller can overcome the environmental 
variation during operation process [2], [5]-[7]. 

Neuro-controllers have also been widely used in recent 
years. Motivated by the fact that human control actions are 
regulated by the brain, artificial neural networks have been 
designed as (over)simplified models of human neural 
structures. The ability to act as universal approximator is a 
significant characteristics of these nets which has made them 
useful for modeling nonlinear systems; this is of primary 
importance in the synthesis of nonlinear controllers. A neuro-
controller in general, performs a specific form of adaptive 
control, with the controller in the form of a multilayer neural 
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network and the adaptable parameters being defined as the 
adjustable weights. Generally, the massively parallel 
distributed processing character of the neural nets makes them 
ideal for VLSI and optical implementations in cases where 
very rapid response is required [8].  

To get the advantage of both the types of Fuzzy and neural 
controllers it is interesting to use the combined scheme, which 
leads us to Fuzzy-Neural controllers [2], [8]. Neuro-Fuzzy 
control, genetically optimized fuzzy control, back-propagation 
through plant and reinforcement learning have shown 
successful implementation [16]-[19]. 

For human, as a biological intelligence system emotion and 
cognition are two major aspects of his mental life [9], [10]. 
Thus, over the last couple of years there has been an 
increasing interest in the development of computational 
models for emotion. The models have been integrated into 
different architectures for the development and control of 
several agents in a variety of embodiments and environments 
[10]-[15]. 

Based on these studies many efforts has been made to 
develop models for decision making and find a control 
strategy for effective control of dynamic systems. 
Methodologies called emotional control or merely an analog 
version of reinforcement learning with critic (evaluative 
control) are increasingly being utilized by control engineers, 
robotic designers and decision support systems developers and 
yielding excellent results [20]-[23]. Although, for a long time, 
emotion was considered as a negative factor hindering the 
rational decision making process, the important role of 
emotions in human cognitive activities is progressively being 
documented by psychologists [24], [25]. It has now become 
clear that far from being a negative trait in biology, emotions 
are important positive forces crucial for intelligent behavior in 
natural as well as artificial systems [20], [26]. 

Interesting model of brain emotional learning has been 
presented in [11] as a computational model that mimics 
Amygdala, Orbitofrontal cortex, thalamus, sensory input 
cortex and generally, those parts of the brain thought 
responsible for processing emotions. Successful 
implementation of this model for decision making and 
controlling of simple linear systems in [27] as well as more 
complex nonlinear systems in [28], [29], [30], made us to 
further study of this scheme and develop a more reliable and 
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effective algorithm which has more similarity to its parent 
model in [11]. Proposed modified model has better 
adaptability and robustness, since is able to receive more than 
one sensory input. In this study, ability of this modified 
version of emotional learning based intelligent controller 
(BELBIC) in facing nonlinear uncertain systems has been 
investigated. 

In the remainder of this paper emotional learning 
methodology is introduced in details in Section II. In Section 
III control problems and obtained results have been presented. 
And finally, in Section IV, conclusions have been made.  

II. BRAIN EMOTIONAL LEANING BASED INTELLIGENCE 
CONTROLLER (BELBIC) MODEL 

Generally speaking, direct and indirect adaptive control 
schemes represent two distinct methods for the design of 
adaptive controllers. To use emotional computations to design 
adaptive controllers, we will easily end up with Direct 
Adaptive Control (DAC) and Indirect Adaptive Control (IAC) 
schemes. In the DAC the parameters of the controller are 
directly adjusted to minimize the tracking error, while in the 
IAC scheme, parameters of the plant under study are 
estimated on-line and the then controller parameters are 
adjusted based on these estimates. The first scheme is used in 
this paper. 
 

Thalamus Sensory Cortex Orbitofrontal 
Cortex 

Amygdala 
Reward (Rew) 

Sensory 
Input 

E  

 
Fig. 1 Scheme of BEL structure 

 
BELBIC is divided into two parts (see Fig. 1), very roughly 

corresponding to the Amygdala and the Orbitofrontal cortex, 
respectively. The Amygdaloid part receives inputs from the 
thalamus and from cortical areas, while the orbital part 
receives inputs from the cortical areas and the amygdale only. 
The system also receives reinforcing ( REW ) signal. There is 
one A  node for every stimulus S  (including one for the 
thalamic stimulus). There is also one O  node for each of the 
stimuli (except for the thalamic node). There is one output 
node in common for all outputs of the model, called E . The 
E  node simply sums the outputs from the A  nodes, and then 
subtracts the inhibitory outputs from the O  nodes. The result 
is the output from the model. The E′  node sums the outputs 
from A  except thA  and then subtracts from inhibitory outputs 
from the O  nodes. 

( )

( )

i i th
i i

i i th
i i

E A O including A

E A O not including A

= −

′ = −

∑ ∑

∑ ∑
 (1) 

The thalamic connection is calculated as the maximum over 
all stimuli S  and becomes another input to the amygdaloid 

part: 
max( )th iA S=  (2) 

Unlike other inputs to the Amygdala the thalamic input is 
not projected into the Orbitofrontal part and cannot be 
inhabited. The emotional learning occurs mainly in Amygdala. 
The learning rule of Amygdala is given as follow: 

max 0,i a i i
i

V S REW Aα
⎛ ⎞⎛ ⎞∆ = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  (3) 

where aα  is learning rate in Amygdala, REW  is reinforcing 
signal and iV  is weight of the plastic connection in Amygdala. 
Similarly, the learning rule in Orbitofrontal cortex is 
calculated as the difference between the E′  and the 
reinforcing signal REW  

( )( )i o iW S E REWα ′∆ = −
 (4) 

where iW  is the weight of Orbitofrontal connection and oα  is 
Orbitofrontal learning rate. As it is evidence, the Orbitofrontal 
learning rule is very similar to the Amygdaloid rule. The only 
difference is that the Orbitofrontal connection weight can both 
increase and decrease as needed to track the required 
inhibition. 

The nodes values are then calculated as 
i i i

i i i

A S V
O S W

=
=  

(5) 

Note that this system works at two levels: the Amygdaloid 
part learns to predict and react to a given reinforcer. The 
Orbitofrontal system tracks mismatches between the base 
systems predictions and the actual received reinforcer and 
learns to inhibit the system output in proportion to the 
mismatch. 

The reinforcing signal REW  comes as a function of others 
signal which can be supposed as a cost function validation i.e. 
award and punishment are applied based pervious defined cost 
function. 

( ), ,i pREW J S e y=  (6) 

where py  is plant output, and e  is error signal. 
Similarly the sensory inputs must be a function of plant 

outputs and controller outputs as follow 
( ), , ,i p rS f u e y y=

 (7) 
Architecture of BEL controller is shown in Fig. 2. As it is 

illustrated in (6, 7), sensory input and reward signal can be 
arbitrary function of reference output, ry , controller output, 
u , error ( e ) signal, and the plant output py .  It is all up to the 
designer to find a proper function for control. 

Reference 

model 

BEL 

Controller Reward signal 

builder 

Non-Linear 

Plant 

Sensory 

input 

+ 
ry  

u  py  

e  r  

 
Fig. 2 BEL controller architecture 
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III. SIMULATION STUDIES 

A. Example 1: The Van Der Pol Oscillator 
A question of particular interest in nonlinear systems is 

whether they exhibit closed trajectories; as such trajectories 
imply periodic motion. Closed trajectories can occur also in 
nonconservative nonlinear systems, provided the net energy 
change at the completion of a full cycle is zero. This implies 
that the systems dissipates energy over some parts of the cycle 
and acquires energy over the balance of the cycle.  

Closed trajectories exhibiting this type of characteristics are 
referred to as limit cycles. A classical example of a system 
known to possess a limit cycle is the van der Pol oscillator, 
described by differential equation 

 
( )2 1 0, 0x x x xµ µ+ − + = >&& &

 (8) 
 
It can be regarded as an oscillator with variable damping, as 

the term ( )2 1xµ −  represents an amplitude-dependent 

damping coefficient; such a system is both non conservative 
and nonlinear [31]. 

It must be pointed out that the van der Pol oscillator is a 
very good example of a nonlinear system for which 
linearization about a trivial equilibrium is totally inadequate. It 
must be also noted that the shape of the limit cycle depends on 
the parameter alone, so that the initial condition have no effect 
on the amplitude of motion after the system has reached the 
limit cycle. 

Now consider the van der Pol forced oscillator described as 
 

( )( )21 , 0x d x x x Fµ µ= × − − + >&& &
 (9) 

 
where F  is the control input, and d  is the external 
disturbance and assumed as a random number between 0.5  
and 1.5 , with sampling time of 5 sec . 

The objective of the control system is to make the system to 
track the reference model 
 

2

02 6 9r r
r

d y dy
k y r

dtdt
= − − +

 

0

5 50 sec
9 50 sec

t
k

t
<⎧

= ⎨ ≥⎩  

(10) 

 
where ry  is the output of the reference model, and r  is the 
input reference signal. 

System initial condition was set equal to 0 2x =  and 

0 0x =& . For BEL controller, sensory input was selected as 
 

2 3 T
p rS y y⎡ ⎤= ⎣ ⎦  (11) 

 
and the reward signal was chosen to be 

650 50REW e e= + ∫  (12) 
 
The learning rate in Amygdala and Orbitofrontal was set 

equal to 1 6a eα = −  and 2 3o eα = − , respectively. 
The upper diagram of Fig. 3 shows the reference signal and 

the system response using the BEL controller. The lower 
diagram gives the control action commanded by BEL 
controller. 
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Fig. 3 Van der Pol oscillator response and control action for the  

BEL Controller in example A 
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Fig. 4 Damping coefficient ( )dµ × , versus time 
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Fig. 5 Weights of the BEL controller through time,  

for van der Pol oscillator example 
 
From Fig. 3, it can be seen that the BEL controller has 

converged very fast and has controlled the nonlinear system 
very well. Fig. 4, shows coefficient ( )dµ ×  versus time and in 
Fig. 5 weights of the BEL controller is given. Obviously 
Orbitofrontal weights are changing very fast, to compensate 
mismatches between the base systems predictions and the 
actual received reinforcer and learns to inhibit the system 
output in proportion to the mismatch. 

B. Example 2: Duffing forced oscillator 
A classical example of a nonlinear conservative system 

known to possess periodic solutions consists of a mass m  
attached to a stiffing, or hardening spring. We consider a 
spring with a restoring force in the form of the sum of two 
terms, one proportional to the elongation and the other varying 
as the third power of the elongation. We are concerned with 
the case in which the cubic term is appreciably smaller than 
the linear term, so that is nearly linear. In the case in which the 
system described is viscously damped, the equation of motion 
has the form 

( )2 2 32 , 1x x x x x Fω ε ς ω ω α β ε⎡ ⎤+ = − − + + <<⎣ ⎦&& &
 

where ς  is damping ratio, ω  is natural frequency of the 
harmonic system when 0ε = , and ,α β  are coefficients of the 
dynamic system. The control signal was shown as F . 
Equation (13) is the well-known viscously damped Duffing’s 
equation.  

It was shown in that the period of oscillation of nonlinear 
conservative systems, like (13), depends on the initial 
conditions, as well as on the system parameters, in contrast 
with the period of linear conservative systems, which is not 
effected by the initial conditions [31]. 

The object of the controller is to generate command such 
that the system track the reference signal given in (10). To do 
so, sensory inputs to the BEL controller was set to 

2 5 T
p rS y y⎡ ⎤= ⎣ ⎦  (13) 

and the reward signal was selected as 

100 20 dREW e e
dt

⎛ ⎞= +⎜ ⎟
⎝ ⎠  

(14) 

Also, the learning rate in Amygdala and Orbitofrontal was 
set equal to 1 10a eα = −  and 3 2o eα = − , respectively. 

Note that the system with numerical data for simulation is 
taken from [2] 

( )30.1 12cos dx x x t F d= − − + + +&& &  (15) 
where F  is the control input the coefficient dd  is the external 
disturbance and is assumed to be a square wave with the 
amplitude 1±  and the period 2π . 

Response of BEL controlled system, with control 
command, ( )F t , is shown in Fig. 6. It can be seen that the 
BEL controller is able to control system very gently. 
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Fig. 6 Duffing’s oscillator response and control action for the  

BEL Controller in example B 

 
Weights of the BEL controller are given in Fig. 7 with 

respect of time. 
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Fig. 7 Weights of the BEL controller through time,  

for example B 
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It can be seen in Fig. 7 that weights of the controller reach 
to steady-state condition very soon and the effect of 
disturbance is being eliminated through time due learning 
ability of BEL controller. 

The proposed controller has been capable of achieving both 
better output performance and more reasonable control efforts 
than the one suggested in [2]. Furthermore, it has better 
adaptability, requires less initial tuning, and has lower 
computational complexity. 

C. Example 3: Automatic self balancing scale [32] 
An automatic self balancing scale in which the weighting 

operation is controlled by an electrical motor is shown in Fig. 
8. 

Lead
screw

dc
motor

Pivot

Viscous
damper

l i

l w x

y

x
Wc

W

1 ¢

 
Fig. 8 An automatic self balancing scale 

 
The balance is shown in the equilibrium condition, and x  is 

the travel of counter weight CW  from an unloaded equilibrium 
condition. The constant weight W  is applied 30 cm  from the 
pivot, and the length of the beam to the viscous damper, il , is 

1 m . Inertia of the beam is equal to 20.05 kg m−  was chosen. 
We will utilize a lead screw of 20 /turns cm  and the viscous 

damper with damping constant of 10 3 / /f kg m s=  was 
selected. Finally, a counterweight CW  is chosen so that the 
expected range of desired equilibrium angles can be obtained. 
Therefore, in summery, the parameters of the system are 
selected as listed in Table I. 

The transfer function of the dc motor is 
 
( ) 10
( ) s

m

x s K
V s s

=
 

(16) 

 
It is desired the controller generate a proper voltage to make 

the system track the commanded equilibrium angle. 
Governing nonlinear equation of motion of the self 

balancing system shown above is 
 

( )2cos cosW c iI W l W x f lθ θ θ θ= − −&& &
 (17) 

 
Since the counter weight has rotation around pivot, thus CW  

is obtained as 
( )2 cosCW m x x gθ θ θ= + +&& &&

 (18) 
 
Full equation of motion of the system is obtained by solving 

equation (17) and (18) simultaneously. 
For BEL controller the sensory input was selected 

[ ]10 1000 500 T
cS x e θ=  (19) 

 
where the error signal is 
 

ce θ θ= −  
 
Also, the reward signal is 
 

1000 4 2 5 dREW e e e
dt

⎛ ⎞= × + +⎜ ⎟
⎝ ⎠∫

 
(20) 

 
The learning rate in Amygdala and Orbitofrontal was set 

equal to 1 5a eα = −  and 7 6o eα = − , respectively. 
The response of BEL controlled self balancing system is 

shown in upper diagram of Fig. 10 and the BEL command is 
given in lower diagram, while in middle diagram of Fig. 9, 
position of the counter weight is shown. 
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Figure 9 Auto-balancing scale response and control action for the  

BEL Controller in example C. 

 
In Figure 10, weights of the BEL controller are given. 

TABLE I 
PARAMETERS OF THE AUTOMATIC SELFBALANCING SCALE 

Symbol Quantity Magnitude 

I  moment of Inertia 20.05 kg m−  

Wl  constant weight position 30 cm  

il  viscous damper distance 1 m  

f  damping constant 
10 / /3 kg m s  

m  mass of balancing weight 1 kg  

W  constant exerted weight 1.5 kg  

s
K  lead screw gain 1

/
4000

m rad
π
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Figure 10 Weights of the BEL controller through time,  

for example C 

IV. CONCLUSIONS 
In this paper, we applied a biologically inspired intelligent 

controller, BELBIC, for adaptive control of nonlinear 
uncertain systems. The results have shown that the proposed 
BELBIC have very satisfactory control performance. 
Especially, it is very powerful in stabilizing and has very fast 
convergence to appropriate control signal. This is due to 
learning ability that BELBIC have. 

The proposed algorithm must be provided with some 
sensory signals and an emotional cue signal, to be able to 
generate the proper action regarding the emotional situation of 
the system. So the art of the designer is to cope with 
appropriately choosing the system’s emotional condition and 
tune the learning rates of the system itself, to obtain the 
desired goal. 
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