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Abstract—Treatment for the non-matching interface is an
important computational issue. To handle this problem, the method of
Lagrange multipliers including classical and localized versions are the
most popular technique. It essentially imposes the interface
compatibility conditions by introducing Lagrange multipliers.
However, the numerical system becomes unstable and inefficient due
to the Lagrange multipliers. The interface element-independent
formulation that does not include the Lagrange multipliers can be
obtained by modifying the independent variables mathematically.
Through this modification, more efficient and stable system can be
achieved while involving equivalent accuracy comparing with the
conventional method. A numerical example is conducted to verify the
validity of the presented method.

Keywords—Element-independent  formulation, non-matching
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|. INTRODUCTION

N various engineering fields, the problems are becoming

complex and enormous. To solve these problems efficiently,
a total system should be divided into several subsystems to
describe each other independently. In this case, the interface
boundaries are naturally created between the subsystems and
non-matching meshes are occurred on them. Also, when the
multi-material and multi-physics, as well as contact problems,
are considered, the non-matching meshes arise naturally on the
interface boundaries due to the different behaviors of each
system. Therefore, demand for developing approaches to
connect non-matching meshes is gradually increased.

The method of Lagrange multipliers is the most popular way
to satisfy the interface compatibility conditions on the non-
matching meshes. This method imposes interface compatibility
conditions by introducing Lagrange multipliers acting as
contact forces in a variational sense. Depending on how to
define interface conditions, it is divided into two methods [1]-
[6]. One is the method of Classical Lagrange multipliers (CLM,
widely named mortar method) [1]-[3], the other is the method
of Localized Lagrange Multipliers (LLM) [5]-[7]. A distinctive
feature compared with the method of CLM is a creation of
independent frame domain between the interface boundaries to
impose a unique set of constraint conditions [7].

From the computational point of view, the method of

Gil-Eon Jeong is with the Department of Mechanical Engineering, KAIST,
Daejeon 305-701, Republic of Korea (e-mail: sky0126@kaist.ac.kr).

Sung-Kie Youn is with the Department of Mechanical Engineering, KAIST,
Daejeon 305-701, Republic of Korea (corresponding author, e-mail:
skyoun@Xkaist.ac.kr).

K.C. Park was with the Department of Aerospace Engineering Science,
University of Colorado, Boulder, CO 80309-429, USA (e-mail:
kepark@colorado.edu).

Lagrange multipliers is composed of two kinds of linear system.
One is a system with Lagrange multipliers; the other is a system
without Lagrange multipliers [8]-[10]. Due to the
characteristics of a total system equation, the latter is preferred
to improve numerical efficiency and stability. However, these
are complicated to understand and implement easily to the
practical engineering problems. Moreover, the studies have not
been extended to the method of LLM. To overcome these
drawbacks, straightforward and efficient method is proposed by
modifying the method of Lagrange multipliers. The key idea of
this study is the elimination of unnecessary variables that cause
numerical instability. This means to construct a compact type
of system mathematically by removing variables that do not
cause problems even if they are removed from the analysis.
Through this modification, we intend to derive a more efficient
and stable system with the same accuracy compared with the
conventional method.

The remainder of this paper is organized as follows. Section
Il introduces the conventional method of Lagrange multipliers
including classical and localized versions with schematic and
mathematical descriptions. Based on the formulations from
Section Il, the Modified Method of Lagrange Multipliers
(MMLM) is proposed mathematically in Section Ill. To verify
the effectiveness and exactness of the proposed method, a
simple contact patch test is performed in Section IV. The
characteristics of presented method are investigated compared
with conventional method. Finally, purposes and comments are
summarized in Section V.

I1. CONVENTIONAL METHOD OF LAGRANGE MULTIPLIERS

This section introduces a basic concept for the conventional
method of CLM and LLM to connect the non-matching meshes.
A simple interface patch test problem consisting of two elastic
bodies is used to demonstrate the features of each method as
depicted in Fig. 1.

354



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:11, No:2, 2017

Interface frame domain VvV VvV Vv
s I
\
V Vv 0, T 500 oo
Q \ \ NN
0309 I 090 e
Q, Q, Q,
A A A

@ (b) ©

Fig. 1 Simple interface example; (a) a structure decomposed of two
parts. Each part is connected by the method of (b) CLM, (c) LLM

To obtain finite element formulation for imposing interface
compatibility conditions, the hybrid form of total energy
functional has to be defined as

HTPE = ZHSE 7Hc (1)

where I1.,. is the total energy functional, IT, is the interface
potential energy, N is a number of subdomains (In Fig. 1, N=2),
and TI, is the potential energy for each subdomain in which
it is given as

My = [ [u-uf]de-| utdr
@)

1 1
u(u):EDijk‘eijek,, e ZE(U” +ujyi)

In (2), the potential energy is composed of the internal energy
expressed in strain energy and the external energy induced from
the body force f and surface traction ¢, where u is a
displacement field at a subdomain Q, b;  is the 4™ order
elastic Young’s modulus, conventional summation rule is in
effect, and comma represents partial derivatives.

A. Method of Classical Lagrange Multipliers (CLM)

To obtain interface potential energy I1, for the method of
CLM, the Lagrange multipliers between subdomains have to be
defined as shown in Fig. 1 (b). Then, interface potential energy
is defined as

M= A" (u<1> —u<2))dr ®)

L

where T, represents interface boundary, A is the Lagrange
multipliers, u®™ and u® are the displacement fields for each
subdomain.

Substituting (3) into the total energy functional and taking
the first variation to minimize the energy functional, a matrix
form of total system equation can be obtained as

KW 0 B,Q, u® fO
0 K® -B,Q, u@l_J§@
Q/Bf —Q;B] 0 A o] @

Q, :jr‘ Ny N, dr, Q, :Ir. Ni N, dr

where B; and B, are the Boolean matrices for filtering
interface boundary components, Q, and Q, are the projection
matrices to impose interface compatibility conditions, N is the
shape function.

B. Method of LLM

The basic concept for the method of LLM is similar to the
CLM. However, the fictitious frame domain is introduced to
connect each subdomain as depicted in Fig. 1 (c). Therefore, the
interface potential energy is scaled by the corresponding
Lagrange multipliers with the interface constraints between
each substructure and the frame.

I, = L‘ {)\I (u(l) —u(”)+)\; (u(z) —u“))} dar (5

where the Lagrange multipliers are depicted in Fig. 1 (c).

Comparing to the CLM, the number of independent variables
is much larger, but the interface conditions can be defined
uniquely and efficiently with no redundancy in the constraint
equations [7].

To formulate the total potential energy, (5) has to be
substituted in (1). Then, taking the first variation of the energy
functional and setting it to zero, the matrix form of a total
system equation is derived as

KO 0 BQ 0 0o ju
0 K? o BQ, o0 ||U
QBl 0 0 o -w ||\ [=] o0
0 QB O 0 -W, |[\® 0

0 0 W -wW] 0 ||, Lo

Q=] N NI, Q=] Nj led_l“, (6)

Ury Urz

w, :Iﬂ NN, dl, W, :L‘ NI,N, dI

where Q;, Q;, W;, and W, are the projection matrices that
represent the interface condition between interface boundary
and the fictitious frame displacements.

I1l. MOoDIFIED METHOD OF LAGRANGE MULTIPLIERS

In this section, the proposed method is illustrated based on
the conventional method discussed in section Il. When the
conventional method is solved numerically, a total system
equation is ill-conditioned due to the Lagrange multipliers. To
improve the numerical properties, many types of research are
suggested to eliminate the Lagrange multipliers [8], [9]. In a
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similar approach, the proposed method derives an efficient
system by replacing unnecessary variables into essential parts
mathematically on the variational form. In this method, the
unnecessary variables indicate the Lagrange multipliers and
interface boundary displacements that are overlapped.
Therefore, a total system of the proposed method only contains
the essential variables. Through the modification, more
straightforward and efficient method while involving
comparable accuracy should be obtained. Because the
modification of the independent variables is the key idea of the
proposed method, we have named MMLM.

A. Modification of the Method of CLM

In this section, the procedures for the CLM are presented. To
eliminate unnecessary variables, a total displacement u has to
be divided into internal u; and interface boundary uj for each
subdomain as shown in Fig. 2. Then, the equilibrium equations
can be expanded as:

KOu® + KPu® =0

KOu® + KPu® + QA =Y

KPu® +K! >u =f @
KZy® +Kbb Q A=f?

Quy - Qlug

To derive a modified total system equation, two steps should
be performed by using (7). First, the relation between interface
boundary displacements should be defined as

0—>u

1
Qluf -Qjuf’
= CZlub

-, ®)

Second, the Lagrange multipliers should be converted to the
essential variables as

KPu® + K@u® QA =%

Q)
A= Qp (KU + KC,up) —£7).

Therefore, the matrix form of a modified system equation for
the method of CLM can be derived as

K® 0 K u

0 KP K{'C,, u
KY CLKY K§+CLKEC, ||ul

. £@ (10)
£+ CLf
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Fig. 2 Schematic descriptions of the MMLM for CLM; (a)
conventional method, (b) modified method

B. Madification of the Method of LLM

To obtain a modified system of the LLM, (6) should be
expanded by dividing internal and interface boundary
displacements as shown in the previous section. Then, the
unnecessary variables are converted to the union of essential
variables. To eliminate overlapped displacements, the interface
boundary displacements should be represented by the frame
displacements as:

QU -~ =0
:QfWuW =c,u'”

(11)
Q2 -W, u' =0
=Q;'w,u'" =¢c,,u'"
Using (11), the Lagrange multipliers are defined as:
KOu® + KOu® + QAW =
bb 1

BUN Qf(fél) - Kssuw - ngu(;))

(12)

KZu® + K2u® + QA%
)\(2) - Q;l (flEZ) _ K(b?)ui(z) _

Khbcﬂut,”)

Finally, a modified total system for the method of LLM can
be derived as

K 0 K{C,, u?
o KP Ki;'Cay u?
CLKY CLKY ClK{C, +C},K{C,, ||u”
(13)
f(l)
_ @

Cr Y +Cl f?

By solving (10) and (13), the essential variables are obtained
directly, and others can be calculated using the relations
between them.
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Fig. 3 Schematic descriptions of the MMLM for LLM; (a)
conventional method, (b) modified method

IV. SIMPLE INTERFACE PATCH TEST PROBLEM

A. Problem Definition

To verify effectiveness and exactness of the proposed
method, a simple contact patch test containing non-matching
meshes is considered [11]. The problem definition and
boundary conditions are depicted in Fig. 4 (a). Each domain is
discretized independently as shown in Fig. 4 (b). This example
is in perfect contact with the interface. The material properties
such as Young’s modulus and Poisson’s ratio are chosen as
20000000 and 0.3, respectively.
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Fig. 4 Simple contact patch test; (a) problem definition, (b)
discretization model

B. Result

To ensure efficiency and accuracy comparing with the
conventional method, two parameters are checked. One is the
condition number of a total system equation to investigate the
efficiency and stability. Another is the norm of the stress error
to confirm the accuracy.

Through the results of the norm of stress error for each
method, the accuracy is confirmed that all methods are passed
the contact patch test as shown in Fig. 5 (a). Also, the condition
numbers of the proposed method are lower than conventional
method about 10 as shown in Fig. 5 (a). From the simple
contact patch test, the proposed method is proved that it derives
more efficient and stable system while containing the accurate
solution. Through these results, the validity of the proposed
method can be verified by simple contact patch test.
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Fig. 5 Results of the simple contact patch test; (a) condition number,
(b) norm of stress error

V.CONCLUSION

In this study, the method of Lagrange multiplier including
classical (CLM) and localized (LLM) versions are considered
to deal with problems modeled with non-matching meshes. To
make more stable and efficient numerical system, the method
to eliminate unnecessary variables is proposed. Using the
proposed method, the modification of the method of CLM and
LLM is conducted mathematically using a few formulas. The
numerical characteristics of the proposed method are confirmed
by the simple patch test problem.

Using the characteristics of the present method, we will apply
the proposed method to the problems that inevitably create the
non-matching meshes such as the multi-material and multi-
physics as well as contact problems.
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