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Abstract—The electrokinetic flow resistance (electroviscous 

effect) is predicted for steady state, pressure-driven liquid flow at 
low Reynolds number in a microfluidic contraction of rectangular 
cross-section. Calculations of the three dimensional flow are 
performed in parallel using a finite volume numerical method. The 
channel walls are assumed to carry a uniform charge density and the 
liquid is taken to be a symmetric 1:1 electrolyte. Predictions are 
presented for a single set of flow and electrokinetic parameters. It is 
shown that the magnitude of the streaming potential gradient and the 
charge density of counter-ions in the liquid is greater than that in 
corresponding two-dimensional slit-like contraction geometry. The 
apparent viscosity is found to be very close to the value for a 
rectangular channel of uniform cross-section at the chosen Reynolds 
number (Re = 0.1). It is speculated that the apparent viscosity for the 
contraction geometry will increase as the Reynolds number is 
reduced. 
 

Keywords—Contraction, Electroviscous, Microfluidic, 
Numerical. 

I. INTRODUCTION 
NDERSTANDING flows in micrometer-sized channels 
is necessary for the development of new microfluidic 

devices with the ability to transport and manipulate liquids at 
very small scales for new and existing biotechnology 
applications [1]. In recent years there has been an explosion of 
research activity related to microfluidic and micro-scale 
devices [2].  

 At micrometer scales, surface phenomena such as surface 
tension and electrokinetic effects assume increased 
importance [3]-[4]. Electrokinetic phenomena develop in a 
channel containing an ionic liquid when the channel walls in 
contact with the liquid are charged. Counter-ions in the liquid 
are attracted to a charged wall and a diffuse electrical double 
layer (EDL) forms in which the concentration of counter-ions 
decreases away from the wall. The EDL thickness can vary 
from nanometers to one or two micrometers, depending on the 
ionic concentration and electrical properties of the liquid [5]. 
In pressure-driven flow the counter-ions are advected 
downstream. This creates a current that generates a 
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(streaming) potential field. This potential induces an 
electrokinetic force that opposes the fluid flow, increasing the 
flow resistance and the apparent viscosity (electroviscous 
effect) [5]-[6].  

Studies that model the electroviscous effect are usually 
applied to channels with uniform cross-section and include 
slit-like channels [7]-[9], and channels with cross-sections that 
are cylindrical [10]-[11], elliptic [12], and rectangular [13]-
[14]. However, many microfluidic elements such as T-
junctions and contractions have non-uniform geometries. 
Recently, the authors performed numerical studies of the 
electroviscous effect in a 4:1:4 contraction-expansion for slit-
like [15]-[16] and cylindrical [17] geometries. Flow in these 
geometries is two-dimensional in character. However, 
microchannels are typically constructed to have rectangular 
cross-sections so that the flow in corresponding contraction-
expansions is three-dimensional. This paper presents 
numerical predictions of the electroviscous effect in a 4:1:4 
contraction-expansion geometry having a rectangular cross-
section, for a particular choice of electrokinetic and flow 
parameters. The aim is to compare the electroviscous effect in 
that case with predictions for a corresponding slit-like (planar) 
geometry. 

 

 
 

Fig. 1 Schematic of the contraction-expansion flow geometry 
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II. MODEL DESCRIPTION 
We investigate the three-dimensional flow of an ionic liquid 

through a 4:1:4 contraction-expansion of rectangular cross-
section as shown in Fig. 1. The liquid is taken to be a 1:1 
electrolyte solution of constant viscosity (μ) and density (ρ). 
Thus the anions and cations (specified by + and -, 
respectively) are assumed to have equal valences z = 1. They 
are also assumed to have equal diffusivities D.  

The cross-sections of the inlet and outlet sections (width 
2W and depth 2H) are taken to be equal with H/W = 0.25. For 
this aspect ratio, the cross-section of the contracted section is 
a square of side 2H. A net immobile electrostatic charge of 
surface density σ is assumed on the channel walls. The bulk 
ionic concentration of each species and the mean inflow 
velocity are denoted by n0  and V , respectively. 

A. Governing Equations 
The equations governing the flow, the electric field, and ion 

transport are rendered dimensionless by scaling the velocity, 
length, time, number density of anions and cations, and 
electrical potential by V , W, W V , n0 , kT ze , respectively. 
Here e is the elementary charge, k is the Boltzmann constant, 
and T denotes temperature. The dimensionless equations are 

 

∇2U = −
1

2
K 2 (n+ − n− )  (1) 

∂n+

∂t
+ ∇ ⋅ (vn+ ) =

1

ReSc
∇2n+ + ∇ ⋅ (n+∇U )[ ] (2) 

∂n−

∂t
+ ∇ ⋅ (vn− ) =

1

ReSc
∇2n− − ∇ ⋅ (n+∇U )[ ] (3) 

∂v
∂t

+ ∇ ⋅ (vv) = −∇P +
1

Re
∇ ⋅ ∇v + (∇v)T⎡⎣ ⎤⎦ 

                                  −
BK 2

Re2 (n+ − n− )∇U

 (4) 

∇ ⋅ v = 0  (5) 
 
where (1) is the Poisson equation relating the total electrical 
potential U at a point to the charge density there, (2)-(3) are 
the Nernst-Planck equations describing conservation of each 
ion species in terms of the number of positive (n+) and 
negative (n-) ions per unit volume, and (4)-(5) are the usual 
Navier-Stokes equations, but with an extra (electrical) force in 
the momentum equation due to free charges. 

The dimensionless groups in (1)-(4) are 
 

Re =
ρVW

μ
,  Sc =

μ

ρD
,  B =

ρk 2T 2ε 0ε

2z2e2μ 2
,  K 2 =

2z2e2n0W
2

ε 0εkT
(6) 

 
where Re and Sc are the Reynolds and Schmidt numbers, 
respectively, and K is the dimensionless inverse Debye length 
which is a measure of the ratio of the channel half-width W to 

the EDL thickness. The parameter B is fixed for a given liquid 
at a specified temperature. 

B. Boundary Conditions 
Since the channel walls have electrostatic charge, there is a 

jump in the dielectric displacement normal to the boundary 
between the liquid and the wall material. The magnitude of 
this jump equals the surface charge density. Here we ignore 
the dielectric displacement in the wall material since most 
liquids in biotechnology are aqueous-based, and water has a 
dielectric constant of about 80 compared with approximately 3 
for typical materials used for manufacturing microchannels. In 
that case, the boundary condition at the wall for the electrical 
potential is 

 
∂U

∂nw

= S  (7) 

 
in dimensionless form, where nw is the outwards normal to the 
channel wall and S is the non-dimensional surface charge 
density given by 
 

S =
zeσW

ε0εkT
 (8) 

 
The other wall boundary conditions are zero total flux of each 
ion species normal to the wall and the no-slip velocity 
condition.  

The inlet conditions for velocity and ion concentration are 
imposed from the solution for steady, fully developed 
electroviscous flow in a uniform channel having the same 
rectangular cross-section as the inlet. This solution is obtained 
by a finite difference procedure, the details of which will be 
presented elsewhere. (Semi-analytical methods can also be 
used [14].) The longitudinal potential gradient at the inlet is 
determined by specifying zero net current there. The 
corresponding potential gradient at the outlet is taken to be 
uniform over the cross-section and is chosen to satisfy 
Gauss’s law over the flow domain. At steady state, the current 
passing through the outlet cross-section also becomes zero. 
The other outlet conditions are zero longitudinal gradients of 
the normal velocity and ion concentrations, and a longitudinal 
pressure gradient chosen to ensure global mass conservation. 

III. NUMERICAL METHOD 
The authors have adapted a single-phase version of the 

transient two-fluid finite volume method of Rudman [18] to 
include electrokinetics, and use this to calculate a steady state 
solution. We use this approach because we have already used 
the Rudman algorithm extensively for transient droplet 
deformation in non-electrokinetic flows [19], and we plan to 
extend the adapted code in the future to study transient droplet 
flows with electrokinetics included. Calculations are 
performed in parallel using 32 processors on a uniform 
staggered grid with 32 mesh cells spanning the half-width W 
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of the inlet, and δ x = δ y = δ z . The code structure for parallel 
processing has been adapted from parallel code developed by 
the third author for other applications [20]. Since the system 
has two planes of symmetry, only one quadrant of the channel 
cross-section needs to be considered. 

A procedure is implemented to increase the rate of 
approach to steady state by permitting time steps that are 
larger than the viscous time step limit in the explicit Rudman 
algorithm. (This limit is very small for low Reynolds numbers, 
as is considered here.) The time step is then only limited by 
numerical stability constraints involving the electrokinetic 
parameters as well as the Courant condition, as described by 
Davidson and Harvie [15]. The above-mentioned procedure at 
each time step is to repeatedly perform the viscous update to 
the momentum equation over a number of smaller time steps 
that are each less than the viscous limit before performing the 
more time consuming solution of the Poisson equation for the 
pressure correction. 

IV. RESULTS AND DISCUSSION 

We present results for B = 2.34 × 10−4 , Sc = 1000, Re = 
0.1, K = 4 and S = 8. The first two parameters are derived 
using the properties of water and a temperature of 298 K.  The 
chosen values of scaled inverse Debye length K and 
dimensionless surface charge density S are intermediate in the 
range considered previously by the authors [15], [17], and 
show a significant EDL. Although the surface charge is taken 
to be positive (S > 0), results for the corresponding negative 
value can be obtained by setting new values of U, n+ and n- 
equal to –U, n-, and n+, respectively. Calculations for a full 
range of parameter values in an expansion-contraction with 
rectangular cross-section are deferred for a later paper. The 
geometry is chosen with Lin W = Lc W = Lout W = 5  (see 
Fig. 1). 

Fig. 2 shows the dimensionless charge distribution 
( n

+ − n−
) in the mid-plane y = 0 compared with the charge 

distribution in the corresponding slit-like geometry. As 
expected, the negative charge in the EDL, induced by the 
positive surface charge, decreases away from the wall. 
However, the magnitude of the EDL charge is greater in the 
three dimensional (3D) rectangular geometry, and the EDL is 
thicker, than it is in the slit-like geometry. This occurs because 
wall surface area per unit length along the channel is less for 
the slit, in which case the surface charge, and hence the charge 
in the EDL, is of lower magnitude in the slit. The variation in 
the charge along the central z-axis shown in Fig. 3 is 
consistent with Fig. 2, with the charge being more negative 
for the 3D rectangular geometry. Note that Fig. 3 shows that 
the length of slit outlet section is not long enough at the 
Reynolds number (Re = 0.1) to achieve fully developed 
conditions at the exit, whereas [15] shows that it is long 
enough when Re = 0.01. In contrast, fully developed 
conditions at the exit are achieved here for Re = 0.1 in the 3D 
rectangular geometry. 

Fig. 4 compares the distribution of dimensionless total 
electrical potential in the mid-plane y = 0 with the potential 
distribution in a corresponding slit-like geometry. In both 
cases, the potential decreases in the direction of flow because 
of the advection of negative charge along the channel. The 
magnitude of the potential gradient ensures that the net current 
is zero. It is greater for the 3D rectangular geometry because 
more counter-ions are exposed to the flow as shown in Figs. 2 
and 3. The variation of the potential in the inlet, contraction 
and outlet sections is quantified more clearly in Fig. 5 which 
shows the potential on the central z-axis. The potential drop 
over each section is greater for the 3D rectangular geometry 
than it is for the 2D slit, consistent with Fig. 4. 
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Fig. 2 Dimensionless charge distribution in the mid-plane y = 0 (3D 
rectangular) compared with the corresponding charge distribution in 

a slit-like expansion-contraction (2D) 
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Fig. 3 Dimensionless charge on the central z-axis (3D rectangular) 

compared with that for a corresponding slit-like expansion-
contraction (2D) 
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Fig. 4 Distribution of dimensionless total electrical potential in the 
mid-plane y = 0 (3D rectangular) compared with the corresponding 

potential distribution in a slit-like expansion-contraction (2D) 
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Fig. 5 Dimensionless total potential on the central z-axis (3D 
rectangular) compared with that for a corresponding slit-like 

expansion-contraction (2D) 
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Fig. 6 Variation of dimensionless EDL potential and charge with x 
for y = 0 on the outlet cross-section of the rectangular expansion-

contraction channel (solid lines). The dashed lines are profiles for a 
uniform rectangular channel 

 
In Fig. 6 the lateral profiles of electrical potential and 

charge density on the x-axis in the cross-section at the channel 
exit ( zexit = Lin + Lc + Lout ) are compared with those for fully 
developed conditions in a uniform channel having the same 
cross-section. The potential U is modified as U(x, y, zexit ) −  

U(0, 0, zexit ) + ψ (0, 0)  and compared with ψ (x, y)  which is 
the EDL potential over the cross-section of a uniform channel 
obtained from a finite difference solution. The modification 
has the effect of removing the longitudinal variation in U and 
forcing the value of the modified potential to equal ψ (0, 0) on 
the central z-axis. Fig. 6 makes the comparison along the x-
axis (y = 0), showing that the results are almost coincident as 
is expected when fully developed conditions are achieved at 
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the exit. The corresponding profiles of charge density are also 
coincident. The same degree of correspondence is found along 
the y-axis of the outlet plane and in contour plots over the 
cross-section, but these are not shown. 

A. Apparent Viscosity 
The electrical force in the momentum equation (4) causes 

an additional flow resistance manifested by a pressure drop 
ΔP  that is larger than the pressure drop ΔP0  that occurs 
when there is no electrical force for the same flow rate. This 
effect can be quantified using an apparent viscosity μeff  that is 
the viscosity required with no electrical forcing to achieve the 
pressure drop ΔP  for the given flow rate. For steady flow at 
low Reynolds number,  

 

μeff μ = ΔP ΔP0  (9) 
 

where μ is the physical viscosity. The Reynolds number used 
here (Re = 0.1) has been shown to be small enough for (9) to 
apply for slit-like channels [15], and it is expected to apply in 
the present case as well. 

Table I shows the value of the apparent viscosity factor 
μeff μ for the rectangular expansion-contraction compared 
with corresponding values for a uniform channel and slit-like 
channels [15] at the same values of K, S, B, Sc, Re. A value of 
apparent viscosity for the rectangular expansion-contraction is 
not yet available for Re = 0.01, but will be determined in 
further development of this work. The factor μeff μ is 
independent of Reynolds number for uniform channels in 
fully developed flow.  

 
TABLE I 

APPARENT VISCOSITY/PHYSICAL VISCOSITY RATIO   (K = 4, S = 8) 

Channel Re = 0.1 Re = 0.01 

rectangular, expansion-contraction 
 

1.15 – 

rectangular, uniform 
 

1.18 1.18 

slit-like, expansion-contraction 
 

1.04 1.15 

slit-like, uniform 1.13 1.13 

 
The table shows that, for the current parameter values, the 

apparent viscosity factor for the rectangular expansion-
contraction when Re = 0.1 is close to the factor for a 
rectangular channel of uniform cross-section. It is also very 
close to the value for a uniform slit, but is significantly greater 
than that for a slit-like expansion-contraction at this Reynolds 
number (Re = 0.1). For slit-like channels, the apparent 
viscosities for the expansion-contraction and the uniform 
channel are close when Re = 0.01 for the electrokinetic 
current parameter values, but the apparent viscosity for the 
expansion-contraction is closer to the physical viscosity when 
Re = 0.1: the reasons for this are discussed by the authors in 
[15]. This result suggests that the apparent viscosity for an 

expansion-contraction increases as the Reynolds number 
decreases, in which case μeff μ  for the rectangular 
expansion-contraction may become significantly greater that 
the value 1.18 for a uniform rectangular channel. This will be 
explored in further work on this topic. 
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