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 
Abstract—Forecasting electricity load plays a crucial role regards 

decision making and planning for economical purposes. Besides, in 
the light of the recent privatization and deregulation of the power 
industry, the forecasting of future electricity load turned out to be a 
very challenging problem. Empirical data about electricity load 
highlights a clear seasonal behavior (higher load during the winter 
season), which is partly due to climatic effects. We also emphasize 
the presence of load periodicity at a weekly basis (electricity load is 
usually lower on weekends or holidays) and at daily basis (electricity 
load is clearly influenced by the hour). Finally, a long-term trend may 
depend on the general economic situation (for example, industrial 
production affects electricity load). All these features must be 
captured by the model. 

The purpose of this paper is then to build an hourly electricity load 
model. The deterministic component of the model requires non-linear 
regression and Fourier series while we will investigate the stochastic 
component through econometrical tools. 

The calibration of the parameters’ model will be performed by 
using data coming from the Italian market in a 6 year period (2007-
2012). Then, we will perform a Monte Carlo simulation in order to 
compare the simulated data respect to the real data (both in-sample 
and out-of-sample inspection). The reliability of the model will be 
deduced thanks to standard tests which highlight a good fitting of the 
simulated values. 
 

Keyword—ARMA-GARCH process, electricity load, fitting 
tests, Fourier series, Monte Carlo simulation, non-linear regression.  

I. INTRODUCTION 

HE energy transaction operations have changed 
dramatically since the last decade of the 20th century due 

to the liberalization of the main power markets. Presently, 
electricity business is negotiated in particular electricity 
markets and particular over-the-counter markets. A striking 
characteristic of these markets is that traded volumes represent 
properly energy which will be used and produced only in the 
future. As a consequence, a thorough forecasting of load 
demand and prices is a challenging problem. Indeed, 
electricity shares a specific property respect to other 
commodities, namely its demand and supply must be in 
balance at each time. 

Besides, load forecast plays also a crucial role in the price 
determination. The accuracy of electricity load forecasting has 
been intensively investigated over the past few years. Indeed, 
a wrong electricity load forecasting causes an increase of the 
cost of operations. For example, an overestimation causes a 
supply excess while underestimation causes insufficient 
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electricity supply. 
Regards the Italian market which is the object of this paper, 

we note that Italy is not self-sufficient concerning energy. At 
this purpose, the National Energy Agency report asserts that 
Italy depends on foreign suppliers for about 85 percent of its 
needs. For example, about the 15% of electricity consumption 
is imported from abroad. Besides, the Italian electricity sector 
has been recently restructured in order to follow the EC 
Directive 96/92 which aims to set up a single electricity 
market. Besides, from a political point of view, the prominent 
Legislative Decree n. 79 of March 16, 1999 (namely the 
Bersani Decree) conducted to liberalize the activities of 
electricity production, import, export, purchases and sales. 
Besides, it sets up an antitrust ceiling on the business of the 
dominant operator in order to advantage competition. 

Let us examine the state of art. Several models have been 
introduced in recent literature with the purpose of modeling 
narrowly electricity load. More precisely, time series modeling 
approaches based on artificial neural networks (ANNs) and 
statistical methods were used. Bilgili et al. [6] apply the 
artificial neural network (ANN) methodology to forecast the 
Turkey’s residential and industrial electricity consumption to 
analyze energy use and perform future projections for the 
period 2008-2015. According to the ANN model, Turkey’s 
residential and industrial sector electricity consumption will 
increase by 2015. They find that the performance values of the 
ANN method are better than the performance values of the 
linear regression (LR) and nonlinear regression (NLR) 
models. 

Deihimi et al. [11] use a wavelet echo state network 
(WESN) to forecast short term load and temperature. They 
demonstrate that WESN improve the accuracy of both load 
and temperature short term forecast compared to wavelet 
neural network (WNN) model. 

Nagi et al. [20] forecast the electricity demand using a 
hybrid artificial intelligence scheme based on self-organizing 
maps (SOMs) and support vector machines (SVMs). The 
results show that this approach gives good prediction accuracy 
for mid-term electricity load forecasting. 

Statistical models foresee moving average and exponential 
smoothing methods such as multi-linear regression models, 
stochastic process, data mining approaches, autoregressive and 
moving averages (ARMA) models, GARCH models, Box-
Jenkins methods and Kalman filtering-based methods. These 
techniques provide forecasting models of different accuracy. 
The accuracy of the prediction depends on the minimum error 
of the forecast. The appropriate prediction methods are 
considered from several factors such as prediction interval, 
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prediction period, characteristics of the time series, and size of 
the time series [17].  

Chujai et al.’s research [9] was to find a model to efficiently 
forecast the electricity consumption in a household by 
applying Box and Jenkins method. The results show that the 
ARIMA model was the best for finding the most suitable 
forecasting period in monthly and quarterly. On the other 
hand, ARMA was the best model for finding the most suitable 
forecasting period in daily and weekly.  

For example, Weron [26] lists in his book some general 
techniques for load electricity and spot prices modeling. 

Saab et al. [23] use three different univariate models to 
forecast the monthly electric energy consumption in Lebanon, 
during the period 1990-1999. Different measures used by the 
authors show that the AR(1) highpass filter model was the best 
forecasting model for the electrical energy Lebanese data set. 

Migon and Alves [18] use a multivariate dynamic 
regression to forecast electricity consumption in the Brazilian 
southeastern submarket for one-day ahead. They compare the 
results from univariate dynamic regression model (including 
the seasonal, daily and weekly, effects only), and multivariate 
model (with dummy weekday type variables only) concluding 
that the first one performs better than the second one, although 
the difference in probability is not large. 

Moral-Carcedo and Vicéns-Otero [19] analyze the effect of 
temperatures on the variability of the Spanish daily electricity 
demand, using different non-linear regression models. 

Andersson et al. [3] propose an Hourly Price Forward 
Curve (HPFC) based on the median estimation to evaluate the 
hourly, daily and yearly energy price profiles. The authors 
show that the results got with this approach are significantly 
better than these obtained with the mean value. 

Alter and Syed [2] analyze the determinants of electricity 
demand in Pakistan during the period 1970-2010, using a 
cointegration and vector error correction approach. They find 
the existence of long run relationship among electricity 
demand and its determinants in aggregate, residential, 
industrial, commercial and agricultural sectors.  

Generally, models and forecasts on energy load are 
considered at three different levels of time horizon: short-, 
medium-, and long-term using different frequency of the data. 
In the short- and medium-term, energy demand are considered 
in hourly, weekly or monthly interval range, whereas yearly 
load is normally performed on a yearly average basis. 

Blàzquez et al. [7] examine the residential electricity 
demand paying particular attention to the influence of price, 
income, and weather conditions using a panel data approach 
for 47 Spanish provinces. The result shows that the higher 
sensitivity of electricity demand to cold than to hot days, 
because Spanish households use gas heating systems more 
than electric heating systems, and only a small fraction of 
them use air conditioning. 

Bianco et al. [5] estimate the elasticities of Italian domestic 
and non-domestic electricity consumption on GDP, GDP per 
capita and price. Using annual series from 1970 to 2007, the 
authors find that variations in GDP and GDP per capita 
explain quite well domestic and non-domestic electricity 

consumption. Furthermore, they find that the electricity price 
is an irrelevant variable in forecasting models for the case of 
Italian electricity consumption. 

Filik et al. [13] propose a nested methodology able to make 
short, medium, and long-term hourly load forecast within a 
single framework. The authors show the accuracy of the 
model using hourly actual Turkish load demand values. 

Owing to the importance of load forecasting, various 
models have been proposed for the short-term load 
forecasting, applied to intervals ranging from one hour to one 
week. Furthermore, different approaches are applied to deal 
with the daily, weekly and annual seasonality problem. 

Hong [15] to deal with seasonality estimates an electric load 
forecasting model applying the support vector regression 
(SVR) approach with chaotic artificial bee colony algorithm. 
The results show that this model perform better than ARIMA 
and TF-ε-SVR-SA models. 

Afshar and Bigdeli [1] forecast the short term load 
electricity in Iran using a spectral analysis approach (SSA). 
They show that this method has better prediction ability than 
SSA-AR and SSA-LoLiMot methods. 

Wang et al. [25] use a decomposition approach to model 
different levels of electricity demand in South East 
Queensland (Australia), deriving from distinct seasonal 
climate. This method is relatively easy to implement and 
allows avoiding the complexity of non-linear estimations. 

Pielow et al. [22] modeled short and long term electricity 
demand in commercial and industrial sectors of the United 
States applying a percentage difference autoregressive 
approach. They describe daily, weekly and monthly calendar 
variables by Fourier series with two frequencies at each time 
scale, reducing the number of predictors.  

Pardo et al. [21] use an autoregressive least-squares 
regression to explore the effects of temperature and 
seasonality on daily Spanish electricity load. Soares and 
Medeiros [24] model the electricity hourly load of southeast of 
Brazil using rigorous statistical arguments. They model daily 
and weekly seasonality with different dummy variables, and 
annual cycle with Fourier decomposition where the number of 
trigonometric functions is determined by the Bayesian 
Information Criterion (BIC).  

Bruhns et al. [8] compare a non-parametric model with 
local regression (LOESS) with an alternative model 
combining two Fourier series, one with dependency on the 
hour and one with dependency on day-type in order to deal 
with the modification of the daily load shape throughout the 
year. The results show that this model is the best, even if it 
requires great care in the day-type typology. 

Gonzàles-Romera et al. [14] investigate the behavior of 
Spanish monthly electric demand using a hybrid approach. 
They forecast the periodic component and the trend in a 
different way. The former one is predicted with Fourier series 
whereas the latter with a neural network. 

Fan and Hyndman [12] propose an additive model with 
nonlinear and non-parametric terms to forecast the short-run 
electricity load. They assumed the time of year effect, 
temperature effects and lagged demand effects to be smooth 
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functions and estimate them as a cubic regression spline. 
Kavousian et al. [16] investigate the determinants of 

residential electricity consumption, by developing separate 
models for daily (maximum) peak and minimum (idle) 
consumption. They found that daily minimum consumption 
has a lower variation compared with daily maximum level, 
and is best explained by invariant time factors, such as degree 
days, Zip Code, house size, and number of refrigerators. While 
electric water heater and air conditioner better explain the 
maximum level consumption.  

Collet et al. [10] present a model for hourly electricity load 
forecasting based on stochastically time varying processes. 
They model the short-run French electricity load with trends, 
seasons, weather and heating effects focusing on two hours, 9 
AM and 12 PM in 9 years. The empirical evidence also 
highlight that the forecasting function depends strongly on the 
hour of the day. 

 In their survey, Andersson et al. [4] examine the German 
electricity market. Their model captures the deterministic 
component as well as stochastic variations of electricity load. 
The load data is then decomposed into daily and hourly level 
in order to get more accurate forecasting. Then, each part is 
modeled separately. A linear regression approach was used to 
model the deterministic component, and an autoregressive 
model was used for modeling the stochastic component. 

In the existing literature, there is few evidence about the 
short run electricity load in Italy. The aim of the present 
research is to fill this gap following Andersson et al.’s [4] 
model. The novelty of this study is to model the electricity 
load, not only as a function of calendar and meteorological 
data, but also as a function of economic variables such as 
industrial production, consumer price index, number of trips, 
electricity and gas prices. Furthermore, to deal with the 
cyclical patterns of data, we include in the daily load a Fourier 
series over the respective period, and estimate the 
deterministic component with a nonlinear multiple regression 
model. Besides, we investigate thoroughly the stochastic 
components by analyzing also heteroschedastic effects. 

The paper is organized as follows. In the current Section I, 
we have introduced the objectives of our paper and we have 
presented the state of art. Section II is devoted to the main 
characteristics and seasonal features of the electricity 
consumption database. The theoretical model is described in 
Section III. Section IV is devoted to the empirical application 
and to the comparison with the real data. Finally, Section V 
concludes and lists some future enhancements. 

II. DATA DESCRIPTION 

The database containing hourly data on loads and spot 
electricity prices can be freely retrieved from the Italian 
market operator’s website [27] as well as daily data on 
forward electricity price and gas price. We selected data from 
2007 to 2012. On the whole we have 52,608 hourly records 
(unit load is MWh) and 2,192 daily aggregate records. Note 
that daily values are obtained by considering the mean hourly 
values for this day. 

A first graphical inspection permits to deduce some features 

of the hourly data. At this purpose, we show in Fig. 1 the 
hourly values for the first week of June 2010 (starting with 
Tuesday, note that June, 2 is a holiday) while Fig. 2 exhibits 
the values for whole June 2010. 

 

 

Fig. 1 Hourly values (MWh) 1-7 June 2010 
 

 

Fig. 2 Hourly values (MWh) June 2010 
 
From the two plots we highlight some cyclical aspects. The 

intra-day values present a usual higher peak at about 11 a.m. 
and a usual lower peak at about 4 a.m. When considering a 
longer horizon, we note a cyclical behavior with respect to the 
type of days. We have essentially three types of days: working 
days, Saturdays and Sundays. Nevertheless, from a more 
careful analysis of the database, we point out that some 
specials days (which we call semi-holidays) must be 
considered. For example, Fridays following a holiday or 
Mondays before a holiday. 

Besides, we also estimate the mean load values for each 
hour (for the whole database). We show the results in the 
following Fig. 3. 

The higher and lower peaks with respect to the hour are 
now more evident. During the central hours of the day the 
electricity load is higher than during the night, reflecting the 
human activities. The following tri-dimensional Fig. 4 
represents load values with respect to day and hour (in this 
case we have restricted to February, 2010). The hourly peaks 
are again evident. 
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Fig. 3 Hourly mean load (hour vs. MWh) 
 

 

Fig. 4 Load (MWh) vs. Hour/Day 
 
The daily cyclical feature may also be highlighted when 

considering daily loads. At this purpose, Fig. 5 represents the 
daily loads for June 2010 and Fig. 6 presents the daily loads 
for 2010. 

 

 

Fig. 5 Daily values (MWh) June 2010 
 
We then estimate the mean load values for each day of the 

week and for the whole database (we did not take into account 
holidays or other special days). We show the results in the 
following Fig. 7 (the first value corresponds to Monday). 

We note that electricity load on Saturdays and Sundays 
represent the lowest values while the five working days are 
rather equivalent (except for Monday which experiences a 
slightly lower value). 

 

 

Fig. 6 Daily values (MWh) Year 2010 
 

 

Fig. 7 Daily mean load (MWh) 
 
If we wish to determine longer cyclical trends, we have to 

consider loads data on a monthly basis. We exhibit these 
values in Fig. 8 for the whole database. 

 

Fig. 8 Monthly values (MWh) Years 2007-2012 
 
This plot highlights a cyclical behavior with respect to the 

month. For example, a lower peak occurs each year in August 
while the higher peak is rather variable. We note that each 
point in the x-axis represents a month. 

Next, we estimate the mean load values for each month (for 
the whole database). We show the results in the following Fig. 
9. 

We deduce from this plot a lower peak in August (when 
industrial activities are reduced) and two higher peaks in 
February and July which represent respectively the colder 
winter month and the warmer summer month. 

 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:9, 2014

3153

 

 

 

Fig. 9 Monthly mean load (MWh) 
 
We finally give in Fig. 10 the yearly loads for the period 

2007-2012. 
 

 

Fig. 10 Yearly values (MWh) 2007-2012 
 
We deduce from Fig. 10 that the yearly load has been 

increasing in the period 2007-2008 and then the trend inverted 
(except for year 2010). This behavior has to be explained in 
the light of economics’ indicators such as the Industrial 
Indicator Index (see at this purpose Section III). 
 Furthermore, Table I shows the Augmented Dickey Fuller 
(ADF) unit root tests of the variables (dependent and 
economic variables) used to estimate the daily component. 

 
TABLE I 

UNIT ROOT TESTS (ADF) 

Variable Test value (p value) 

daily load -7.8466 (0.000) 
trips 

electricity price 
oil price 
gas price 

-3.5638 (0.033) 
-3.0040 (0.131) 
-1.5089 (0.827) 
-2.5411 (0.308) 

 
Table I indicates the value of the ADF test. From the 

results, we can see that the ADF test for daily load and trips 
rejects the null hypothesis that the variables are non-stationary 
at a 95% confidence level, so these values are taken to be 
stationary. The opposite occurs for electricity price, oil price 
and gas price. So we can conclude that these variables are not 
stationary at levels. Anyway, the variable oil price showed a 
non-stationary nature caused by a stochastic trend, whereas 
despite the variables electricity price and gas price showed the 
same characteristics of the previous one, their trend is not of 
stochastic nature. For this reason oil price was omitted from 
this study. 

Finally, a spectral (or harmonic) analysis permits to 
highlight cyclical patterns of data. The purpose of this analysis 
is to decompose a time series with cyclical components into a 
few underlying sinusoidal functions of particular wavelengths 
(see [26]). 
We remember that the periodogram associated with a vector of 
observations  1, , nx x  is given by: 
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where  2 /k k n    denote the Fourier frequencies 

(rad/unit time). We illustrate in the next Fig. 11 the 
periodogram of daily and hourly data. 
 

 

Fig. 11 Periodogram Daily/Hourly data 
 
The daily plot presents a peak at frequency 0.1428k   

(associated to a 1/ 7k   day period). The smaller peaks                

( 7 / 2k   and 7 / 3k  ) are the harmonics multiples. The 

hourly data presents peaks associated to 24 and 168 hours and 
their harmonics multiples. 

III. THE THEORETICAL MODEL 

We denote ( )L t  the electricity load (with t  expressed in 

hours, accordingly with the database feature). We set up the 
following decomposition: 
 

( ) ( ) ( )L t f t x t    (1) 
 
where ( )f t  is the deterministic component and ( )x t  is the 

stochastic one. We further decompose the load level between 

the hourly component hL  and the daily component dL : 
 

( ) ( ) ( )d hL t L t L t     (2) 
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Remark: In order to examine the daily characteristics, the 
database has to be adapted by computing the average hourly 
loads for each day. 

A. The Daily Component 

We can decompose it as the sum of the deterministic part 
and the stochastic part as follows: 
 

( ) ( ) ( )d d dL t f t x t    (3) 
 

We can model the deterministic component through 
multiple non-linear regressions. The regressors can be divided 
into the following categories: 

- calendar variables (days of week, months, holidays, 
semi-holidays). These are dummy variables; 

- economic variables (industrial production, consumer 
price index, trips, gas price, electricity price); 

- non economic variables (temperature index). 
- Fourier terms. 

Besides, we also consider some quadratic variables (square 
of IP) as well as some interactions between some of the 
variables (trips/December and IP/August). Finally, some 
lagged variables (temperature index and electricity price) turn 
out to be significant. We get then: 
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We choose the following regressors: IP  (industrial 

production), CPI (consumer price index), PG (gas price), PE 
(electricity price), T  (temperature index), Tr (trips), M  
(month), H  (holiday), SH  (semi-holiday), D  (week day). 

The data concerning economic variables (on a monthly or 
quarterly basis) are freely available at the following link [28]. 
We show in Fig. 12 the yearly industrial production for the 
period 2007-2012. Note the similarities with Fig. 10.  

 

 

Fig. 12 Yearly Industrial Production Index period 2007-2012 
 
The close binding between load values and IP index can be 

emphasized though a correlation analysis. At this purpose, the 

correlation with respect to monthly values is 69% and the 
correlation with respect to yearly values is 89%. We deduce 
that the industrial production index is a good regressor, which 
can explain the yearly trend of load values. 

The database regarding daily temperatures can be obtained 
from the Mathematica 9.0 software (weather data). In order to 
produce a reliable temperature index, we performed the mean 
value of the ten biggest Italian cities’ temperatures. We 
represent in Fig. 13 the load values respect to temperature. 
 

 

Fig. 13 Load values (MWh) vs. temperature (°C) 
 

Nevertheless, the temperatures’ values unveil a correlation 
of about 9%  with respect to daily electricity load. In order to 
overtake this problem, we have constructed a new temperature 
index based on CDD  and HDD  values as follows: 
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This new indicator has a correlation of about 20%  with 

respect to daily electricity load. Indeed, heating and cooling 
systems start when temperature reaches these thresholds. 

The residuals of this regression represent the stochastic part. 
We propose for this component an Autoregressive-GARCH 
process ( ) (1,1)AR p GARCH : 
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 (5) 

 
in order to take into account autocorrelation and 
heteroschedasticity effects in the residuals. 

B. The Hourly Component 

We can deduce the hourly component from (2): 
 

( ) ( ) ( )h dL t L t L t                    (6) 

 
We have again the deterministic and the stochastic part: 
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( ) ( ) ( )h h hL t f t x t                  (7) 
 

The deterministic component can be modellized through a 
multiple linear regression as follows: 
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where the regressor H  denotes the hour. The first sum with 
index i  is the type of day (working days, Saturday and semi-
holidays or Sunday and holidays), the second sum with index 
j  denotes the month and the last one with index k  denotes 

the hour. 
The residuals of this regression are the stochastic 

component. We propose here again an Autoregressive-
GARCH(1,1) process ( ) GARCH(1,1)AR p   as before for the 

same reasons: 
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        (9) 

C. The Overall Model 

We get the final model by aggregating all the components 
described before: 
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IV. EMPIRICAL APPLICATION 

In this section, we will unveil the estimation of the 

parameters of the model and then we present the evaluation of 
the performance of the model in the calibrating window 
(2007-2011) and out of sample for the year 2012. 

A. Model Parameters 

In this subsection we examine separately the four steps of 
the model (namely the deterministic and stochastic part of the 
daily and hourly component respectively). 

1. Deterministic Part of the Daily Component 

This part is given by a non-linear regression with 39 
regressors as already discussed in Section III.  

The coefficients of the main variables have expected signs. 
It means that calendar, economic and not economic variables 
matter to explain electricity load behavior. The temperature 
index coefficient is positive (its value is 85.464) and 
statistically significant (p value 0.001). It means that when 
temperature index moves away from the given threshold value 
(16 °C), the electricity load also increases, related to using 
cooling and heating systems. The same positive relationship is 
found for industrial production, which absorbs more energy 
(the coefficient size is 260.82 with p value 0.001). 

The estimation results also confirm the trend depicted in 
Fig. 1: during working days electricity load is higher than 
Saturdays and Sundays. Furthermore, holidays’ days are like 
weekends’ days, negatively related to the electricity load (the 
coefficient size is -5088 with p value 0.000). We omit the 
description of the other parameters for sake of brevity. 

2. Stochastic Part of the Daily Component 

This component is given by the residuals of the previous 
regression. In order to examine the characteristics of the 
residuals, we plot the autocorrelation function and the partial 
autocorrelation function (Fig. 14). 

 

 

Fig. 14 ACF and PACF for daily residuals 
 
These plots show the presence of autocorrelation. Besides, 

the Engle’s test detects the presence of residual 
heteroschedasticity. We propose then to model the residuals 
through an AR(8)-GARCH(1,1) process. The new residuals 
are given in the following Fig. 15. 
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Fig. 15 ACF and PACF for daily AR(8)-GARCH(1,1) residuals 
 
We deduce from these plots that residuals’ autocorrelation 

has been removed. 
Then, we also exhibit in the following Table II the 

parameters of the process with the associated test statistics. 
 

TABLE II 
ARMA-GARCH PARAMETERS 

Parameter Value t Statistic 

Constant 
AR(1) 
AR(2) 
AR(3) 
AR(4) 
AR(5) 
AR(6) 
AR(7) 
AR(8) 

10 
0.527506 
0.035728 
0.061980 
0.002647 
-0.030396 
0.079031 
0.201525 
-0.084461 

0.8000 
19.5076 
1.0156 
1.8281 
0.0836 
-1.0685 
2.7634 
8.6721 
-4.5428 

Constant 63068.4 8.8105 

GARCH(1) 0.654649 31.3656 

ARCH(1) 0.286045 12.6495 

3. Deterministic Part of the Hourly Component 

This component is given by a multi-linear regression over 
the hourly component with 24 regressors as already discussed 
in Section III. The regression is performed after fixing the type 
of day and month (for this reason, we do not apply here the 
Fourier analysis). For sake of brevity, we do not exhibit the 
results. 

4. Stochastic Part of the Daily Component 

This component is given by the residuals of the previous 
regressions for each type of day and each month. In order to 
examine the characteristics of the residuals, we plot the 
autocorrelation function and the partial autocorrelation 
function (Fig. 16). As an example we consider type of day 1 
and month January. 

 

Fig. 16 ACF and PACF for hourly residuals 
 
The Engle’s test detects again the presence of residual 

heteroschedasticity. 
We propose to model these residuals through an AR(10)-

GARCH(1,1) process. The autocorrelation function and the 
partial autocorrelation function of the residuals are given in 
the following Fig. 17. 

 

 

Fig. 17 ACF and PACF for daily AR(10)-GARCH(1,1) residuals 
 
We deduce from these plots that residual autocorrelation 

has been removed. 
We omit again the results. 
Let us finally compare in the following Fig. 18 the 

simulated load values (dotted line) with respect to the 
empirical ones (solid line) at hourly level for the period 1-7 
February, 2009. 

The latter plot highlights a good accordance between 
simulated hourly loads and real data for the given period.  

Regards the out-of-sample simulation, we compare again in 
the following Fig. 19 the simulated load values (dotted line) 
with respect to the empirical ones (solid line) at hourly level 
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for the period 1-7 February, 2012. 

 

Fig. 18 Real load data vs. empirical ones 
 

 

Fig. 19 Real load data vs. empirical ones 
 
We now unveil in the next section the numerical fitting 

tests. 
B. Model Performance 
In order to perform this task we use the following indicators 

(where we denote ˆiy  the simulated values, iy  the real values, 

ˆi i iy y    and n  is the length of the sample): 

- MAE (mean absolute error) 
 

1 1

1 1
ˆMAE

n n

i i i
i i

y y
n n


 

     

 
- MAPE (mean absolute percentage error) 
 

1 1

ˆ100 100
MAPE

n n
i i i

i ii i

y y

n y n y


 


    

 
The MAPE does not take into account over-estimated or 

under-estimated values. At this purpose we elaborate the 
following two indicators: 
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which satisfy the condition MAPE MAPE MAPE   . 
These latter can be normalized as follows: 
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where X1  denotes the counting function and 

ˆ ˆi i i iy y y y n  1 1 . 

The relation ˆ ˆ
MAPE MAPE MAPEi i i iy y y y

N Nn n
     

1 1
 also holds. 

- RMSE (root mean square error): 
 

 2 2

1 1

1 1
ˆRMSE

n n
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y y
n n
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- R square: 
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 
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As the R square increases with the number of variables, the 

adjusted R square 2R  has been introduced as follows: 
 

 2 2 1
1 1

1

n
R R

n p


   

 
 

 
where p  denotes the number of variables of the model. The 

in-sample results (1,000 simulations) for the period 2007-2011 
are summarized in the Table III below: 
 

TABLE III 
FITTING RESULTS 2007-2011 

Indicator Value 

MAE 988.77 MWh 

MAPE 
MAPE+ 
MAPE-- 

2.89% 
1.46% 
1.43% 

RMSE 
R SQUARE 

1,315.30 MWh 
96.80% 

 
Finally, the out-of-sample results for the year 2012 are 
summarized in the Table IV below. 
 

TABLE IV 
FITTING RESULTS 2012 

Indicator Value 
MAE 1,459.20 MWh 

MAPE 4.41% 

RMSE 
R SQUARE 

1.824.90 MWh 
94.51% 

V. CONCLUSIONS 

The purpose of this paper is to set up a long term hourly 
load model for Italy. The first step of the paper consists in 
decomposing the data into a daily part and an hourly part 
respectively. At this stage, we modeled the deterministic and 
the stochastic component separately for the daily part and the 
hourly part.  

Regards the deterministic component, we used non-linear 
regression. At this purpose, we highlighted that the 
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challenging task was to determine the more suitable regressors 
for both the daily and the hourly part in order to capture both 
seasonal and periodic effects. 

For what concerns the stochastic component, coming from 
the residuals of the previous regressions, we used econometric 
tools in order to establish the more adequate processes. 

The parameters of the model were calibrated thanks to 
publicly available hourly load values for the Italian market in 
the period 2007-2011. 

After determining the characteristics and the parameters of 
the model, we performed a Monte Carlo simulation and we 
compared the simulated values with real data. The classical 
fitting test suggested a good accordance between the simulated 
values and the empirical ones. 

The model may be improved by identifying more eligible 
regressors for the deterministic component and by using more 
refined processes for the stochastic part. Further research will 
also be dedicated the modeling of the price of electricity in 
order to face the problem of electricity derivatives pricing. 
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