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Abstract—Stresses for the elastic-plastic transition and fully 

plastic state have been derived for a thin rotating disc with inclusion 
and results have been discussed numerically and depicted graphically. 
It has been observed that the rotating disc with inclusion and made of 
compressible material requires lesser angular speed to yield at the 
internal surface whereas it requires higher percentage increase in 
angular speed to become fully plastic as compare to disc made of 
incompressible material. 
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                           I.    INTRODUCTION 

OTATING discs form an essential part of the design of 
rotating machinery, namely rotors, turbines, compressors, 

flywheel and computer’s disc drive etc. The analysis of thin 
rotating discs made of isotropic material has been discussed 
extensively by Timoshenko and Goodier [1] in the elastic 
range and by Chakrabarty [2] and Heyman [3] for the plastic 
range. Their solution for the problem of fully plastic state does 
not involve the plane stress condition, that is to say, we can 
obtain the same stresses and angular velocity required by the 
disc to become fully plastic without using the plane stress 
condition (i.e. zzT =0). Gupta and Shukla [4] obtained a 
different solution for the fully plastic state by using Seth’s 
transition theory and plane stress condition. This theory [5] 
does not require any assumptions like an yield condition, 
incompressibility condition and thus poses and solves a more 
general problem from which cases pertaining to the above 
assumptions can be worked out. It utilizes the concept of 
generalized strain measure and asymptotic solution at critical 
points or turning points of the differential equations defining 
the deformed field and has been successfully applied to a large 
number of   problems [4, 7-15]. Seth [6] has defined the 
generalized principal strain measure as, 
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where n is the measure and 
A

iie is the Almansi finite strain 
components. 
    In this paper, the plastic stresses have been derived through 
the asymptotic solution of principal stress respectively and we 
analyses the elastic-plastic transition in a thin rotating disc 
with shaft by using Seth’s transition theory. Results have been 
discussed numerically and depicted graphically. 
 
                              II.  GOVERNING EQUATIONS 
    We consider a thin disc of constant density with central bore 
of radius a and external radius b. The annular disc is mounted 
on a shaft. The disc is rotating with angular speed ω  about an 
axis perpendicular to its plane and passed through the center. 
The thickness of disc is assumed to be constant and is taken to 
be sufficiently small so that it is effectively in a state of plane 
stress, that is, the axial stress zzT  is zero.  The displacement 
components in cylindrical polar co- ordinate are given by [6] 
 

( )1u r β= − ; 0v = ; w dz= ,                                                       (2)                   
 
where β  is function of 2 2r x y= +  only and d is a constant. 
The finite strain components are given by  Seth [6] as,  
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where d drβ β′ = .                                             
Substituting equation (3) in equation (1), the generalized 
components of strain are 
 

( )1 1 n
rre r

n
β β⎡ ⎤′= − +⎢ ⎥⎣ ⎦

, 1 1 ne
nθθ β⎡ ⎤= −⎣ ⎦ , 1 1 (1 )n

zze d
n
⎡ ⎤= − −⎣ ⎦ ,                                  

0r z zre e eθ θ= = = ,                                                                      (4)                 
 
where d drβ β′ = . 
The stress –strain relations for isotropic material are given by 
[16], 
 

1 2ij ij ijT I eλδ μ= +  ,     ( i , j = 1, 2, 3 )                                            (5) 
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where  ijT  and ije  are the stress and strain components, λ  and 
μ  are lame’s constants and 1 kkI e=  is the first strain 
invariant, ijδ  is the Kronecker’s delta. 
Equation (5) for this problem becomes 
 

2 2
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λμ
μ

λ μ
= + +⎡ ⎤⎣ ⎦+

, 2 2
2 rrT e e eθθ θθ θθ
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λ μ

= + +⎡ ⎤⎣ ⎦+
,                                                                                    

0r z zr zzT T T Tθ θ= = = = ,                                                               (6) 
 
where    d drβ β′ = . 
Substituting equation (3) in equation (5), the strain 
components in terms of stresses are obtained as [16] 
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where E is the Young’s modulus and C is compressibility 
factor of the material in term of Lame’s constant, there are 
given by 2 / 2C μ λ μ= +  and ( ) ( )3 2 /E μ λ μ λ μ= + + .   
Substituting equation (4) in equation (6), we get the stresses as 
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Equations of equilibrium are all satisfied except 
 

( ) 2 2 0rr
d rT T r
dr θθ ρω− + = ,                                                         (9) 

 
where ρ  is the density of the material of the disc.                                                                                            
Using equation (8) in equation (9), we get a non- linear 
differential equation in β  as 
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where r Pβ β′ = (P is function of β  and β  is function of  
r).Transition or turning points of β  in equation (10) are 1P →  
and  P →±∞ .The boundary conditions are: 
 
u = 0   at   r = a  and  0rrT =  at   r = b.                                         (11) 
 
 
                 

         III.  SOLUTION THROUGH THE PRINCIPAL STRESS  
    For finding the plastic stress, the   transition function is 
taken  through  the principal stress ( see Seth [7, 8], Hulsurkar 
[9] and  Gupta et al. [10 - 15]) at  the  transition  point 
P →± ∞ . We take the transition function R as 
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                    (12)                   

 
Taking the logarithmic differentiation of equation (12) with 
respect to r  and using equation (10), we get 
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Taking the asymptotic value of equation (13) at P →±∞  and 
integrating, we get  
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where 1A  is a constant of integration, which can be determine 
by boundary condition. From equation (12) and (14), we have 
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Substituting equation (15) in equation (9) and integrating, we 
get 
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where B1 is a constant of integration, which can be determine 
by boundary condition. 
Substituting equations (15) and (16) in second equation of (7), 
we get 
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Substituting equation (17) in equation (2), we get 
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where E = ( ) ( )2 3 2 / 2C Cμ − −  is the Young’s modulus in term of 
compressibility factor can be expressed as. Using boundary 
condition (11) in equations (16) and (18), we get 
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Substituting the values of constant integration A1 and B1 from 
equation (19) in equations (15), (16), and (18) respectively, we 
get the transitional stresses and displacement as 
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From equation (20) and (21), we get 
 

( )
( )

3 3 1 22 3
2

3 2

C C

rr

b a r aT T r
C r b rθθ

ρω − −⎡ ⎤−⎛ ⎞ ⎛ ⎞⎢ ⎥− = − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎢ ⎥− ⎝ ⎠⎝ ⎠ ⎣ ⎦  

                          (23)   

  
Initial yielding— 

    From equation (23), it is seen that rrT Tθθ−  is maximum at 
the internal surface (that is at r = a), therefore yielding will 
take place at the internal surface of the disc and equation (23) 
gives 
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and the angular speed  necessary for initial yielding is given by 
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and  / /i i b Yω ρ= Ω . 
 

Fully-plastic state— 
    The disc becomes fully plastic (C → 0) at the external surface 
and equations (23) becomes,   
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Angular speed required for the disc to become fully plastic is 
given by  
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where   / /f f b Yω ρ∗= Ω . 
We introduce the following non-dimensional components  
 

/R r b= , 0 /R a b= , /r rrT Yσ = , /T Yθ θθσ = , /Y E H= , /Y E H∗ ∗=  and  
/u u b= . 

 
Elastic-plastic transitional stresses and angular speed from 
equations (20), (21) and (24) in non-dimensional form become 
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Using equations (17), (20) and (21) in first equation of 
equation (7), we get 
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The displacement component u  from equation (22) is given 
by 
 

( )
2

3 3
0

11 2
2 3

iCu R R H R R
C R

⎡ ⎤Ω−⎛ ⎞
= − − −⎢ ⎥⎜ ⎟−⎝ ⎠ ⎣ ⎦

                                    (29)  

                                                         
Stresses, displacement and angular speed for fully-plastic state 
( )0C → are obtained from equations (26), (27), (29) and (25) 
as, 
 

( )
2

3 1 2
01

6
f R R

Rθσ
Ω ⎡ ⎤= −⎣ ⎦                                                               (30) 

( )
2

3 1 2 3 3
0 01

3
f

r R R R R
R

σ
Ω ⎡ ⎤= − − +⎣ ⎦

     
                                            (31) 

( )
2

3 3
01

3
fu R R H R R

R
∗
⎡ ⎤Ω

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (32) 

 

where  
( ) ( )

( )( ) ( ) ( )

3 1 2 3 3 3
0 0

2
2 23 3 3 1 2 3 3 3 3

0 0 0 0

3 1 4 6

13 1 4 4
3 2

f

R R R R R
H

R R R R R R R R
R

∗
⎡ ⎤− + − −⎣ ⎦=

Ω ⎡ ⎤
− − − − − −⎢ ⎥

⎣ ⎦

. 

and 
( )

2 2
2

3
0

6
1

f
f

b
Y R

ρω
∗Ω = =

−
                                                     (33) 

 
TABLE I 

ANGULAR SPEED REQUIRED FOR INITIAL YIELDING AND FULLY PLASTIC 
STATE 
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IV.    NUMERICAL ILLUSTRATION AND DISCUSSION 
 

In Fig. 1, curves have been drawn between angular speed  
2
iΩ   and  various  radii ratios 0 /R a b=  for C = 0 ( )0.5ν = , 

0.25 ( )0.4285ν = , 0.5 ( )0.333ν = , 0.75 ( )0.2ν = . It has been observed 
that the rotating disc made of incompressible material with 
inclusion required higher angular speed to yield at the internal 
surface as compared to disc made of compressible material 
and a much higher angular speed is required with the increase 
in radii ratio. It can be seen from Table I, that for Isotropic 
compressible material, higher percentage increase in angular 
speed is required to become fully plastic as compared to 
rotating disc made of incompressible material. In Fig. 3, curve 
have been drawn between stresses, displacement and radii 
ratio R = r/b for fully plastic state. It has been observed that the 
radial stress is maximum at the internal surface. Similar graph 
was also obtained by Güven [17], for rotating disc with rigid 
inclusion in to the account for ν = 0.333 for linear strain 
hardening material behavior into account.  
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Fig. 1 Angular speed required for initial yielding at the internal 

surface of the rotating disc 
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Fig. 2 Stresses and Displacement at the elastic-plastic   Transition 
state 
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Fig. 3 Stresses and displacement for fully plastic state 

 
REFERENCES 

[1] S.P. Timoshenko and J.N. Goodier, “Theory of Elasticity”, 3rd Edition, 
New York : McGraw-Hill Book Coy., London. 1951. 

[2] J. Chakrabarty, “Theory of Plasticity”, New York: McGraw-Hill Book 
Coy., 1987. 

[3] J. Heyman, “Plastic Design of Rotating Discs”, Proc. Inst. Mech. Engrs., 
vol. 172,  pp. 531-546, 1958. 

[4] Gupta, S.K & Shukla, R.K. “Elastic-plastic Transition in a Thin Rotating 
Disc”, Ganita, vol. 45, pp. 78-85, 1994. 

[5] B.R. Seth, “Transition theory of Elastic-plastic Deformation, Creep and 
Relaxation”, Nature, vol. 195, pp. 896-897, 1962. 

[6] B.R. Seth, “Measure Concept in Mechanics”, Int. J. Non-linear Mech., 
vol. 1,  pp. 35-40, 1966. 

[7] B.R. Seth, “Creep Transition”, J. Math. Phys. Sci.,  vol. 8, pp. 1-2, 1972. 
[8] B.R. Seth, “Elastic-plastic transition in shells and tubes under pressure”, 

ZAMM, vol. 43, pp. 345, 1963. 
[9] S. Hulsurkar, “Transition theory of creep shells under uniform pressure”, 

ZAMM, vol. 46, pp. 431- 437, 1966.   
[10] S.K. Gupta and R.L. Dharmani, “Creep Transition in   thick - walled 

cylinder   under internal pressure”, ZAMM, vol. 59, pp. 517-521, 1979. 
[11] S. K. Gupta and  Pankaj “Creep Transition  in   an isotropic disc having 

variable thickness subjected to internal pressure”, Proc. Nat. Acad. Sci. 
India, Sect. A, vol. 78, Part I, pp. 57-66, 2008. 

[12] S.K. Gupta, Dharmani, R. L.  and V. D. Rana, “Creep Transition in 
torsion”, Int. Jr. Non – linear Mechanics, vol. 13, pp. 303-309, 1979. 

[13] S.K. Gupta and  Pankaj, “Thermo  elastic - plastic  transition  in a thin 
rotating disc with inclusion”, Thermal Science, vol. 11, pp 103-118, 
2007.  

[14] S.K. Gupta, “Thermo Elastic-plastic Transition of Thick-walled Rotating 
Cylinder”, Proc. 1st Int. Symp. on Thermal Stresses and Related Topics, 
Japan ,June 5-7, 1995. 

[15] S.K. Gupta and Pankaj, “Creep transition   in   a  thin   rotating disc  with 
rigid  inclusion”, Defence Science Journal, vol. 5, pp. 185-195, 2007. 

[16] I.S. Sokolinikoff, “Mathematical theory of Elasticity”, Second  edition , 
New York: McGraw - Hill Book Co., pp. 70-71. 1950. 

[17] U. Güven, “Elastic - Plastic Rotating Disk with rigid Inclusion”, Mech.  
Struct. & Mach., vol. 27, pp. 117-128, 1999. 

 
 

 
Pankaj obtained his M.Sc., M.Phil. and Ph.D. from 
Himachal Pradesh University, Shimla, India in 2001, 
2002 and 2006 respectively. He has guided and co-
guided four M.Phil. Students. Presently he is doing 
independent research work.  His area of interest 
includes Applied Mathematics, Solid Mechanics, 
Elastic-plastic and creep theory. 
 
 
 
 

 
 
 
 

Sonia R Bansal is presently persuing M.Phil. 
from Chaudhary Devi Lal University, Sirsa, Distt. 
Haryana..She has obtained her M.Sc. Mathematics 
from Himachal Pradesh University, Shimla, India 
in 2006. Her area of interest includes Applied 
Mathematics, Solid Mechanics, Elastic-plastic and 
creep theory.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 θσ  
  rσ  

fu  
0.5 

1 

1.5 

2 

2.5 

3 

0.5 0.6 0.7 0.8 0.9 1
  (R = r/b)  

   
   

   
   

   
   

St
re

ss
es

 
   

   
   

an
d 

 D
is

pl
ac

em
en

t 


