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Efficient Tuning Parameter Selection by
Cross-Validated Score in High Dimensional Models
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Abstract—As DNA microarray data contain relatively small
sample size compared to the number of genes, high dimensional
models are often employed. In high dimensional models, the selection
of tuning parameter (or, penalty parameter) is often one of the crucial
parts of the modeling. Cross-validation is one of the most common
methods for the tuning parameter selection, which selects a parameter
value with the smallest cross-validated score. However, selecting a
single value as an ‘optimal’ value for the parameter can be very
unstable due to the sampling variation since the sample sizes of
microarray data are often small.

Our approach is to choose multiple candidates of tuning parameter
first, then average the candidates with different weights depending
on their performance. The additional step of estimating the weights
and averaging the candidates rarely increase the computational cost,
while it can considerably improve the traditional cross-validation. We
show that the selected value from the suggested methods often lead to
stable parameter selection as well as improved detection of significant
genetic variables compared to the tradition cross-validation via real
data and simulated data sets.

Keywords—Cross Validation, Parameter Averaging, Parameter
Selection, Regularization Parameter Search.

I. INTRODUCTION

DNA microarray data provide measurements of the
expression levels of thousands of genes with relatively

small samples. Classification and regression models play an
important role in constructing statistical models to analyze
the microarray data. For this reason, numerous of statistical
models have been developed to model microarray data
[1]–[4]. As many regression and classification models for
high dimensional data involve tuning parameters, selection
of the parameter is a crucial part of modeling procedure.
For example, as the array’s disease status is often binary,
and sample size is smaller than the number of genes, a
class of penalized logistic regressions is in good shape for
modeling the microarray data. To select potentially important
genes, works in [5]–[7] selected the penalty parameter
by cross-validation (CV). In fact, the statistical software
R packages frequently adopt cross-validation for selecting
penalty parameters. [8] developed an R package ncvreg
which can fit logistic regressions with LASSO [9] penalty.
Cross-validation is embedded for selecting the penalty value
in the package. Many other R packages for fitting penalized
regression also employ cross-validation. A few examples
are glmnet for implementing the works of [10] and [11],
glmpath for [12], and genlasso for [13]. Although huge
volume of penalized regression models have been developed
recently, leave-one-out cross-validation (LOOCV) [14] and
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K-fold cross-validation (KCV) [15] are still widely used. This
is due to the attractive property of the cross-validation, which
does not assume any underlying distribution of the data.

Classification technique is another common statistical
method in analyzing microarray data. In classification, CV
has been broadly conducted for the training and evaluation of
classifiers. Again, most of the classifiers require to determine
‘optimal’ parameters. For example, [16], [17] applied support
vector machine (SVM ) and [18] utilized random forest to
microarray data sets and used CV method for choosing
‘optimal’ parameters. [19], [20] involved CV in clustering
methods for analyzing microarray data.

Among various CV methods [21], K-fold CV (KCV) is
very popular, and is more efficient than LOOCV. When K is
the same as sample size, it is equivalent to LOOCV. However,
[22], [23] pointed out that CV is highly variable estimate of
the error although it is unbiased. This fact motivates us to
develop new CV methods which could reduce the variability
significantly, while may allow slight bias. For this purpose, we
recycle the cross validated errors (or, the prediction errors) that
arise during the process of cross-validation. Cross validated
errors have been used only for comparing candidates of
models or parameter values. As more plausible models (or,
parameter values) are likely to produce smaller prediction
errors, the errors are used for the final judgement only. That
is, current CV methods select a single parameter value with
the smallest prediction error. However, due to variations in
splitting the data set into K parts, the selected parameter
value with the minimum prediction error (based on test
data) is not necessarily the best value for the whole data.
Furthermore, there exists random variation in the data set
itself. To reflect these variations, the proposed methods first
select the candidates of parameter values which give relatively
small prediction errors. Secondly, we average the candidate
values with different weights in which the cross validated
errors are used to estimate the weights. That is, we impose
more weight on the parameter value with less prediction error
among the candidate values. Then, due to the averaging, we
can reduce the variance of the estimate of the tuning parameter.
Improved selection of the tuning parameter may result in better
estimation and variable selection in turn.

Section II describes the details of the form and
implementation of the suggested method. We apply our
methods to real data and simulated data in Section III and
Section IV, respectively.
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II. EFFICIENT CROSS-VALIDATION

A. Efficient K-fold Cross-Validation

Suppose xi is vector of p-dimensional observations and yi ∈
{0, 1} is a binary response for i = 1, . . . , n. In general, the
standard logistic regression shows conditional class probability
of y by

log
Pr(y = 1|x)
Pr(y = 0|x) = β0 + x′

iβ. (1)

Then, the penalized logistic regression usually fits this model
through penalized maximum likelihood. Let p(xi) = Pr(yi =
1|xi). Then, the penalized log likelihood is

1

n

n∑

i=1

{yi log p(yi) + (1− yi) log(1− p(yi))} − λP (β), (2)

where P (β) is the penalty for β, and λ is a tuning parameter.
Maximum likelihood type of approach can be used for the
estimates of β. Then, the estimate of λ chosen by K-fold CV
(KCV) procedure is represented as

λ̂KCV = argminλ∈[0,λmax]

n∑

i=1

I(yi �= ŷi(λ)), (3)

where ŷi(λ) is the predicted value for the ith observation.
Now, the proposed methods first select M candidates of

λ values, λ̂m,m = 1, . . . ,M from KCV. Suppose δ̂m =∑n
i=1 I(yi �= ŷi(λ̂m))/n is the prediction error rate associated

with λ̂m. To select the candidates, there should be a certain
criterion. For example, we may select λ̂m which satisfies
maxm=1,...,M δm ≤ c1 ·δmin, where δmin = minm=1,...,M δm
and 1 ≤ c1 ≤ cmax. That is, we consider λ̂m as a candidate
only when the corresponding prediction error rate is less than
cmax times that of the minimum error rate.

Alternatively, we may use rankings of λ̂ms in terms of
prediction error rate to pick the candidates. For example, top
5, or top 10 λ̂m values by the rankings of the prediction errors
can be considered as candidate values of the tuning parameter.
Then, the final λ value selected by the suggested efficient
K-fold CV (EKCV) is defined as;

λ̂EKCV =
1

M

M∑

m=1

ŵmλ̂m, (4)

where ŵm = (1/δ̂m)/(
∑M

m=1 1/δ̂m) is the estimated weight
for λ̂m. The estimate of the weights is designed to be large
when the prediction error rate is small, and is normalized to
maintain its sum as one. Sometimes, we may find one or
multiple δ̂m values are zero when the predicted values are
all the same as the observed values. This can happen when
prediction is an easy task. This causes infinite weight (since
δ̂m = 0) and cannot estimate the weights. In practice, one can
replace it with a large weight such as twice of the maximum
weight except for the infinite weight. Notice that KCV method
is, in fact, a special case of EKCV with M=1 and δmin. From
the nature of averaging, λ̂EKCV may maintain substantially
reduced variance when compared to λ̂KCV .

In terms of computation, EKCV requires almost the same
amount computing as KCV does. Splitting the data into K

folds and iterative training and validation are the common
procedures for KCV and EKCV, which comprises majority of
the computation. The additional computing is the calculation
of the weights, ŵms, and finding the final value of (4), which
takes ignorable amount of time.

As the domain of λ is a subset of real line, λ ∈ [0, λmax],
we cannot search all possible values. But, we can only search
limited number of λs in practice. Thus, λ values on a grid,
for example, equally spaced points on the grid, are what
researchers can examine in practice. Of course, using finer grid
will lead to more accurate estimate of the tuning parameter, but
it increases computation. The amount of computation increases
linearly as we increase the number of values to be searched
on a grid. Note that λ̂EKCV in (4) is not necessarily one of
the values on the grid, which could have been found by KCV
with finer grid. In this respect, the proposed method has certain
effect of employing a finer grid without adding more points
to the grid. Thus, it is possible to view the proposed method
as computationally efficient method to a certain degree.

As KCV is broadly used beyond the penalized logistic
regression models, we can use EKCV to the other procedures.
Here is a general EKCV algorithm.

ALGORITHM 1
1) Fit a model using K−1 folds of the data (training data).
2) Evaluate the fitted model on the hold out data (test data).
3) Iterate step 1 and 2 for K times to have predicted values

for all observations.
4) Select candidates of models (or, parameters) based on

cross validated score (or, prediction error).
5) Obtain a weighted average the candidates of models

utilizing the cross validated score, which is a final model.
Note that Algorithm 1 can be used to select any tuning

parameter. For example, we can apply the above procedure to
select the scale parameter in the radial basis kernels of support
vector machine (SVM ) [24]. Currently, KCV is embedded in
R packages for SVM such as e1071 [25], kernlab [26],
and ascrda [27]. We can replace KCV with the proposed
EKCV for improving the tuning parameter selection, and this
is indeed the case, which will be shown in Sections III and
IV.

B. Efficient Cross-Validation
The main concept of the suggested methods can be applied

to different versions of cross-validation procedure. One of
the popularly used cross-validation methods is to split the
data into two parts randomly. Next, one part of the data is
used for training models (training data), and the other for
evaluation (test data). Then, the best model is selected based
on the prediction error from the test data by comparing the
prediction errors. Now, the efficient cross-validation of our
suggestion can select candidates of models and form a ultimate
model by calculating a weighted average. Again, we can use
the reciprocals of the prediction errors as estimates of the
weights. To build an general algorithm, we can modify the
algorithm 1 by specifying K = 2, and removing step 3. As
the modification is simple, we do not provide another formal
algorithm for this type of two-fold cross-validation.
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C. Comparison with Other Approaches

Model selection methods based on likelihood such as BIC
[28] and AIC [29] are well-known criteria. However, [30]
indicated that the original BIC does not work well for high
dimensional models. [31] showed BIC is not consistent under
linear model when both n and p increase, and suggested
a modified version. But, [31]’s method still requires p <
n, which does not hold for the case of penalized logistic
regression models for fitting typical microarray data of n < p.
Later, [32] proposed extended BIC methods tailored to high
dimensional models, and its form is given below.

EBICγ(s) = −2ln(β̂(s)) + ν(s) log n+ 2ν(s)γ log p, (5)

where β̂(s) is the maximum likelihood estimator of β(s)
given model s, and ν(s) is the number of non-zero variables
(or components) in s. When γ = 0, EBICγ is equivalent
to the original BIC. [32] performed extensive simulation
studies under penalized logistic regression models with γ =
0, 0.25, 0.5, and 1. As EBICγ is designed for regression, and
not for classification, we employ this for regression models to
compare to the proposed methods.

III. REAL DATA ANALYSIS

We compare the performance of EKCV with KCV and
EBICγ with γ = 0, 0.25, 0.5 and 1 on four DNA microarray
data sets that are publicly available. Both of the regression and
classification models are investigated for this purpose. For the
regression methods, we employ penalized logistic regression
for binary response and penalized multinomial regression for
more than two categorical response. For the forms of penalty,
lasso-type [9] and ridge-type [33] of penalties are examined,
that is, P (β) =

∑p
j=1 |βj | and

∑p
j=1 β

2
j , respectively. R

package glmnet is used for the implementation.
For classification, SVM with radial basis kernel is adopted

where the selection of scaling parameter is our main interest.
We utilize R package kernlab for the implementation
where bound-constraint SVM classification [34] is used
by specifying type=“C-bsvc” in ksvm function. Here, the
classification accuracy of SVM will be vary depending on
the choice of the scale parameter.

The summary of the four data sets are given in Table I where
I stands for the number of categories in the response variable.
The data sets are contained in the specified R packages.

TABLE I
SUMMARY AND SOURCE OF THE DATA SETS

Dataset Publication n p I R package
Leukemia [35] 72 3571 2 spikeslab
Colon [36] 62 2000 2 rda
Lymphoma[37] 62 4026 3 spls
SRBCT [38] 83 2308 4 plsgenomics

With the data sets in Table I, we choose the penalty or
scale parameter (for SVM ) using EKCV, KCV, and EBICγ

in (5). For EKCV, Algorithm 1 in Section II-A is applied to
find the final value of the tuning parameter. As the results

from EBICγ with γ = 0, 0.25, 0.5 and 1 are all identical, we
show the results only once. This is because the last term in
RHS of (5) chances only slightly for four different γ values
with the given data sets. For KCV and EKCV , we try 300
different random splits, and mean of the prediction error rates
and its standard error (in the parenthesis) are reported. We
use K = 5 for all the implementations. The error rates (or,
misclassification rates) are summarized in Table II. In the
table, Lasso is logistic (for I = 2) or multinomial logistic
regression (for I > 2) with lasso-type penalty. Similarly,
Ridge is with ridge-type penalty, and SVM is the described
support vector machine. As there are no K random splits
when EBIC in (5) is applied, there is no standard error of
the error rate. In Table II, EKCV shows the lowest error rate

TABLE II
MEAN OF ERROR RATES (IN %) AND THEIR STANDARD ERRORS (IN

PARENTHESES)

Leukemia Colon LymphomaSRBCT

Lasso
KCV 0.009 (0.01) 1.575 (0.18) 0 (0) 0 (0)
EKCV 0.014 (0.01) 1.086 (0.14) 0 (0) 0 (0)
EBICγ 2.778 8.065 0 0.365

Ridge
KCV 0 (0) 0.194 (0.04) 0 (0) 0 (0)
EKCV 0 (0) 0.145 (0.04) 0 (0) 0 (0)
EBICγ 0 4.84 0 0

SVM
KCV 0.653 (0.04) 6.715 (0.09) 0 (0) 0 (0)
EKCV 0 (0) 5.565 (0.05) 0 (0) 0 (0)

compared to other methods in most cases. In general, the error
rates are low and SRBCT is the easiest to classify even if
there are four categories in the response. Colon data set shows
relatively higher error rate across different methods where the
favorable performance EKCV is well appealed. In fact, we
applied the penalized linear discriminant analysis [39], but the
results are equal for KCV and EKCV across four data sets,
thus not shown, although the selected penalty parameter values
are different. From further investigation, we observed that the
classification by penalized linear discriminant analysis is not
sensitive to the value of chosen penalty parameter.

In Fig. 1, we compare the distribution of selected parameter
values by KCV and EKCV, that is, the distribution of λ̂KCV

and λ̂EKCV . We observe that the distributions of the selected
penalty parameter from EKCV show much less variability
when compared to those from KCV in both of Colon and
SRBCT data. The reduced variance is due to the averaging
of multiple candidates.

Now, we examine another cross-validation study described
in Section II-B. We split the data sets into training and test
data. Half of the data sets are randomly selected and assigned
as a training data set, while the other half are used as test
data. We use the training data set for model construction only,
and predict the value of response variable in the test data. This
process is slightly different from Algorithm 1 as we do not get
the predicted values for the whole response variable. However,
setting K=2, and removing the step 3 in algorithm 1 will do
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Fig. 1 Distribution of selected parameter (log(λ)) by KCV and EKCV from
Colon and SRBCT data set

the same process. As EBICγ is needed to be applied to the
whole data set as shown in Table II, we do not compare it
with KCV and EKCV. Again, we repeat the described process
for 300 times and the mean error rates and its standard error
is given in Table III.

TABLE III
MEAN OF ERROR RATES (IN %) AND THEIR STANDARD ERRORS (IN

PARENTHESES) BY KCV AND EKCV FROM 300 MONTE CARLO DATA
SETS TRAINING DATA SET CONTAINING 1/2 OF THE SAMPLES

Leukemia Colon LymphomaSRBCT

Lasso
KCV 0 (0) 0.290 (0.18) 0 (0) 0.103 (0.6)
EKCV 0.009 (0.01) 0.097 (0.14) 0 (0) 0.095 (0.06)

Ridge
KCV 2.509 (0.52) 0 (0) 0 (0) 0.175 (0.05)
EKCV 0.111 (0.11) 0 (0) 0 (0) 0.135 (0.04)

SVM
KCV 0.435 (0.06) 4.301 (0.46) 0 (0) 0.238 (0.07)
EKCV 0 (0) 0.796 (0.10) 0 (0) 0 (0)

We can see the error rates from EKCV are smaller than
those from KCV in most of the cases. However, we cannot
compare the two methods when the error rates are all zero.
This leads us to repeat the same experiments with smaller
number of training sample size. For this reason, we assign
only quarter of the data to the training data and three quarters
to the test data. The results from this modified experiment are
in Table IV.

In Table IV, the improved performance of Lasso and
SVM by the suggested EKCV becomes more apparent,
while the error rates from Ridge are mostly zero. Especially,
incorporating EKCV in SVM shows remarkably higher
prediction accuracy for Colon data set compared to the
accuracy of KCV.

IV. SIMULATION STUDIES

We consider 2000 genes with 400 samples for all of the
simulations. To generate simulated microarray data set with
binary response, we first generate gene expression data from

TABLE IV
MEAN OF ERROR RATES (IN %) AND THEIR STANDARD ERRORS (IN

PARENTHESES) BY KCV AND EKCV FROM 300 MONTE CARLO DATA
SETS. TRAINING DATA SET CONTAINING 1/4 OF THE SAMPLES

Leukemia Colon LymphomaSRBCT

Lasso
KCV 0.031 (0.02) 0.906 (0.14) 0.156 (0.09) 0.047 (0.05)
EKCV 0.019 (0.01) 0.529 (0.10) 0.014 (0.01) 0 (0)

Ridge
KCV 0 (0) 3.551 (0.45) 0 (0) 0 (0)
EKCV 0 (0) 4.819 (0.60) 0 (0) 0 (0)

SVM
KCV 2.383 (0.51) 11.22 (0.76) 0 (0) 1.534 (0.55)
EKCV 0 (0) 2.014 (0.11) 0 (0) 0 (0)

multivariate normal distribution. That is, X ∼ MVN(0,Σ),
where 0 is a zero vector of size p and Σ is p by p variance
covariance matrix with p = 2000. The correlation between
Xi and Xj are set to ρ|i−j| with ρ = 0.3. This correlation
structure mimics the situation where nearby genes are more
correlated. The correlation will be attenuated as the distance
between two variables increases. The response variable
Y is randomly generated from Bernoulli(π(X)) where
π(X) = (1 + exp(−f(X)))−1. We examine the following
response models of f(X).

Model 1 (M1). f(X) = Xβ. For the regression parameter
β, we set, without loss of generality, the first 30 to be
non-zero values and the other 1970 values to be zero. β =
(0.5, ..., 0.5, 1, ..., 1, 1.5, ..., 1.5, 2, ...2, 2.5, ..., 2.5, 0, ..., 0)′.
Thus, the first 30 variables with five different magnitudes
are related to the response variable with different magnitude.
Note that there are six identical values in each magnitude.

Model 2 (M2). f(X) = (Xβ) · (1 +Xγ). The value of β
is the same as we have in M1. The first 30 elements of γ are
randomly drawn from uniform distribution on (0, 0.3), while
the other 1970 elements are zero. This setting is designed to
follow the situation when genes interact with each other.

Model 3 (M3). f(X) is the same as M2 except that 3% of
X (or, the first 12 rows of X) are tripled. This modification
causes heavy tailed distribution of X deviated from the
normality, which is often observed in gene expression data.

Once the data set is generated, we randomly split it into
training data of sample size 300, and test data with the other
100 samples.

We first apply penalized logistic regression with lasso
penalty (Lasso), adaptive lasso penalty [40] (Alasso),
and ridge penalty (Ridge), and also apply the boundary
constrained SVM (which we employed in the previous
Section) to the training data set and select the penalty
parameter of λ based on the prediction error rates from the test
data. This is the traditional cross-validation procedure (CV ).
Secondly, using the same method of Lasso, Alasso, Ridge,
and SVM , we select the value of λ based on the suggested
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efficient cross-validation (ECV ). We repeat the described
procedure for 300 times to reduce the undesirable effect of
random variation arises from generating X and splitting the
data.

We compare CV and ECV in several aspects of (A).
prediction accuracy, (B). estimation of β, and (C). detection of
significant (non-zero) variables. We report prediction accuracy
of CV and ECV only for SVM since (B) and (C) cannot
be obtained via SVM . Although there are interaction effects
(caused by γ) in M2 and M3, we use the linear model
and measure accuracy of estimation in terms of β. Thus, we
will approximate the associations between the genes by the
independent model (without interaction) for M2 and M3,
and gauge their (approximated) estimation accuracy. This
approximation by independent model is attractive as there are
2000 genes, and considering interaction terms among them
will result in huge (about 2 million) number of variables,
which we want to avoid here. But, there are some works ( [41]
and references given in Section 3.3 of [42]) which efficiently
detect the potential interactions.

Now, we describe the results under the above aspects of
(A), (B), and (C).

Aspect (A). We compare the prediction error rates by the
two methods (CV and ECV ). From 300 Monte Carlo data
sets, the mean of the prediction error rates and its standard
error is given in Table V.

TABLE V
MEAN OF PREDICTION ERROR RATES AND THEIR STANDARD ERRORS (IN
PARENTHESES) FROM 300 MONTE CARLO DATA SETS. ALL VALUES ARE

MULTIPLIED BY 103

Lasso Alasso Ridge SVM

M1
CV 0.33 (0.11) 0 (0) 37.2 (7.52) 52.8 (8.34)
ECV 0.10 (0.07) 0 (0) 5.53 (3.19) 3.07 (2.12)

M2
CV 4.63 (0.11) 2.53 (2.53) 63.8 (11.5) 301.6 (2.61)
ECV 0.03 (0) 0 (0) 4.90 (3.46) 1.10 (0.46)

M3
CV 4.53 (0.52) 0 (0) 87.8 (13.2) 300.1 (1.67)
ECV 0.10 (0.07) 0 (0) 6.33 (3.64) 1.10 (0.41)

The error rates from both the methods are very low.
Especially, the prediction errors using adaptive lasso penalty
are close to zero. We can see that there are significant
improvements in terms of prediction accuracy by switching
from CV to ECV in case of Ridge and SVM . The improved
performance of SVM by ECV is somewhat surprising
because the additional step in ECV is just simple weighted
averaging of the candidate values of the parameter. With the
minimal additional computation, the prediction error of SVM
is reduced significantly.

Aspect (B). Now, to compare the performance of estimating
β, we calculate the empirical mean squared error (MSE) by

S−1
S∑

s=1

‖β̂(s) − β‖2, (6)

where β̂(s) is the vector of estimated value of β from sth
simulated data set. Here, S = 300. Further, we decompose
the empirical MSE into the variance and squared bias. The

details form of empirical variance (V ar) is

S−1
S∑

s=1

‖β̂(s) − S−1
S∑

s=1

β̂(s)‖2, (7)

and the empirical squared bias (Bias2) is

S−1
S∑

s=1

‖S−1
S∑

s=1

β̂(s) − β‖2. (8)

V ar, and Bias2 from CV and ECV are presented in Table
VI. Although the two methods yield similar MSE values,
switching from CV to ECV shows that the amount of
reduction in variance is greater than the increased squared bias
in most cases.

TABLE VI
EMPIRICAL VARIANCE (V ar) AND SQUARED BIAS (Bias2) OF Lasso,
Alasso, AND Ridge AS DEFINED IN (7), AND (8) FROM 300 MONTE

CARLO DATA SETS. ALL VALUES ARE MULTIPLIED BY 103

Lasso Alasso Ridge
V ar Bias2 V ar Bias2 V ar Bias2

M1
CV 0.709 29.84 8.731 10.24 4.786 31.50
ECV 0.484 30.04 5.035 13.44 2.513 34.09

M2
CV 1.391 39.29 12.11 34.83 2.902 38.55
ECV 1.026 39.05 8.249 35.71 1.371 39.26

M3
CV 1.545 39.30 12.22 35.10 2.994 38.57
ECV 1.139 39.11 8.448 35.84 1.482 39.25

Due to the averaging effect, we expect to see some reduction
in the variance. But, it is interesting to see that both the
variance and the squared bias from Lasso estimates are
decreased by ECV . The results in Alasso and Ridge show
typical pattern of bias-variance tradeoff. Except for the results
of Ridge under M1, all the MSE values from ECV are
smaller than those from CV .

Aspect (C). Now, we compare the identification of truly
non-zero regression parameters under Lasso and Alasso.
Note that the first 30 elements in β are non-zero in the
simulation settings. We count the number of correct detections
of non-zero elements and also record the false negative
identification by CV and ECV . The results from Lasso is
summarized in Table VII. We see that the suggested method

TABLE VII
MEAN NUMBER OF TRUE DETECTION (P+) AND MEAN NUMBER OF

FALSE NEGATIVE (N−) AND THE STANDARD ERRORS (IN PARENTHESIS)
FROM Lasso

Lasso Alasso
P+ N− P+ N−

M1
CV 21.5 (0.13) 8.37 (0.13) 22.5 (0.10) 7.53 (0.10)
ECV 21.9 (0.11) 8.01 (0.12) 22.4 (0.10) 7.58 (0.10)

M2
CV 6.66 (0.14) 23.3 (0.14) 8.16 (0.12) 21.84 (0.12)
ECV 7.74 (0.12) 22.3 (0.12) 8.14 (0.12) 21.86 (0.12)

M3
CV 6.27 (0.13) 23.73 (0.13) 7.78 (0.12) 22.22 (0.12)
ECV 7.45 (0.12) 22.55 (0.12) 7.69 (0.12) 22.30 (0.12)

detects slightly more significant variables and shows reduced
number of false negative identifications for Lasso, but cannot
see any difference between CV and ECV for Alasso. As
Ridge method cannot have exactly zero estimate, the results
are not shown here.
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V. CONCLUSION

In this work, we set our main focus on improving the model
selection (or, variable selection) by averaging the candidates
of parameters using different weights. To estimate the weights,
prediction error produced by cross-validation is employed.
We impose higher weight to the parameter value with lower
predicted error. We use the reciprocal value of the error rate
as a specific form of the estimated weights. However, there
could be other estimates of the weights. One who wish to
use stabler estimated weights may add some positive constant
to the error rates, and then use the reciprocal value of the
inflated error rates. Alternatively, we can shrink the estimated
individual weights (ŵi) to the average weight (

∑n
i=1 ŵi/n).

Since there are random variation in the sample, this may
work well especially when the sample size and/or number of
candidate models is small.

Researchers in biostatistics and bioinformatics are often
interested not only in the accurate classification but also in
detecting important genetic variables from the microarray data
set. We see some potentials of the suggested methods towards
these aims via the real data analyses and simulation studies.
As the suggested methods can be readily incorporated to
the penalized regression type of model, we mainly applied
the suggested methods to analyze the microarray data. But,
its application to other types of modeling procedures sounds
plausible. For example, it maybe worthwhile to investigate the
area of high dimensional linear models with the continuous
response variable.
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