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Abstract—Program slicing is the task of finding all statements in 

a program that directly or indirectly influence the value of a variable 
occurrence. The set of statements that can affect the value of a 
variable at some point in a program is called a program slice. In 
several software engineering applications, such as program 
debugging and measuring program cohesion and parallelism, several 
slices are computed at different program points. In this paper, 
algorithms are introduced to compute all backward and forward static 
slices of a computer program by traversing the program 
representation graph once. The program representation graph used in 
this paper is called Program Dependence Graph (PDG). We have 
conducted an experimental comparison study using 25 software 
modules to show the effectiveness of the introduced algorithm for 
computing all backward static slices over single-point slicing 
approaches in computing the parallelism and functional cohesion of 
program modules. The effectiveness of the algorithm is measured in 
terms of time execution and number of traversed PDG edges. The 
comparison study results indicate that using the introduced algorithm 
considerably saves the slicing time and effort required to measure 
module parallelism and functional cohesion. 
 

Keywords—Backward slicing, cohesion measure, forward 
slicing, parallelism measure, program dependence graph, program 
slicing, static slicing.  

I. INTRODUCTION 
T a program point p and a variable x, the slice of a 
program consists of all statements and predicates of the 

program that might affect the value of x at point p. Program 
slicing can be static or dynamic. In the static program slicing 
(e.g., [1]), it is required to find a program slice that involves 
all statements that may affect the value of a variable at a 
program point for any input set. In the dynamic program 
slicing (e.g., [2]), the slice is found with respect to a given 
input set. Many algorithms have been introduced to find static 
and dynamic slices. These algorithms compute the slices 
automatically by analyzing the program data flow and control 
flow. The process of computing the slices of a given 
procedure is called intra-procedural slicing [1]. The process of 
computing the slices of a multi-procedure program is called 
inter-procedural slicing [3]. This paper focuses on computing 
intra-procedural static slices. 
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The basic algorithms for computing static intra-procedural 
slices follow three main approaches. The first approach uses 
data flow equations (e.g., [1,4]), the second approach uses 
information-flow relations (e.g., [5]), and the third approach 
uses Program Dependence Graphs (PDG) (e.g., [6]). 
Dependency graph-based slicing algorithms are in general 
more efficient than the algorithms that use data flow equations 
or information-flow relations [7]. 

Depending on the slicing purpose, slicing can be backward 
or forward [3]. In backward slicing, it is required to find the 
set of statements that may affect the value of a variable at 
some point in a program. This can be obtained by walking 
backwards over the PDG to find all the nodes that have an 
effect on the value of a variable at the point of interest. In 
forward slicing, it is required necessary to find the set of 
statements that may be affected by the value of a variable at 
some point in a program. This can be obtained by walking 
forward over the PDG to find all the nodes that might be 
affected by the value of the variable.  In this paper, we are 
interested in both backward and forward slicing.   

Program slicing is used in several software engineering 
applications, including program debugging [8], regression 
testing [9], maintenance [10], integration [11], and measuring 
program cohesion and parallelization [12]. Some of these 
applications, such as program debugging, regression testing, 
and measuring program cohesion and parallelization, require 
computing slices at different program points.  

In program debugging, when an error is detected, it is 
required to slice the statements that can affect the program 
point at which the error is detected. In a typical programming, 
several errors are detected in each module in the system. 
Therefore, several slices at different points have to be 
calculated.  

In regression testing, it is required to check that the 
modifications performed on the system have not caused 
unintended effects. Each modification might require changes 
at different program points and it is required to test the slices 
computed at each of these program points. 

Different algorithms that use program slicing are introduced 
to measure the cohesion of a module in a program. Weiser [1] 
suggests computing slices for each variable at all program 
output statements. Longworth [13] suggests computing a slice 
for each variable in the module. Ott and Thuss [12] suggest 
computing a slice for each output variable in the module. The 
computed slices are used to find different metrics, including 
cohesion and parallelism. As a result, in order to compute the 
cohesion and parallelism of a module, it is necessary to 
compute several slices of the module.  
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The above program slicing applications are considered 
important in the software development process, and therefore, 
they need efficient slicing algorithms to speed them up. 
Unfortunately, no special algorithm has been introduced in the 
literature to serve the above program slicing applications. In 
this case, the same single-point-based slicing algorithms have 
to be applied several times, and as a result, the dependency 
graph has to be traversed several times. This introduces the 
need for slicing algorithms that compute all the required slices 
in a more efficient way. 

In this paper, two algorithms are introduced to compute all 
possible static intra-procedural slices of a program. The first 
one computes the backward slices and the other one computes 
the forward slices. Each of the algorithms requires walking 
over the PDG only once. In addition, we compare 
experimentally the effectiveness of the introduced backward 
slicing algorithm over the single-point slicing approach (e.g., 
[1]) in computing the slices required to measure the 
parallelism and functional cohesion of a program function. 
The comparison is performed using 25 software modules 
selected from five software applications and shows that the 
introduced algorithm is more effective in terms of PDG 
traversal and execution time. 

The paper is organized as follows. Section II overviews the 
problems of computing program slices and measuring 
functional cohesion and parallelism. The efficient algorithms 
for computing all static backward and forward slices are 
introduced in Sections III and IV, respectively. Section V 
explains a comparison study settings and reports the results. 
Finally, Section VI provides a conclusion and discussion of 
future work.  

II.   BACKGROUND 
This section overviews the problem of program slicing and 

the problem of measuring the functional cohesion and 
parallelism as follows. 

A. Program Slicing 
The PDG consists of nodes and direct edges. Each 

program’s simple statement and control predicate is 
represented by a node. Simple statements include assignment, 
read, and write statements. Compound statements include 
conditional and loop statements, and they are represented by 
more than one node. There are two types of edges in a PDG: 
data dependence edges and control dependence edges. A data 
dependence edge between two nodes implies that the 
computation performed at the node pointed by the edge 
directly depends on the value computed at the other node. 
This means that the pointed node has the definition of the 
variable used in the other node. A control dependence edge 
between two nodes implies that the result of the predicate 
expression at the node pointed by the edge decides whether to 
execute the other node or not. Fig. 1 shows a C function 
example. The function computes the sum, average, and 
product of numbers from 1 to n where n is an integer value 
greater than or equal to 1. Fig. 2 shows the PDG of the C 
function example given in Fig. 1. The number associated with 
each PDG node is called a node identifier. For simplicity, in 

this paper, the node identifier indicates the line numbers of the 
statements that are represented by the node. Solid and dotted 
direct edges represent the control and data dependency edges, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 C function example 
 

Using the PDG shown in Fig. 2, we can obtain the 
backward and forward slices. For example, using a single-
point slicing approach (e.g., [1]) to obtain the backward slice 
of variable i at line 5 of the C function given in Fig. 1, we first 
add the node that represents line 5 to the slice. This implies 
adding lines 5 and 9 to the slice. Then, we traverse the 
incoming edges to node 5 backwards and add lines 
represented by the nodes attached to the incoming edges to the 
slice. This results in adding lines 1, 2, 8, and 11 to the slice. 
The same process is performed for the nodes that represent the 
added lines of code until we reach nodes with no incoming 
edges. As a result, the backward slice calculated for variable i 
at line 5 contains the C function lines of code numbered 1, 2, 
5, 8, 9, and 11.  

 
Fig. 2 PDG of the C function example given in Fig. 1 

 
To obtain the forward slice of variable i at line 5 of the C 

function given in Fig 1, we first add the node that represents 
line 5 to the slice. This implies adding lines 5 and 9 to the 
slice. Then, we traverse the outgoing edges from node 5 
forward and add lines represented by the nodes attached to the 
outgoing edges to the slice. This results in adding lines 6, 7, 
and 8 to the slice. The same process is performed for the 
nodes that represent the added lines of code until we reach 

1 void NumberAttributes(int n, int &sum,  
                  double &avg, int &product) { 
2      int i=1; 
3      sum=0; 
4      product=1; 
5      while (i<=n) { 
6          sum=sum+i; 
7          product=product*i; 
8          i=i+1; 
9      } 
10      avg=static_cast<double>(sum)/n; 
11 } 
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nodes with no outgoing edges. As a result, the forward slice 
calculated for variable i at line 5 contains the C function lines 
of code numbered 5, 6, 7, 8, 9, and 10. 

To calculate all the backward or forward slices using a 
single-point slicing approach, the same slicing process applied 
at line 5 have to be applied at each line in the C function 
example given in Fig. 1. This implies applying the slicing 
process at each node given in Fig. 2, which results in 
traversing the PDG partially several times. 

B. Measuring Functional Cohesion and Parallelism   
Functional cohesion is defined as the relatedness of the 

module parts that contribute to different outputs. An output 
can be a single value output to a file or a device, an 
assignment to a global variable, or an output parameter. For 
example, the C function given in Fig. 1 has three outputs: sum 
at line 6, product at line 7, and avg at line 10. Bieman et al. 
[14] argue that using data tokens (i.e., variables and constant 
definitions and references) as the basis for slicing ensures that 
all changes of interest will cause a change of interest in at 
least one slice of the module. Changing an operator to a 
different one is an example of a change that is not of interest. 
To measure the functional cohesion and parallelism three 
steps are required including (1) computing the backward 
slices at each output variable lines of code, (2) computing the 
data slices for each output variable, and (3) applying metrics 
on the data slices to measure the functional cohesion and 
parallelism. To perform the first step for the function example 
given in Fig. 1, backward slices have to be computed at lines 
6, 7, and 10. This results in having code statements at lines 1, 
2, 3, 5, 6, 8, 9, and 11 in the slice compute at line 6, code 
statements at lines 1, 2, 4, 5, 7, 8, 9, and 11 in the slice 
computed at line 7, and code statements at lines 1, 2, 3, 5, 6, 
8, 9, 10, and 11 in the slice compute at line 10. In the second 
step, the data slices are computed for each of the three output 
variables at lines 6, 7, and 10.  Data slicing is performed by 
mapping a slice to the data tokens included in the slice. A data 
slice is a sequence of data tokens included in a slice. For 
example, the first column of Table I lists all the data tokens in 
the program given in Fig. 1, where Ti indicates the i’th 
occurrence of  data token T in the function. The last three 
columns of Table I show the data slices for the three output 
variables. A cell in these columns is ticked if the data token is 
included in the slice computed for the output variable in Step 
1. For example, the data token n1 appears in the first line of 
the code given in Fig. 1. This line of code is included in the 
slices computed for the three output variables. Therefore, the 
cells in the row of the first data token in Table I are all ticked. 
The data slice for the variable sum at line 6 of the function 
given in Fig. 1 is a sequence of the data tokens: n1,sum1, avg1, 
product1, i1, 11, sum2, 01, i2, n2, sum3, sum4, i3, i5, i6, 13. 

Bieman et al. [14] introduce the concept of data slicing and 
used it as abstraction for measuring module functional 
cohesion. Bieman et al. define three terms, including glue 
token, super-glue token, and glue stickiness. The glue token is 
the data token that exists in more than one data slice. The 
super-glue token is the data token that exists in all data slices. 
The stickiness or adhesiveness of a glue token is the number 
of data slices that it binds. Three measures are introduced for 

a module, including strong functional cohesion (SFC), weak 
functional cohesion (WFC), and adhesiveness (A). The SFC 
is the ratio of the number of super-glue tokens to the total 
number of data tokens in the module. The WFC is the ratio of 
the number of glue tokens to the total number of data tokens 
in the module. Finally, the A of the module is the ratio of the 
total adhesiveness of all glue tokens to the total possible 
adhesiveness. 

Ott and Thuss [12] introduce a technique to measure 
module parallelism. The technique requires computing a slice 
for each module output. Module parallelism is defined as the 
number of slices that are totally independent of all the other 
slices in the module. 

 
TABLE I 

DATA SLICE ABSTRACTION FOR THE SLICES COMPUTED AT LINES 6, 7, AND 10 
OF THE C FUNCTION GIVEN IN FIG. 1 

Data slices Data 
tokens sum avg product 

n1 x x x 
sum1 x x x 
avg1 x x x 
product1 x x x 
i1 x x x 
11 x x x 
sum2 x x  
01 x x  
product2   x 
12   x 
i2 x x x 
n2 x x x 
sum3 x x  
sum4 x x  
i3 x x  
product3   x 
product4   x 
i4   x 
i5 x x x 
i6 x x x 
13 x x x 
avg2  x  
sum5  x  
n3  x  

 

III. COMPUTING-ALL-BACKWARD-SLICES ALGORITHM 
The algorithm for computing all intra-procedural static 

backward slices of a module is given in Fig. 3 and named 
Compute-All-Backward-Slices algorithm. Each node in the 
PDG is associated with an empty set before applying the 
algorithm. After the algorithm is applied, the set associated 
with a node n consists of the lines of code included in the slice 
computed at node n. The algorithm builds the set associated 
with each node in the PDG incrementally as the function 
called ComputeABSlice is applied recursively. The 
ComputeABSlice function takes a node n as an argument. If 
the node is not visited yet, the node is marked visited, the 
node identifier is added to the set associated with node n, and 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

925

 

 

all incoming edges to node n are traversed backwards. If an 
incoming edge is attached to a visited node v, the node 
identifiers included in the set associated with node v are added 
to the set associated with node n. Otherwise, if the incoming 
edge is attached to a node m not yet visited, node m is passed 
as an argument to the ComputeABSlice function. The function 
finds the set of nodes included in the backward slice computed 
at node m. After that, the node identifiers included in the set 
associated with node m are added to the set associated with 
node n. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 The Compute-All-Backward-Slices algorithm 

 
The algorithm requires performing four necessary 

preparations before applying the ComputeABSlice function as 
follows. 

1. Adding an exit node to the PDG. The exit node is a node 
that has no outgoing edges. Since a node in a PDG represents 
a program code, an exit node represents a program code on 
which no other code depends. When the Compute-All-
Backward-Slices algorithm is applied, the exit node is passed 
as an argument to the ComputeABSlice function as shown in 
the second step of the algorithm given in Fig. 3. Since a PDG 
can have several exit nodes, we are in need for a unique exit 
node to start with. As a result, a special exit node is added to 
represent the end of the program, or module, and a control 
flow edge is added from each of the exit nodes in the PDG to 
the added exit node. In the PDG given in Fig. 2, nodes 7 and 
10 have no outgoing edges and, therefore, they are exit nodes. 
As shown in Fig. 4, a new node, node 12, is added to be the 
special exit node and two control dependence edges are added 
from nodes 7 and 10 to node 12. In this case, node 12 is first 
passed as an argument to the ComputeABSlice function to 
compute all static forward slices of the C function given in 

Fig. 1. 
2. Combining all nodes contained in each cycle in the PDG 

in one node. Having a cycle between two or more nodes in the 
PDG implies that each of the nodes depends directly or 
indirectly on the other nodes in the cycle. This results in 
having same slice contents for each of the nodes in the cycle. 
Therefore, combining the nodes in a graph cycle in one node 
does not change the slicing results. However, having cycles in 
the graph leads to an infinite recursion when ComputeABSlice 
function is applied. Combining nodes in a cycle is performed 
by replacing the nodes by a new node. All incoming edges to 
each of the combined nodes are redirected to be incoming 
edges to the new node. Similarly, all outgoing edges from 
each of the combined nodes are redirected to be outgoing 
edges from the new node. Finally, any resulting self-loop edge 
is removed because such an edge is not considered when 
computing program slices. In the PDG given in Fig. 2, the two 
nodes that represent lines 5, 8, and 9 are contained in a cycle. 
Therefore, as shown in Fig. 4, the two nodes are replaced by 
the node labeled 5,8,9. All incoming edges to the nodes that 
represent lines 5, 8, and 9 are redirected to be incoming edges 
to the new node. All outgoing edges from the nodes that 
represent lines 5, 8, and 9 are redirected to be outgoing edges 
from the new node. This results in having two self-loop edges 
linked to the new node, and these edges are removed.    

3. Associating an empty set with each node in the PDG. 
When the algorithm is applied, the set associated with each 
node contains the identifiers of the nodes that represent the 
program backward slice at the program point represented by 
the node. 

4. Marking all nodes in the PDG as not visited. After 
applying the Compute-All-Backward-Slices algorithm and 
computing all backward slices, all nodes are marked visited. 

 
Fig. 4 The PDG prepared for applying the Compute-All-Backward-
Slices algorithm. The PDG is derived from the PDG given in Fig. 2 

 
Compute-All-Backward-Slices algorithm ensures that each 

edge is not traversed more than once by marking a traversed 
node as visited. Nodes are initially marked as not visited. 
Whenever a node is passed as an argument to 
ComputeABSlice function, it is checked whether it is marked 
previously as visited. If the node is not previously marked as 

Input: A PDG that has a single exit node, an empty set 
of node identifiers associated with each node, and all 
nodes contained in a cycle are combined in one node. 
Output: The PDG that each of its nodes is associated 
with a set of identifiers of certain nodes. These certain 
nodes represent the lines of code contained in the 
computed backward slice. 
Algorithm: 

1. Mark all PDG nodes as "not visited" 
2. ComputeABSlice(exit node) 

 
ComputeABSlice(node n) { 
     if node n is not visited 
     Mark node n as visited 

      Add the identifier of node n to the set associated 
with node n 

               for each node m in which node n directly 
                depends do 

ComputeABSlice(m) 
Add the contents of the set associated with 
node m to the set associated with node n 

}  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

926

 

 

visited, ComputeABSlice function marks the node as visited 
and traverses all the incoming edges to the node. If the node is 
previously marked as visited, the ComputeABSlice function 
terminates without traversing the incoming edges. As a result, 
the incoming edges to any node are traversed once when the 
node is first passed as an argument to the ComputeABSlice 
function. Therefore, when the Compute-All-Backward-Slices 
algorithm is applied, no edges are traversed more than once. 

For example, a backward slice is to be computed at each 
line in the C function given in Fig. 1. Fig. 4 shows the updated 
PDG as discussed formerly in this section. To compute the 
backward static slices, Compute-All-Backward-Slices 
algorithm is applied and Node 12 is passed as an argument to 
CompueABSlice function. Since Node 12 is initially marked as 
not visited, it is marked now as visited and the node identifier 
“12” is added to the slice set of node 12. Nodes 7 and 10 are 
linked by direct edges to Node 12, and therefore, 
ComputeABSlice function is applied to both of them. After 
computing their backward slices by recursively applying the 
ComputeABSlice function, the set of identifiers associated 
with each of the two nodes is added to the set of identifiers 
associated with Node 12. The resulting contents of sets of 
identifiers associated with each of the PDG nodes are listed in 
Table II.  These contents are computed using Compute-All-
Backward-Slices algorithm. 

 
TABLE II 

THE SLICE CONTENTS COMPUTED FOR EACH LINE OF CODE OF THE FUNCTION 
GIVEN IN FIG. 1. THE CONTENTS OF THE SLICES ARE COMPUTED USING 

COMPUTING-ALL-BACKWARD-SLICES ALGORITHM 
Line of code Slice contents 

1 1,11 
2 1,2,11 
3 1,3,11 
4 1,4,11 
5 1,2,5,8,9,11 
6 1,2,3,5,6,8,9,11 
7 1,2,4,5,7,8,9,11 
8 1,2,5,8,9,11 
9 1,2,5,8,9,11 
10 1,2,3,5,6,8,9,10,11 
11 1,11 
12 1,2,3,4,5,6,7,8,9,10,11,12 

 

IV. COMPUTING-ALL-FORWARD-SLICES ALGORITHM 
The algorithm for computing all intra-procedural static 

forward slices of a module is given in Fig. 5 and named 
Compute-All-Forward-Slices algorithm. Each node in the 
PDG is associated with an empty set before applying the 
algorithm. After the algorithm is applied, the set associated 
with a node n consists of the lines of code included in the slice 
computed at node n. The algorithm builds the set associated 
with each node in the PDG incrementally as the function 
called ComputeAFSlice is applied recursively. The 
ComputeAFSlice function takes a node n as an argument. If 
the node is not visited yet, the node is marked visited, the 

node identifier is added to the set associated with node n, and 
all outgoing edges form node n are traversed forwards. If an 
outgoing edge is attached to a visited node v, the node 
identifiers included in the set associated with node v are added 
to the set associated with node n. Otherwise, if the outgoing 
edge is attached to a node m not yet visited, node m is passed 
as an argument to the ComputeAFSlice function. The function 
finds the set of nodes included in the forward slice computed 
at node m. After that, the node identifiers included in the set 
associated with node m are added to the set associated with 
node n. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 The Compute-All-Forward-Slices algorithm 

 
The algorithm requires performing three necessary 

preparations before applying the ComputeAFSlice function as 
follows. 
1. Combining all nodes contained in each cycle in the PDG in 
one node as illustrated in Section III.    
2. Associating an empty set with each node in the PDG. When 
the algorithm is applied, the set associated with each node 
contains the identifiers of the nodes that represent the program 
forward slice at the program point represented by the node. 
3. Marking all nodes in the PDG as not visited. After applying 
the Compute-All-Forward-Slices algorithm and computing all 
forward slices, all nodes are marked visited. 

Typically, each module has an entry point, and therefore, it 
is not required to add an entry node to the PDG. For the 
sample example considered in this paper, the resulting PDG 
prepared for applying Compute-All-Forward-Slices algorithm 
is similar to the PDG given in Fig. 5 with the exception of not 
having Node 12 and its incoming edges. Node 12 is not 
required here because it is an exit node added specifically to 
apply the Compute-All-Backward-Slices algorithm.   

Input: A PDG that has a single entry node, an empty set 
of node identifiers associated with each node, and all 
nodes contained in a cycle are combined in one node. 
Output: The PDG that each of its nodes is associated 
with a set of identifiers of certain nodes. These certain 
nodes represent the lines of code contained in the 
computed forward slice. 
Algorithm: 

1. Mark all PDG nodes as not visited 
2. ComputeAFSlice(entry node) 

 
ComputeAFSlice(node n) { 
     if node n is not visited 
     Mark node n as visited 

      Add the identifier of node n to the set associated 
with node n 

               for each node m that depends directly  
              on node n  do 

ComputeAFSlice(m) 
Add the contents of the set associated with 
node m to the set associated with node n 

}  
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To compute the forward static slices for the PDG given in 
Fig. 4, Compute-All-Forward-Slices algorithm is applied and 
Node 1 is passed as an argument to CompueAFSlice function. 
Since Node 1 is initially marked as not visited, its marked now 
as visited and the node identifier “1,11” is added to the slice 
set of node 1. Nodes 2, 3, 4, 10, and the node that has an 
identifier “5,8,9” are linked by direct edges to Node 1, and 
therefore, ComputeAFSlice function is applied to each of these 
five nodes. After computing their forward slices by 
recursively applying ComputeAFSlice function, the set of 
identifiers associated with each of the five nodes is added to 
the set of identifiers associated with Node 1. The resulting 
contents of sets of identifiers associated with each of the PDG 
nodes are listed in Table III.  These contents are computed 
using Compute-All-Forward-Slices algorithm. 

 
TABLE III 

THE SLICE CONTENTS COMPUTED FOR EACH LINE OF CODE OF THE FUNCTION 
GIVEN IN FIG. 1. THE CONTENTS OF THE SLICES ARE COMPUTED USING 

COMPUTE-ALL-FORWARD-SLICES ALGORITHM 
Line of code Slice contents 
1 1,2,3,4,5,6,7,8,9,10,11 
2 2,5,6,7,8,9,10 
3 3,6,10 
4 4,7 
5 5,6,7,8,9,10 
6 6,10 
7 7 
8 5,6,7,8,9,10 
9 5,6,7,8,9,10 
10 10 
11 1,2,3,4,5,6,7,8,9,10,11 

V.   COMPARISON STUDY 
The following comparison study shows the effectiveness of 

the Computing-All-Backward-Slices algorithm in computing 
the slices required for measuring the functional cohesion and 
parallelism. Twenty five functions selected from five software 
applications were considered in this comparison study. This 
section illustrates the comparison study settings and reports 
the results. 

A.  Comparison Study Settings 
The comparison study uses 25 functions selected from five 

software applications developed by groups of senior 
undergraduate students for a project in a networking course. 
The project required building a simple client-server 
communicating program. All the applications were developed 
using C programming language, and they all have the same 
specifications. The study was initially conducted to compare 
the applications in terms of their functional cohesion and 
parallelism. Measuring the functional cohesion and 
parallelism is a computation- and labor-intensive task. 
Therefore, we developed a supporting tool that fully 
automates the functional cohesion and parallelism-measuring 
tasks for modules written in C programming language. The 
tool has four inputs, including the C program source code that 
includes the Module Under Consideration (MUC), MUC 

name, the PDG table file, and the symbol table file. The last 
two inputs are generated automatically using Aristotle 
Analysis System [15]. The PDG table file includes the data 
and control dependency information for all program functions. 
The symbol table file includes the global identifiers, function 
names, formal parameters, and non-global identifiers. The tool 
computes the required program and data slices, and measures 
the functional cohesion and parallelism of each function in 
each software application. For the purpose of this comparison 
study, two versions of the tool were developed. The first 
version computes only the required program slices using the 
single-point slicing approach, and the second version 
computes all program slices, including the required ones, 
using the Computing-All-Backward-Slices algorithm. Each 
version of the tool computes the slices and reports the slicing 
execution time and the number of PDG edges that were 
traversed to compute the slices. 

The tool was executed on a Pentium 4 2.6GHz processor. 
To increase the collected slicing time accuracy, all 
unnecessary software applications running on the PC were 
switched off. When the tool was executed, it was noticed that 
the tool consumed micro-seconds to perform the slicing task. 
Since such little time is very sensitive and can change from 
one run to another, we have set the tool to start the timing 
clock, perform the required slicing task a million times, stop 
the timing clock, and report the average slicing time.    

The purpose of this comparison study is to show the 
effectiveness of the Computing-All-Backward-Slices 
algorithm for applications that require computing more than 
one slice. Therefore, we have considered only the functions 
for which more than one slice is computed. This restriction 
results in considering 25 functions out of a pole of 50 
functions included in the five considered software 
applications. 

B.  Comparison Study Results 
Table IV shows the characteristics of the 25 functions 

selected for the comparison study and reports the comparison 
results. The first column of the table shows the function 
identifier in the form application_number.file_name 
.function_name. The second and third columns show the 
number of lines of code (not including comments and blank 
lines) and the number of computed slices for each function, 
respectively. The fourth column reports the number of nodes 
in the PDGs of the functions. The fifth and sixth columns 
report the number of PDG edges traversed using the single-
point slicing approach and the Computing-All-Backward-
Slices algorithm, respectively, during the functional cohesion 
and parallelism measuring processes. The sixth column also 
reports a percentage called PDG Edge Percentage (PDGEP), 
calculated as the percentage of the number of PDG edges 
traversed during the slicing process of the function using the 
Computing-All-Backward-Slices algorithm to the number of 
PDG edges traversed to perform the same task using the 
single-point slicing approach. Finally, the last two columns 
report the slicing execution time spent using the single-point 
slicing approach and the Computing-All-Backward-Slices 
algorithm, respectively. The last column also reports a 
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percentage called Time Percentage (TP), calculated as the 
percentage of the time spent during the slicing process of the 
function using the Computing-All-Backward-Slices algorithm 
to the time spent to perform the same task using the single-

point slicing approach. The functions are ordered according to 
the number of slices required to measure the functional 
cohesion and parallelism of the functions. 

 
TABLE IV 

THE PDG TRAVERSED EDGES AND SLICING EXECUTION TIME RESULTS OF THE FUNCTIONS IN THE CLIENT-SERVER APPLICATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results of the comparison study show that the 
percentage of the total number of traversed edges during the 
slicing process of the selected functions using the Computing-
All-Backward-Slices algorithm is about 16% of the total 
number of edges traversed to perform the same task using the 
single-point slicing approach. In other words, the percentage 
of the reduction of the total number of traversed edges using 
the Computing-All-Backward-Slices algorithm is about 84%. 
Reducing the number of traversed PDG edges implies a 
reduction of the efforts involved in measuring the module 
parallelism and functional cohesion. Similarly, the results 
show that the percentage of the total time spent in the slicing 
process of the selected functions using the Computing-All-
Backward-Slices algorithm is about 29% of the total time 
spent performing the same task using the single-point slicing 
approach. In other words, the percentage of the reduction of 
the time spent for the slicing process using the Computing-All-

Backward-Slices algorithm is about 71%. Generally, the 
results of the comparison study indicate that it is more 
effective in terms of time and effort to apply the Computing-
All-Backward-Slices algorithm to compute the program slices 
during the functional cohesion and parallelism measuring 
processes. 

C.  Observations and Discussion 
During the analysis performed in the comparison study, we 

made the following observations: 
1. For any of the analyzed functions, the PDGEP is always 

lower than the TP. This is due to the fact that the time required 
to traverse an edge using Computing-All-Backward-Slices 
algorithm is more than the time required to traverse an edge 
using a single-point slicing algorithm. For the analyzed 
functions, it was found the average time required during the 
traversal process of an edge using Computing-All-Backward-

Number of traversed 
PDG edges 

Slicing time in micro-
seconds 

Function identifier Number 
of lines of 

code 

Number 
of slices

Number 
of PDG 
nodes Using 

single-
point 

slicing 
approach

Using 
Computing-All-
Backward-Slices 

algorithm 

Using 
single-
point 

slicing 
approach 

Using 
Computing-All-

Backward-
Slices  

algorithm 
app1.client.CRC 19 2 29 76 49 (64.47%) 1.01 0.80 (79.63%) 
app1.client.tc 5 2 7 14 8 (57.14%) 0.47 0.35 (75.02%) 
app1.server.CRC 16 2 27 76 43 (56.58%) 1.08 0.67 (62.02%) 
app1.server.CreateFrame 27 2 28 32 29 (90.63%) 1.06 1.21 (114.22%) 
app3.hub.GenerateCRC 33 2 63 232 129 (55.60%) 2.65 1.81 (68.39%) 
app4.channel_end.generate_CRC 34 2 50 162 92 (56.79%) 2.09 1.36 (65.19%) 
app3.clientA.createFrame 58 3 75 185 132 (71.35%) 3.20 2.88 (90.03%) 
app4.hub.create_data 15 5 29 39 34 (87.18%) 0.87 0.94 (107.39%) 
app4.channel_end.create_i_frame 37 6 44 89 76 (85.39%) 1.73 1.86 (107.45%) 
app4.hub.create_nak 10 6 12 18 13 (72.22%) 0.65 0.56 (86.53%) 
app1.client.Input 62 7 116 192 189 (98.44%) 3.84 4.61 (120.16%) 
app4.channel_end.create_ack 12 7 15 22 17 (77.27%) 0.72 0.64 (88.82%) 
app5.centralhub.Server 24 7 37 44 38 (86.36%) 1.29 1.45 (112.81%) 
app4.hub.print_frame 18 9 36 50 46 (92.00%) 1.08 1.34 (124.36%) 
app3.hub.main 106 13 237 649 293 (45.15%) 10.17 8.22 (80.85%) 
app2.cp_a.main 49 19 91 228 102 (44.74%) 4.20 3.15 (74.99%) 
app2.cp_b.main 50 19 91 280 105 (37.50%) 5.07 3.15 (62.03%) 
app3.clientA.main 150 19 304 2298 387 (16.84%) 33.53 9.68 (28.87%) 
app1.client.main 153 24 264 1389 354 (25.49%) 21.21 9.44 (44.49%) 
app4.channel_end.main 170 27 255 578 296 (51.21%) 11.79 9.22(78.18%) 
app2.sp.main 71 33 139 211 145 (68.72%) 5.66 5.03(88.88%) 
app5.endworkstation.main 168 33 266 2604 281 (10.79%) 35.60 8.75 (24.58%) 
app4.hub.main 246 35 358 573 385 (67.19%) 14.13 12.73 (90.13%) 
app5.centralhub.Client 176 42 290 2355 291 (12.36%) 36.97 10.00 (27.05%) 
app1.server.main 412 53 735 15440 945 (6.12%) 230.63 26.56 (11.52%) 
Average 85 15 144 1113 179 (16.09%) 17.23 5.06 (29.35%) 
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Slices  algorithm was 0.029 microseconds, whereas the time 
required for the same process using the single-point slicing 
algorithm is 0.021 microseconds. The Computing-All-
Backward-Slices algorithm requires more time during the 
traversal process of an edge because when it traverses an edge 
it adds the contents of the set associated with the destination 
node of the traversed edge to the set associated with the 
source node of the traversed edge. This task is not performed 
when traversing an edge using the single-point slicing 
algorithm.  

2. During the slicing process required for measuring the 
functional cohesion and parallelism of the analyzed functions, 
the number of traversed edges using the Computing-All-
Backward-Slices algorithm is always less than the number of 
traversed edges using the single-point slicing algorithm. This 
is due to the fact that the slices required to measure the 
functional cohesion and parallelism are computed at the 
function outputs. Typically, all the statements in a function 
contribute to finding the function outputs. This means that all 
the edges of the PDG are traversed to compute the required 
slices. In some cases, the slices overlap because of the 
relatedness between the slices that contribute to the function 
outputs. This means that some or all of the PDG edges are 
traversed more than once using the single-point slicing 
algorithm. Since each PDG edge is traversed only once during 
the slicing process when using Computing-All-Backward-
Slices algorithm, the number of traversed edges using the 
Computing-All-Backward-Slices algorithm is always less than 
the number of traversed edges using the single-point slicing 
algorithm. 

3. There is no direct relationship between the Computing-
All-Backward-Slices algorithm (in terms of saving the slicing 
time or effort) and the four characteristics of the analyzed 
functions: the number of lines of code, the number of outputs 
(equal to the number of required slices), the number of PDG 
nodes, and the number of PDG edges. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, two algorithms are introduced to compute all 

static backward and forward slices of a program by traversing 
the PDG that represents the program once. The algorithms use 
recursive functions to incrementally compute the slices as the 
PDG is traversed. The algorithms are useful for software 
engineering applications that require computing slices at 
different program points. In this case, the PDG is traversed 
once to find all slices instead of traversing the graph several 
times using other algorithms.  

The paper addresses the effectiveness of using the 
Computing-All-Backward-Slices algorithm to compute the 
slices required in the functional cohesion and parallelism 
measuring processes of software modules. An experimental 
comparison study was conducted to determine whether it 
would be worthwhile to apply the Computing-All-Backward-
Slices algorithm in the functional cohesion and parallelism 
measuring processes of software modules. The comparison 
study compared the results of using a single-point slicing 
approach and the Computing-All-Backward-Slices algorithm. 

The total number of traversed PDG edges and the slicing 
execution time were used as criteria in the comparison study. 
The comparison study results indicate that generally, using the 
Computing-All-Backward-Slices algorithm saves the effort 
applied and the time spent on the functional cohesion and 
parallelism measuring processes of software modules.  

The introduced algorithms are limited to compute intra-
procedural slices only. In future, we plan to extend the 
algorithms to consider inter-procedural slicing. In addition, we 
plan to extend the algorithms to compute all slices for object-
oriented programs. 

ACKNOWLEDGMENT 
The author would like to acknowledge the support of this 

work by Kuwait University Research Grant WI04/04. 

REFERENCES   
[1] M. Weiser, Program slicing, IEEE Transactions on Software 

Engineering, vol. 10, no. 4, pp. 352-357, 1984.  
[2] B. Korel and J. Laski, Dynamic slicing of computer programs, The 

Journal of Systems and Software , vol. 13, no. 3, pp. 187-195, 1990.  
[3] S. Horwitz, T. Reps, and D. Binkley, Interprocedural slicing using 

dependence graphs, ACM Transactions on Programming Languages 
and Systems, vol. 12, no. 1, pp. 26-60, 1990.  

[4] P. Hausler, Denotational program slicing, In Proceedings of the 22nd 
Hawaii International Conference on System Sciences, Hawaii, pp. 486-
494, 1989.  

[5] J. Bergstar and B. Carre, Information-flow and data flow analysis of 
while-programs, ACM Transactions on Programming Languages and 
Systems, vol. 7, no. 1, pp. 37-61, 1985. 

[6] K. Ottenstein and L. Ottenstein, The program dependence graph in 
software development environment, In Proceedings of the ACM 
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical 
Software Development Environments, SIGPLAN Notices, vol 19, no. 6, 
pp. 177-184, 1984.  

[7] F. Tip, A survey of program slicing techniques, Technical Report: CS-
R9438, CWI (Centre for Mathematics and Computer Science), 
Amsterdam, The Netherlands, 1994. 

[8] M. Weiser, Programmers use slices when debugging, Communications 
of the ACM, vol. 25, pp. 446-452, 1982.  

[9] R. Gupta, M. Harrold, and M. Soffa, An approach to regression testing 
using slicing, Proceedings of the International Conference on Software 
Maintenance, pp. 299-308, 1992. 

[10] K. Gallagher and J. Lyle, Using program slicing in software 
maintenance, IEEE Transactions on Software Engineering, vol. 17, no. 
8, pp. 751 – 761, 1991. 

[11] S. Horwitz, J. Prins, and T. Reps, Integrating non-interfering versions 
of programs, ACM Transactions on Programming Languages and 
Systems, vol. 11, no. 3, pp. 345-387, 1989. 

[12] L. Ott and J. Thuss, Slice based metrics for estimating cohesion, 
Proceedings of the IEEE-CS International Metrics Symposium, pp. 78-
81, 1993.  

[13] H. Longworth, Slice based program metrics, Master’s thesis, Michigan 
Technological University, 1985. 

[14] J. Bieman and L. Ott, Measuring functional cohesion, IEEE 
Transactions on Software Engineering, vol. 20, no. 8, pp. 644-657, 
1994. 

[15] Aristotle Research Group, http://www-static.cc.gatech.edu/aristotle/ 
Tools/, July 2006. 

 
Jehad Al Dallal received his B.Sc. and M.Sc. in degrees in Computer 
Engineering from Kuwait University in Kuwait in 1995 and 1997, 
respectively. He received his PhD degree in Computer Science from 
University of Alberta in Canada in 2003. 

He is currently working at Kuwait University, Department of Information 
Sciences as an Assistant Professor. His research interests include software 
testing and software analysis. 


