
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

922

Abstract—Program slicing is the task of finding all statements in

a program that directly or indirectly influence the value of a variable
occurrence. The set of statements that can affect the value of a
variable at some point in a program is called a program slice. In
several software engineering applications, such as program
debugging and measuring program cohesion and parallelism, several
slices are computed at different program points. In this paper,
algorithms are introduced to compute all backward and forward static
slices of a computer program by traversing the program
representation graph once. The program representation graph used in
this paper is called Program Dependence Graph (PDG). We have
conducted an experimental comparison study using 25 software
modules to show the effectiveness of the introduced algorithm for
computing all backward static slices over single-point slicing
approaches in computing the parallelism and functional cohesion of
program modules. The effectiveness of the algorithm is measured in
terms of time execution and number of traversed PDG edges. The
comparison study results indicate that using the introduced algorithm
considerably saves the slicing time and effort required to measure
module parallelism and functional cohesion.

Keywords—Backward slicing, cohesion measure, forward
slicing, parallelism measure, program dependence graph, program
slicing, static slicing.

I. INTRODUCTION
T a program point p and a variable x, the slice of a
program consists of all statements and predicates of the

program that might affect the value of x at point p. Program
slicing can be static or dynamic. In the static program slicing
(e.g., [1]), it is required to find a program slice that involves
all statements that may affect the value of a variable at a
program point for any input set. In the dynamic program
slicing (e.g., [2]), the slice is found with respect to a given
input set. Many algorithms have been introduced to find static
and dynamic slices. These algorithms compute the slices
automatically by analyzing the program data flow and control
flow. The process of computing the slices of a given
procedure is called intra-procedural slicing [1]. The process of
computing the slices of a multi-procedure program is called
inter-procedural slicing [3]. This paper focuses on computing
intra-procedural static slices.

Manuscript received April 23, 2007. The author would like to acknowledge

the support of this work by Kuwait University Research Grant WI04/04.
Jehad Al Dallal is with Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

The basic algorithms for computing static intra-procedural
slices follow three main approaches. The first approach uses
data flow equations (e.g., [1,4]), the second approach uses
information-flow relations (e.g., [5]), and the third approach
uses Program Dependence Graphs (PDG) (e.g., [6]).
Dependency graph-based slicing algorithms are in general
more efficient than the algorithms that use data flow equations
or information-flow relations [7].

Depending on the slicing purpose, slicing can be backward
or forward [3]. In backward slicing, it is required to find the
set of statements that may affect the value of a variable at
some point in a program. This can be obtained by walking
backwards over the PDG to find all the nodes that have an
effect on the value of a variable at the point of interest. In
forward slicing, it is required necessary to find the set of
statements that may be affected by the value of a variable at
some point in a program. This can be obtained by walking
forward over the PDG to find all the nodes that might be
affected by the value of the variable. In this paper, we are
interested in both backward and forward slicing.

Program slicing is used in several software engineering
applications, including program debugging [8], regression
testing [9], maintenance [10], integration [11], and measuring
program cohesion and parallelization [12]. Some of these
applications, such as program debugging, regression testing,
and measuring program cohesion and parallelization, require
computing slices at different program points.

In program debugging, when an error is detected, it is
required to slice the statements that can affect the program
point at which the error is detected. In a typical programming,
several errors are detected in each module in the system.
Therefore, several slices at different points have to be
calculated.

In regression testing, it is required to check that the
modifications performed on the system have not caused
unintended effects. Each modification might require changes
at different program points and it is required to test the slices
computed at each of these program points.

Different algorithms that use program slicing are introduced
to measure the cohesion of a module in a program. Weiser [1]
suggests computing slices for each variable at all program
output statements. Longworth [13] suggests computing a slice
for each variable in the module. Ott and Thuss [12] suggest
computing a slice for each output variable in the module. The
computed slices are used to find different metrics, including
cohesion and parallelism. As a result, in order to compute the
cohesion and parallelism of a module, it is necessary to
compute several slices of the module.

Efficient Program Slicing Algorithms for
Measuring Functional Cohesion and Parallelism

Jehad Al Dallal

A

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

923

The above program slicing applications are considered
important in the software development process, and therefore,
they need efficient slicing algorithms to speed them up.
Unfortunately, no special algorithm has been introduced in the
literature to serve the above program slicing applications. In
this case, the same single-point-based slicing algorithms have
to be applied several times, and as a result, the dependency
graph has to be traversed several times. This introduces the
need for slicing algorithms that compute all the required slices
in a more efficient way.

In this paper, two algorithms are introduced to compute all
possible static intra-procedural slices of a program. The first
one computes the backward slices and the other one computes
the forward slices. Each of the algorithms requires walking
over the PDG only once. In addition, we compare
experimentally the effectiveness of the introduced backward
slicing algorithm over the single-point slicing approach (e.g.,
[1]) in computing the slices required to measure the
parallelism and functional cohesion of a program function.
The comparison is performed using 25 software modules
selected from five software applications and shows that the
introduced algorithm is more effective in terms of PDG
traversal and execution time.

The paper is organized as follows. Section II overviews the
problems of computing program slices and measuring
functional cohesion and parallelism. The efficient algorithms
for computing all static backward and forward slices are
introduced in Sections III and IV, respectively. Section V
explains a comparison study settings and reports the results.
Finally, Section VI provides a conclusion and discussion of
future work.

II. BACKGROUND
This section overviews the problem of program slicing and

the problem of measuring the functional cohesion and
parallelism as follows.

A. Program Slicing
The PDG consists of nodes and direct edges. Each

program’s simple statement and control predicate is
represented by a node. Simple statements include assignment,
read, and write statements. Compound statements include
conditional and loop statements, and they are represented by
more than one node. There are two types of edges in a PDG:
data dependence edges and control dependence edges. A data
dependence edge between two nodes implies that the
computation performed at the node pointed by the edge
directly depends on the value computed at the other node.
This means that the pointed node has the definition of the
variable used in the other node. A control dependence edge
between two nodes implies that the result of the predicate
expression at the node pointed by the edge decides whether to
execute the other node or not. Fig. 1 shows a C function
example. The function computes the sum, average, and
product of numbers from 1 to n where n is an integer value
greater than or equal to 1. Fig. 2 shows the PDG of the C
function example given in Fig. 1. The number associated with
each PDG node is called a node identifier. For simplicity, in

this paper, the node identifier indicates the line numbers of the
statements that are represented by the node. Solid and dotted
direct edges represent the control and data dependency edges,
respectively.

Fig. 1 C function example

Using the PDG shown in Fig. 2, we can obtain the
backward and forward slices. For example, using a single-
point slicing approach (e.g., [1]) to obtain the backward slice
of variable i at line 5 of the C function given in Fig. 1, we first
add the node that represents line 5 to the slice. This implies
adding lines 5 and 9 to the slice. Then, we traverse the
incoming edges to node 5 backwards and add lines
represented by the nodes attached to the incoming edges to the
slice. This results in adding lines 1, 2, 8, and 11 to the slice.
The same process is performed for the nodes that represent the
added lines of code until we reach nodes with no incoming
edges. As a result, the backward slice calculated for variable i
at line 5 contains the C function lines of code numbered 1, 2,
5, 8, 9, and 11.

Fig. 2 PDG of the C function example given in Fig. 1

To obtain the forward slice of variable i at line 5 of the C

function given in Fig 1, we first add the node that represents
line 5 to the slice. This implies adding lines 5 and 9 to the
slice. Then, we traverse the outgoing edges from node 5
forward and add lines represented by the nodes attached to the
outgoing edges to the slice. This results in adding lines 6, 7,
and 8 to the slice. The same process is performed for the
nodes that represent the added lines of code until we reach

1 void NumberAttributes(int n, int &sum,
 double &avg, int &product) {
2 int i=1;
3 sum=0;
4 product=1;
5 while (i<=n) {
6 sum=sum+i;
7 product=product*i;
8 i=i+1;
9 }
10 avg=static_cast<double>(sum)/n;
11 }

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

924

nodes with no outgoing edges. As a result, the forward slice
calculated for variable i at line 5 contains the C function lines
of code numbered 5, 6, 7, 8, 9, and 10.

To calculate all the backward or forward slices using a
single-point slicing approach, the same slicing process applied
at line 5 have to be applied at each line in the C function
example given in Fig. 1. This implies applying the slicing
process at each node given in Fig. 2, which results in
traversing the PDG partially several times.

B. Measuring Functional Cohesion and Parallelism
Functional cohesion is defined as the relatedness of the

module parts that contribute to different outputs. An output
can be a single value output to a file or a device, an
assignment to a global variable, or an output parameter. For
example, the C function given in Fig. 1 has three outputs: sum
at line 6, product at line 7, and avg at line 10. Bieman et al.
[14] argue that using data tokens (i.e., variables and constant
definitions and references) as the basis for slicing ensures that
all changes of interest will cause a change of interest in at
least one slice of the module. Changing an operator to a
different one is an example of a change that is not of interest.
To measure the functional cohesion and parallelism three
steps are required including (1) computing the backward
slices at each output variable lines of code, (2) computing the
data slices for each output variable, and (3) applying metrics
on the data slices to measure the functional cohesion and
parallelism. To perform the first step for the function example
given in Fig. 1, backward slices have to be computed at lines
6, 7, and 10. This results in having code statements at lines 1,
2, 3, 5, 6, 8, 9, and 11 in the slice compute at line 6, code
statements at lines 1, 2, 4, 5, 7, 8, 9, and 11 in the slice
computed at line 7, and code statements at lines 1, 2, 3, 5, 6,
8, 9, 10, and 11 in the slice compute at line 10. In the second
step, the data slices are computed for each of the three output
variables at lines 6, 7, and 10. Data slicing is performed by
mapping a slice to the data tokens included in the slice. A data
slice is a sequence of data tokens included in a slice. For
example, the first column of Table I lists all the data tokens in
the program given in Fig. 1, where Ti indicates the i’th
occurrence of data token T in the function. The last three
columns of Table I show the data slices for the three output
variables. A cell in these columns is ticked if the data token is
included in the slice computed for the output variable in Step
1. For example, the data token n1 appears in the first line of
the code given in Fig. 1. This line of code is included in the
slices computed for the three output variables. Therefore, the
cells in the row of the first data token in Table I are all ticked.
The data slice for the variable sum at line 6 of the function
given in Fig. 1 is a sequence of the data tokens: n1,sum1, avg1,
product1, i1, 11, sum2, 01, i2, n2, sum3, sum4, i3, i5, i6, 13.

Bieman et al. [14] introduce the concept of data slicing and
used it as abstraction for measuring module functional
cohesion. Bieman et al. define three terms, including glue
token, super-glue token, and glue stickiness. The glue token is
the data token that exists in more than one data slice. The
super-glue token is the data token that exists in all data slices.
The stickiness or adhesiveness of a glue token is the number
of data slices that it binds. Three measures are introduced for

a module, including strong functional cohesion (SFC), weak
functional cohesion (WFC), and adhesiveness (A). The SFC
is the ratio of the number of super-glue tokens to the total
number of data tokens in the module. The WFC is the ratio of
the number of glue tokens to the total number of data tokens
in the module. Finally, the A of the module is the ratio of the
total adhesiveness of all glue tokens to the total possible
adhesiveness.

Ott and Thuss [12] introduce a technique to measure
module parallelism. The technique requires computing a slice
for each module output. Module parallelism is defined as the
number of slices that are totally independent of all the other
slices in the module.

TABLE I

DATA SLICE ABSTRACTION FOR THE SLICES COMPUTED AT LINES 6, 7, AND 10
OF THE C FUNCTION GIVEN IN FIG. 1

Data slices Data
tokens sum avg product

n1 x x x
sum1 x x x
avg1 x x x
product1 x x x
i1 x x x
11 x x x
sum2 x x
01 x x
product2 x
12 x
i2 x x x
n2 x x x
sum3 x x
sum4 x x
i3 x x
product3 x
product4 x
i4 x
i5 x x x
i6 x x x
13 x x x
avg2 x
sum5 x
n3 x

III. COMPUTING-ALL-BACKWARD-SLICES ALGORITHM
The algorithm for computing all intra-procedural static

backward slices of a module is given in Fig. 3 and named
Compute-All-Backward-Slices algorithm. Each node in the
PDG is associated with an empty set before applying the
algorithm. After the algorithm is applied, the set associated
with a node n consists of the lines of code included in the slice
computed at node n. The algorithm builds the set associated
with each node in the PDG incrementally as the function
called ComputeABSlice is applied recursively. The
ComputeABSlice function takes a node n as an argument. If
the node is not visited yet, the node is marked visited, the
node identifier is added to the set associated with node n, and

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

925

all incoming edges to node n are traversed backwards. If an
incoming edge is attached to a visited node v, the node
identifiers included in the set associated with node v are added
to the set associated with node n. Otherwise, if the incoming
edge is attached to a node m not yet visited, node m is passed
as an argument to the ComputeABSlice function. The function
finds the set of nodes included in the backward slice computed
at node m. After that, the node identifiers included in the set
associated with node m are added to the set associated with
node n.

Fig. 3 The Compute-All-Backward-Slices algorithm

The algorithm requires performing four necessary

preparations before applying the ComputeABSlice function as
follows.

1. Adding an exit node to the PDG. The exit node is a node
that has no outgoing edges. Since a node in a PDG represents
a program code, an exit node represents a program code on
which no other code depends. When the Compute-All-
Backward-Slices algorithm is applied, the exit node is passed
as an argument to the ComputeABSlice function as shown in
the second step of the algorithm given in Fig. 3. Since a PDG
can have several exit nodes, we are in need for a unique exit
node to start with. As a result, a special exit node is added to
represent the end of the program, or module, and a control
flow edge is added from each of the exit nodes in the PDG to
the added exit node. In the PDG given in Fig. 2, nodes 7 and
10 have no outgoing edges and, therefore, they are exit nodes.
As shown in Fig. 4, a new node, node 12, is added to be the
special exit node and two control dependence edges are added
from nodes 7 and 10 to node 12. In this case, node 12 is first
passed as an argument to the ComputeABSlice function to
compute all static forward slices of the C function given in

Fig. 1.
2. Combining all nodes contained in each cycle in the PDG

in one node. Having a cycle between two or more nodes in the
PDG implies that each of the nodes depends directly or
indirectly on the other nodes in the cycle. This results in
having same slice contents for each of the nodes in the cycle.
Therefore, combining the nodes in a graph cycle in one node
does not change the slicing results. However, having cycles in
the graph leads to an infinite recursion when ComputeABSlice
function is applied. Combining nodes in a cycle is performed
by replacing the nodes by a new node. All incoming edges to
each of the combined nodes are redirected to be incoming
edges to the new node. Similarly, all outgoing edges from
each of the combined nodes are redirected to be outgoing
edges from the new node. Finally, any resulting self-loop edge
is removed because such an edge is not considered when
computing program slices. In the PDG given in Fig. 2, the two
nodes that represent lines 5, 8, and 9 are contained in a cycle.
Therefore, as shown in Fig. 4, the two nodes are replaced by
the node labeled 5,8,9. All incoming edges to the nodes that
represent lines 5, 8, and 9 are redirected to be incoming edges
to the new node. All outgoing edges from the nodes that
represent lines 5, 8, and 9 are redirected to be outgoing edges
from the new node. This results in having two self-loop edges
linked to the new node, and these edges are removed.

3. Associating an empty set with each node in the PDG.
When the algorithm is applied, the set associated with each
node contains the identifiers of the nodes that represent the
program backward slice at the program point represented by
the node.

4. Marking all nodes in the PDG as not visited. After
applying the Compute-All-Backward-Slices algorithm and
computing all backward slices, all nodes are marked visited.

Fig. 4 The PDG prepared for applying the Compute-All-Backward-
Slices algorithm. The PDG is derived from the PDG given in Fig. 2

Compute-All-Backward-Slices algorithm ensures that each

edge is not traversed more than once by marking a traversed
node as visited. Nodes are initially marked as not visited.
Whenever a node is passed as an argument to
ComputeABSlice function, it is checked whether it is marked
previously as visited. If the node is not previously marked as

Input: A PDG that has a single exit node, an empty set
of node identifiers associated with each node, and all
nodes contained in a cycle are combined in one node.
Output: The PDG that each of its nodes is associated
with a set of identifiers of certain nodes. These certain
nodes represent the lines of code contained in the
computed backward slice.
Algorithm:

1. Mark all PDG nodes as "not visited"
2. ComputeABSlice(exit node)

ComputeABSlice(node n) {
 if node n is not visited
 Mark node n as visited

 Add the identifier of node n to the set associated
with node n

 for each node m in which node n directly
 depends do

ComputeABSlice(m)
Add the contents of the set associated with
node m to the set associated with node n

}

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

926

visited, ComputeABSlice function marks the node as visited
and traverses all the incoming edges to the node. If the node is
previously marked as visited, the ComputeABSlice function
terminates without traversing the incoming edges. As a result,
the incoming edges to any node are traversed once when the
node is first passed as an argument to the ComputeABSlice
function. Therefore, when the Compute-All-Backward-Slices
algorithm is applied, no edges are traversed more than once.

For example, a backward slice is to be computed at each
line in the C function given in Fig. 1. Fig. 4 shows the updated
PDG as discussed formerly in this section. To compute the
backward static slices, Compute-All-Backward-Slices
algorithm is applied and Node 12 is passed as an argument to
CompueABSlice function. Since Node 12 is initially marked as
not visited, it is marked now as visited and the node identifier
“12” is added to the slice set of node 12. Nodes 7 and 10 are
linked by direct edges to Node 12, and therefore,
ComputeABSlice function is applied to both of them. After
computing their backward slices by recursively applying the
ComputeABSlice function, the set of identifiers associated
with each of the two nodes is added to the set of identifiers
associated with Node 12. The resulting contents of sets of
identifiers associated with each of the PDG nodes are listed in
Table II. These contents are computed using Compute-All-
Backward-Slices algorithm.

TABLE II

THE SLICE CONTENTS COMPUTED FOR EACH LINE OF CODE OF THE FUNCTION
GIVEN IN FIG. 1. THE CONTENTS OF THE SLICES ARE COMPUTED USING

COMPUTING-ALL-BACKWARD-SLICES ALGORITHM
Line of code Slice contents

1 1,11
2 1,2,11
3 1,3,11
4 1,4,11
5 1,2,5,8,9,11
6 1,2,3,5,6,8,9,11
7 1,2,4,5,7,8,9,11
8 1,2,5,8,9,11
9 1,2,5,8,9,11
10 1,2,3,5,6,8,9,10,11
11 1,11
12 1,2,3,4,5,6,7,8,9,10,11,12

IV. COMPUTING-ALL-FORWARD-SLICES ALGORITHM
The algorithm for computing all intra-procedural static

forward slices of a module is given in Fig. 5 and named
Compute-All-Forward-Slices algorithm. Each node in the
PDG is associated with an empty set before applying the
algorithm. After the algorithm is applied, the set associated
with a node n consists of the lines of code included in the slice
computed at node n. The algorithm builds the set associated
with each node in the PDG incrementally as the function
called ComputeAFSlice is applied recursively. The
ComputeAFSlice function takes a node n as an argument. If
the node is not visited yet, the node is marked visited, the

node identifier is added to the set associated with node n, and
all outgoing edges form node n are traversed forwards. If an
outgoing edge is attached to a visited node v, the node
identifiers included in the set associated with node v are added
to the set associated with node n. Otherwise, if the outgoing
edge is attached to a node m not yet visited, node m is passed
as an argument to the ComputeAFSlice function. The function
finds the set of nodes included in the forward slice computed
at node m. After that, the node identifiers included in the set
associated with node m are added to the set associated with
node n.

Fig. 5 The Compute-All-Forward-Slices algorithm

The algorithm requires performing three necessary

preparations before applying the ComputeAFSlice function as
follows.
1. Combining all nodes contained in each cycle in the PDG in
one node as illustrated in Section III.
2. Associating an empty set with each node in the PDG. When
the algorithm is applied, the set associated with each node
contains the identifiers of the nodes that represent the program
forward slice at the program point represented by the node.
3. Marking all nodes in the PDG as not visited. After applying
the Compute-All-Forward-Slices algorithm and computing all
forward slices, all nodes are marked visited.

Typically, each module has an entry point, and therefore, it
is not required to add an entry node to the PDG. For the
sample example considered in this paper, the resulting PDG
prepared for applying Compute-All-Forward-Slices algorithm
is similar to the PDG given in Fig. 5 with the exception of not
having Node 12 and its incoming edges. Node 12 is not
required here because it is an exit node added specifically to
apply the Compute-All-Backward-Slices algorithm.

Input: A PDG that has a single entry node, an empty set
of node identifiers associated with each node, and all
nodes contained in a cycle are combined in one node.
Output: The PDG that each of its nodes is associated
with a set of identifiers of certain nodes. These certain
nodes represent the lines of code contained in the
computed forward slice.
Algorithm:

1. Mark all PDG nodes as not visited
2. ComputeAFSlice(entry node)

ComputeAFSlice(node n) {
 if node n is not visited
 Mark node n as visited

 Add the identifier of node n to the set associated
with node n

 for each node m that depends directly
 on node n do

ComputeAFSlice(m)
Add the contents of the set associated with
node m to the set associated with node n

}

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

927

To compute the forward static slices for the PDG given in
Fig. 4, Compute-All-Forward-Slices algorithm is applied and
Node 1 is passed as an argument to CompueAFSlice function.
Since Node 1 is initially marked as not visited, its marked now
as visited and the node identifier “1,11” is added to the slice
set of node 1. Nodes 2, 3, 4, 10, and the node that has an
identifier “5,8,9” are linked by direct edges to Node 1, and
therefore, ComputeAFSlice function is applied to each of these
five nodes. After computing their forward slices by
recursively applying ComputeAFSlice function, the set of
identifiers associated with each of the five nodes is added to
the set of identifiers associated with Node 1. The resulting
contents of sets of identifiers associated with each of the PDG
nodes are listed in Table III. These contents are computed
using Compute-All-Forward-Slices algorithm.

TABLE III

THE SLICE CONTENTS COMPUTED FOR EACH LINE OF CODE OF THE FUNCTION
GIVEN IN FIG. 1. THE CONTENTS OF THE SLICES ARE COMPUTED USING

COMPUTE-ALL-FORWARD-SLICES ALGORITHM
Line of code Slice contents
1 1,2,3,4,5,6,7,8,9,10,11
2 2,5,6,7,8,9,10
3 3,6,10
4 4,7
5 5,6,7,8,9,10
6 6,10
7 7
8 5,6,7,8,9,10
9 5,6,7,8,9,10
10 10
11 1,2,3,4,5,6,7,8,9,10,11

V. COMPARISON STUDY
The following comparison study shows the effectiveness of

the Computing-All-Backward-Slices algorithm in computing
the slices required for measuring the functional cohesion and
parallelism. Twenty five functions selected from five software
applications were considered in this comparison study. This
section illustrates the comparison study settings and reports
the results.

A. Comparison Study Settings
The comparison study uses 25 functions selected from five

software applications developed by groups of senior
undergraduate students for a project in a networking course.
The project required building a simple client-server
communicating program. All the applications were developed
using C programming language, and they all have the same
specifications. The study was initially conducted to compare
the applications in terms of their functional cohesion and
parallelism. Measuring the functional cohesion and
parallelism is a computation- and labor-intensive task.
Therefore, we developed a supporting tool that fully
automates the functional cohesion and parallelism-measuring
tasks for modules written in C programming language. The
tool has four inputs, including the C program source code that
includes the Module Under Consideration (MUC), MUC

name, the PDG table file, and the symbol table file. The last
two inputs are generated automatically using Aristotle
Analysis System [15]. The PDG table file includes the data
and control dependency information for all program functions.
The symbol table file includes the global identifiers, function
names, formal parameters, and non-global identifiers. The tool
computes the required program and data slices, and measures
the functional cohesion and parallelism of each function in
each software application. For the purpose of this comparison
study, two versions of the tool were developed. The first
version computes only the required program slices using the
single-point slicing approach, and the second version
computes all program slices, including the required ones,
using the Computing-All-Backward-Slices algorithm. Each
version of the tool computes the slices and reports the slicing
execution time and the number of PDG edges that were
traversed to compute the slices.

The tool was executed on a Pentium 4 2.6GHz processor.
To increase the collected slicing time accuracy, all
unnecessary software applications running on the PC were
switched off. When the tool was executed, it was noticed that
the tool consumed micro-seconds to perform the slicing task.
Since such little time is very sensitive and can change from
one run to another, we have set the tool to start the timing
clock, perform the required slicing task a million times, stop
the timing clock, and report the average slicing time.

The purpose of this comparison study is to show the
effectiveness of the Computing-All-Backward-Slices
algorithm for applications that require computing more than
one slice. Therefore, we have considered only the functions
for which more than one slice is computed. This restriction
results in considering 25 functions out of a pole of 50
functions included in the five considered software
applications.

B. Comparison Study Results
Table IV shows the characteristics of the 25 functions

selected for the comparison study and reports the comparison
results. The first column of the table shows the function
identifier in the form application_number.file_name
.function_name. The second and third columns show the
number of lines of code (not including comments and blank
lines) and the number of computed slices for each function,
respectively. The fourth column reports the number of nodes
in the PDGs of the functions. The fifth and sixth columns
report the number of PDG edges traversed using the single-
point slicing approach and the Computing-All-Backward-
Slices algorithm, respectively, during the functional cohesion
and parallelism measuring processes. The sixth column also
reports a percentage called PDG Edge Percentage (PDGEP),
calculated as the percentage of the number of PDG edges
traversed during the slicing process of the function using the
Computing-All-Backward-Slices algorithm to the number of
PDG edges traversed to perform the same task using the
single-point slicing approach. Finally, the last two columns
report the slicing execution time spent using the single-point
slicing approach and the Computing-All-Backward-Slices
algorithm, respectively. The last column also reports a

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

928

percentage called Time Percentage (TP), calculated as the
percentage of the time spent during the slicing process of the
function using the Computing-All-Backward-Slices algorithm
to the time spent to perform the same task using the single-

point slicing approach. The functions are ordered according to
the number of slices required to measure the functional
cohesion and parallelism of the functions.

TABLE IV

THE PDG TRAVERSED EDGES AND SLICING EXECUTION TIME RESULTS OF THE FUNCTIONS IN THE CLIENT-SERVER APPLICATIONS

The results of the comparison study show that the
percentage of the total number of traversed edges during the
slicing process of the selected functions using the Computing-
All-Backward-Slices algorithm is about 16% of the total
number of edges traversed to perform the same task using the
single-point slicing approach. In other words, the percentage
of the reduction of the total number of traversed edges using
the Computing-All-Backward-Slices algorithm is about 84%.
Reducing the number of traversed PDG edges implies a
reduction of the efforts involved in measuring the module
parallelism and functional cohesion. Similarly, the results
show that the percentage of the total time spent in the slicing
process of the selected functions using the Computing-All-
Backward-Slices algorithm is about 29% of the total time
spent performing the same task using the single-point slicing
approach. In other words, the percentage of the reduction of
the time spent for the slicing process using the Computing-All-

Backward-Slices algorithm is about 71%. Generally, the
results of the comparison study indicate that it is more
effective in terms of time and effort to apply the Computing-
All-Backward-Slices algorithm to compute the program slices
during the functional cohesion and parallelism measuring
processes.

C. Observations and Discussion
During the analysis performed in the comparison study, we

made the following observations:
1. For any of the analyzed functions, the PDGEP is always

lower than the TP. This is due to the fact that the time required
to traverse an edge using Computing-All-Backward-Slices
algorithm is more than the time required to traverse an edge
using a single-point slicing algorithm. For the analyzed
functions, it was found the average time required during the
traversal process of an edge using Computing-All-Backward-

Number of traversed
PDG edges

Slicing time in micro-
seconds

Function identifier Number
of lines of

code

Number
of slices

Number
of PDG
nodes Using

single-
point

slicing
approach

Using
Computing-All-
Backward-Slices

algorithm

Using
single-
point

slicing
approach

Using
Computing-All-

Backward-
Slices

algorithm
app1.client.CRC 19 2 29 76 49 (64.47%) 1.01 0.80 (79.63%)
app1.client.tc 5 2 7 14 8 (57.14%) 0.47 0.35 (75.02%)
app1.server.CRC 16 2 27 76 43 (56.58%) 1.08 0.67 (62.02%)
app1.server.CreateFrame 27 2 28 32 29 (90.63%) 1.06 1.21 (114.22%)
app3.hub.GenerateCRC 33 2 63 232 129 (55.60%) 2.65 1.81 (68.39%)
app4.channel_end.generate_CRC 34 2 50 162 92 (56.79%) 2.09 1.36 (65.19%)
app3.clientA.createFrame 58 3 75 185 132 (71.35%) 3.20 2.88 (90.03%)
app4.hub.create_data 15 5 29 39 34 (87.18%) 0.87 0.94 (107.39%)
app4.channel_end.create_i_frame 37 6 44 89 76 (85.39%) 1.73 1.86 (107.45%)
app4.hub.create_nak 10 6 12 18 13 (72.22%) 0.65 0.56 (86.53%)
app1.client.Input 62 7 116 192 189 (98.44%) 3.84 4.61 (120.16%)
app4.channel_end.create_ack 12 7 15 22 17 (77.27%) 0.72 0.64 (88.82%)
app5.centralhub.Server 24 7 37 44 38 (86.36%) 1.29 1.45 (112.81%)
app4.hub.print_frame 18 9 36 50 46 (92.00%) 1.08 1.34 (124.36%)
app3.hub.main 106 13 237 649 293 (45.15%) 10.17 8.22 (80.85%)
app2.cp_a.main 49 19 91 228 102 (44.74%) 4.20 3.15 (74.99%)
app2.cp_b.main 50 19 91 280 105 (37.50%) 5.07 3.15 (62.03%)
app3.clientA.main 150 19 304 2298 387 (16.84%) 33.53 9.68 (28.87%)
app1.client.main 153 24 264 1389 354 (25.49%) 21.21 9.44 (44.49%)
app4.channel_end.main 170 27 255 578 296 (51.21%) 11.79 9.22(78.18%)
app2.sp.main 71 33 139 211 145 (68.72%) 5.66 5.03(88.88%)
app5.endworkstation.main 168 33 266 2604 281 (10.79%) 35.60 8.75 (24.58%)
app4.hub.main 246 35 358 573 385 (67.19%) 14.13 12.73 (90.13%)
app5.centralhub.Client 176 42 290 2355 291 (12.36%) 36.97 10.00 (27.05%)
app1.server.main 412 53 735 15440 945 (6.12%) 230.63 26.56 (11.52%)
Average 85 15 144 1113 179 (16.09%) 17.23 5.06 (29.35%)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:12, 2008

929

Slices algorithm was 0.029 microseconds, whereas the time
required for the same process using the single-point slicing
algorithm is 0.021 microseconds. The Computing-All-
Backward-Slices algorithm requires more time during the
traversal process of an edge because when it traverses an edge
it adds the contents of the set associated with the destination
node of the traversed edge to the set associated with the
source node of the traversed edge. This task is not performed
when traversing an edge using the single-point slicing
algorithm.

2. During the slicing process required for measuring the
functional cohesion and parallelism of the analyzed functions,
the number of traversed edges using the Computing-All-
Backward-Slices algorithm is always less than the number of
traversed edges using the single-point slicing algorithm. This
is due to the fact that the slices required to measure the
functional cohesion and parallelism are computed at the
function outputs. Typically, all the statements in a function
contribute to finding the function outputs. This means that all
the edges of the PDG are traversed to compute the required
slices. In some cases, the slices overlap because of the
relatedness between the slices that contribute to the function
outputs. This means that some or all of the PDG edges are
traversed more than once using the single-point slicing
algorithm. Since each PDG edge is traversed only once during
the slicing process when using Computing-All-Backward-
Slices algorithm, the number of traversed edges using the
Computing-All-Backward-Slices algorithm is always less than
the number of traversed edges using the single-point slicing
algorithm.

3. There is no direct relationship between the Computing-
All-Backward-Slices algorithm (in terms of saving the slicing
time or effort) and the four characteristics of the analyzed
functions: the number of lines of code, the number of outputs
(equal to the number of required slices), the number of PDG
nodes, and the number of PDG edges.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, two algorithms are introduced to compute all

static backward and forward slices of a program by traversing
the PDG that represents the program once. The algorithms use
recursive functions to incrementally compute the slices as the
PDG is traversed. The algorithms are useful for software
engineering applications that require computing slices at
different program points. In this case, the PDG is traversed
once to find all slices instead of traversing the graph several
times using other algorithms.

The paper addresses the effectiveness of using the
Computing-All-Backward-Slices algorithm to compute the
slices required in the functional cohesion and parallelism
measuring processes of software modules. An experimental
comparison study was conducted to determine whether it
would be worthwhile to apply the Computing-All-Backward-
Slices algorithm in the functional cohesion and parallelism
measuring processes of software modules. The comparison
study compared the results of using a single-point slicing
approach and the Computing-All-Backward-Slices algorithm.

The total number of traversed PDG edges and the slicing
execution time were used as criteria in the comparison study.
The comparison study results indicate that generally, using the
Computing-All-Backward-Slices algorithm saves the effort
applied and the time spent on the functional cohesion and
parallelism measuring processes of software modules.

The introduced algorithms are limited to compute intra-
procedural slices only. In future, we plan to extend the
algorithms to consider inter-procedural slicing. In addition, we
plan to extend the algorithms to compute all slices for object-
oriented programs.

ACKNOWLEDGMENT
The author would like to acknowledge the support of this

work by Kuwait University Research Grant WI04/04.

REFERENCES
[1] M. Weiser, Program slicing, IEEE Transactions on Software

Engineering, vol. 10, no. 4, pp. 352-357, 1984.
[2] B. Korel and J. Laski, Dynamic slicing of computer programs, The

Journal of Systems and Software , vol. 13, no. 3, pp. 187-195, 1990.
[3] S. Horwitz, T. Reps, and D. Binkley, Interprocedural slicing using

dependence graphs, ACM Transactions on Programming Languages
and Systems, vol. 12, no. 1, pp. 26-60, 1990.

[4] P. Hausler, Denotational program slicing, In Proceedings of the 22nd
Hawaii International Conference on System Sciences, Hawaii, pp. 486-
494, 1989.

[5] J. Bergstar and B. Carre, Information-flow and data flow analysis of
while-programs, ACM Transactions on Programming Languages and
Systems, vol. 7, no. 1, pp. 37-61, 1985.

[6] K. Ottenstein and L. Ottenstein, The program dependence graph in
software development environment, In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, SIGPLAN Notices, vol 19, no. 6,
pp. 177-184, 1984.

[7] F. Tip, A survey of program slicing techniques, Technical Report: CS-
R9438, CWI (Centre for Mathematics and Computer Science),
Amsterdam, The Netherlands, 1994.

[8] M. Weiser, Programmers use slices when debugging, Communications
of the ACM, vol. 25, pp. 446-452, 1982.

[9] R. Gupta, M. Harrold, and M. Soffa, An approach to regression testing
using slicing, Proceedings of the International Conference on Software
Maintenance, pp. 299-308, 1992.

[10] K. Gallagher and J. Lyle, Using program slicing in software
maintenance, IEEE Transactions on Software Engineering, vol. 17, no.
8, pp. 751 – 761, 1991.

[11] S. Horwitz, J. Prins, and T. Reps, Integrating non-interfering versions
of programs, ACM Transactions on Programming Languages and
Systems, vol. 11, no. 3, pp. 345-387, 1989.

[12] L. Ott and J. Thuss, Slice based metrics for estimating cohesion,
Proceedings of the IEEE-CS International Metrics Symposium, pp. 78-
81, 1993.

[13] H. Longworth, Slice based program metrics, Master’s thesis, Michigan
Technological University, 1985.

[14] J. Bieman and L. Ott, Measuring functional cohesion, IEEE
Transactions on Software Engineering, vol. 20, no. 8, pp. 644-657,
1994.

[15] Aristotle Research Group, http://www-static.cc.gatech.edu/aristotle/
Tools/, July 2006.

Jehad Al Dallal received his B.Sc. and M.Sc. in degrees in Computer
Engineering from Kuwait University in Kuwait in 1995 and 1997,
respectively. He received his PhD degree in Computer Science from
University of Alberta in Canada in 2003.

He is currently working at Kuwait University, Department of Information
Sciences as an Assistant Professor. His research interests include software
testing and software analysis.

