
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

553

Abstract—A new and highly efficient architecture for elliptic
curve scalar point multiplication which is optimized for a binary field
recommended by NIST and is well-suited for elliptic curve
cryptographic (ECC) applications is presented. To achieve the
maximum architectural and timing improvements we have
reorganized and reordered the critical path of the Lopez-Dahab scalar
point multiplication architecture such that logic structures are
implemented in parallel and operations in the critical path are
diverted to noncritical paths. With G=41, the proposed design is
capable of performing a field multiplication over the extension field
with degree 163 in 11.92 s with the maximum achievable frequency
of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the
chip area is occupied, where G is the digit size of the underlying
digit-serial finite field multiplier.

Keywords—Elliptic Curve Cryptography, FPGA implementation,

Scalar point multiplication

I. INTRODUCTION

LLIPTIC CURVE CRYPTOGRAPHY (ECC) is a public
key cryptography system superior to the well-known RSA

cryptography: for the same key size, it gives a higher security
level than RSA [1, 2]. Intuitively, there are numerous
advantages of using field-programmable gate-array (FPGA)
technology to implement in hardware the computationally
intensive operations needed for ECC. These advantages are
comprehensively studied and listed by Wollinger, et. al. in [3].
In particular, performance, cost efficiency, and the ability to
easily update the cryptographic algorithm in fielded devices
are very attractive for hardware implementations. Several
recent FPGA-based hardware implementations of ECC have
achieved high-performance throughput and efficiency. In this
work we present a new architecture as well as an efficient
ECC FPGA implementation over GF(2163) that has
considerable advantages compared to other implementations
as regards to speed and area. The proposed architecture is
based on a modified Lopez-Dahab elliptic curve point
multiplication algorithm [4] in which we have reorganized and
reordered the data path carefully to achieve maximum
performance and efficiency. As we know, the efficiency of an
algorithm is measured by the scarce resources it consumes.
Typically the measure used is time, but sometimes other
measures such as space and number of processors are also
considered. Our basic strategy for architectural timing
improvement is to reorganize the critical path such that logic
structures are implemented in parallel. Usually, this technique
is used whenever a function that currently evaluates through a
serial string of logic can be broken up and evaluated in
parallel.

M. M. and H. M. are with Islamshahr Islamic Azad University, Tehran,

Iran. (email:m_masoumi@eetd.kntu.ac.ir, m.mahdizade@yahoo.com)

By using a modified field multiplier and two squarer
modules for separating the paths in which squaring is repeated
several times we have designed an efficient architecture for
the Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) [5].
In the design of the ECC processor, we have separated
sequentially executed operations into parallel operations and
have carefully reordered paths to divert operations in the
critical path to noncritical paths in order to minimize the
combinatorial delay of the critical path. The architecture of the
ECC processor has been designed in such a way that the
calculations of point addition are separated and are performed
independent of the key which in turn considerably reduces the
processing delay. The results we obtained show that by using
the mentioned optimization techniques and by implementing a
modified G-bit digit serial finite-field multiplier, with G = 41
our proposed design is able to compute GF(2163) elliptic curve
scalar point multiplication operations in 11.92 s with the
maximum achievable frequency of 251 MHz on Xilinx Virtex-
4 (XC4VLX200) while 19606 slices or 22% of the chip area is
occupied which makes the design suitable for high speed
applications. The organization of the article is as follows: In
Section 2, a brief introduction of the mathematical background
of ECC is presented. In Section 3, the algorithm optimization
decomposition in parallel and resource occupation for
implementation of the modular arithmetic logic unit and the
finite field arithmetic units in hardware are detailed. In Section
4 the proposed architecture for ECC processor is illustrated. In
section 5, the implementation results and performance
obtained are compared with those in other published works.
Finally, in the conclusions we summarize the results of our
discussions.

II. MATHEMATICAL BACKGROUND

A. Mathematical Background
It has been turned out that the form of cubic equation

appropriate for elliptic curve cryptographic applications which
has been recommended by NIST is [1, 6]
 �� � �� � �� � ��� � 	
�� ����� �1�

where it is understood that the variables � and � and the
coefficients � and 	 are elements of GF(2m) and calculations
are performed in GF(2m). Let us consider the finite field
GF(2163) generated using the irreducible polynomial ���� � ���� � �� � �� � �� � 1l. This is a NIST
recommended field for ECC applications. An elliptic curve
group over GF(2m) consists of the points on the corresponding
elliptic curve, together with a point at infinity, �. The set of
points that satisfy the Eq. (1) together with the element �
forms an addition Abelian group with respect to the elliptic
point addition operation. � serves as the additive identity.

Massoud Masoumi, Hosseyn Mahdizadeh

Efficient Hardware Implementation of an Elliptic
Curve Cryptographic Processor over GF (2163)

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

554

Thus, � = - � and for any point P on the curve, P + � = P and
P + (-P) = �. It can be shown that a finite Abelian group can
be defined based on the set ���(a,b), provided that 	 � 0. The
rules for addition can be stated as follows. For all points P, Q

 ���(a,b):
1) P + � = P.
2) If � � ��� , ���, then �� + ��� , ��� = �. The point ���, ��+��) is the negative of �, denoted as –P.
3) If � � ��� , ��� and � �
� , � � with � � � and � � � �, then ! � � � � � ��", �"� is
determined by the following rules:
 �" � #� � # � �� � � � � �2� �"= #��� � �"� + �" � ��

where # � %&' %()&')(

4) If � � ���, ��� then ! � 2� � ��" , �"� is determined by
the following rules: �" � #� � # � � �3� �" = ��� � �# � 1��"
where

λ = �� +
%()(

B. Elliptic Curve Cryptography
It has been shown that the points on an elliptic curve can be

represented using either two or three coordinates. In affine-
coordinate representation, a finite point on E(GF(2m)) is
specified by two coordinates �, � GF(2m) satisfying Eq. (2)
and (3). We can make use of the concept of a projective plane
over the field GF(2m) [2]. In this way, one can represent a
point using three rather than two coordinates. Then, given a
point P with affine-coordinate representation �, � there exists
a corresponding projective-coordinate representation X, Y and
Z such that, P(x;y) = P(X;Y;Z). As a means of avoiding the
expensive field inversion operation, it is more convenient to
work with Lopez-Dahab (LD) projective coordinates which is
highly attractive for hardware implementations. The Lopez-
Dahab algorithm is shown in Fig. 1.

INPUT: k = (kt−1, . . ., k1, k0)2 with kt−1 = 1, P = (xP, yP) ∈ E(F2
m).

OUTPUT: kP.

1. X1← xP, Z1←1, X2←��, +b, Z2←���. {Compute (P,2P)}

2. For i from t −2 downto 0 do

 2.1 If ki = 1 then

 T←Z1, Z1←(X1Z2 + X2Z1)
2, X1← xP Z1 + X1X2T Z2.

 T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2.

 2.2 Else

 T←Z2, Z2←(X1Z2 + X2Z1)
2, X2← xP Z2+X1X2Z1T .

 T←X1, X1←X1
4 +bZ1

4, Z1←T 2Z1
2.

3. x3←X1/Z1.

4. y3←(xP +X1/Z1)[(X1+ xP Z1)(X2+ xP Z2)+ (���+y)(Z1 Z2)](xP

Z1Z2)
−1 + yP.

5. Return (x3, y3)

Fig. 1 The Lopez-Dahab scalar point multiplication over GF(2m) [4]

III. HARDWARE ARCHITECTURES FOR FINITE FIELD

OPERATIONS OVER GF(2M)

A. Finite Field Reduction
Assuming that we have already computed the product

polynomial D(x)= A(x)B(x) and we want to obtain the modular
product of -��� such that
 -���=.��� �� ���� �4�

Recall that the polynomial product D and the modular product C;
have 2m-1 and m; coordinates, respectively, i.e.,
 . � [�01�, �01�, … , 0'�, 0 , … , �, 3]; -=[401� , 401�, … , 4�, 435; �5�

One of the most efficient approaches for hardware
implementation is reduction in finite fields using fast
reduction algorithm corresponding to the field polynomial.
Fig. 2 represents the implementation of the reduction modulo ���� used in this article. It has been assumed that the
maximum degree of .��� is equal to 162+G in which the
sentences with degree 163 ≤i≤162+G are mapped to the
sentences with degree i < 163.

Fig. 2 Reduction algorithm for -��� = .��� �� ����.

B. Finite Field Multiplication
Field multiplication is by far the most costly arithmetic

operation which directly affects the working frequency and
speed of the ECC processor [2]. One can make an speed-area
trade-off by using a serial-parallel strategy, in which the
multiplication of two arbitrary field elements is accomplished
by using a procedure inspired in the well-known digit-
serial/parallel (LSD) finite field multipliers. In this work, we
have designed LSD multiplier directly at digit-level. Based on
[7], LSD multiplication algorithms are classified as least
significant digit (LSD) first and most significant digit (MSD)
first algorithms. It has been shown that the LSD first algorithm
consumes fewer gates and has shorter critical path compared
with the MSD first algorithm. Various approaches have been
proposed for efficient implementation of the LSD multiplier.
With digit size G, the total number of digits in 9:�20� will be ; � <� 9= >.
Assume ? � ∑ �ABA01�AC3 and D � ∑ 	ABA01�AC3 such that

Input : D = [���'E, ���'E, … , �, 3], ���� � ���� � �� � �� � �� � 1;
Output : -= [4��� , 4���, … , 4�, 435;

if G = 0 then - ← D;
else

[4��� , … , 4F5 ← [���1E, … , 3];
[4F1� , … , 435 ← 0;
for i from 1 to G do 4G1� ← 4G1� ��H ���'G1� ; 4�'G1� ← 4�'G1� ��H ���'G1� ; 4�'G1� ← 4�'G1� ��H ���'G1� ; 4�'G1� ← 4�'G1� ��H ���'G1� ;

Return C;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

555

DG �
IJ
K
JLM 	FNG'AB AF1�

AC3
 0 O P O ; � 2

M 	FNG'AB A
01�1F�Q1��

AC3
P � ; � 1

R �6�

 - � ? N D �� ���� � ∑ 4AB A01�AC3
� SD3? � D�
?BF �� T���� � D�
?BF · BF �� �����

�DQ1� V?BFN�Q1�� · BF �� ����W X �� ���� �7�

The LSD algorithm is represented in Fig. 3.

Input: A,B ∈∈∈∈ GF(2m)
Output: C ∈∈∈∈ GF(2m), C = AB over GF(2m)
Set: A(0) = a, D(0) = 0, Z � <� 9= >
for i from 1 to n do

1� ?�G� � ?�G1��BF �� ����, 2� .�G� � ?�G1�� · DG1� � .�G1��

Where

 ?�G� � ∑ ?A�G�BA01�AC3

 .�G� � ∑ A�G�BA0'F1�AC3 and

DG � [∑ 	FNG'ABAF1�AC3 0 O P O ; � 2∑ 	FNG'ABA01�1FN�Q1��AC3 P � ; � 1R
end for

 3) Return - � .�Q� �� ����

 Fig. 3 The LSD multiplication algorithm [7]

Consider the two-step classical multiplication in GF(2m)
which involves in a polynomial multiplication and a
reduction modulo an irreducible polynomial. The product of
the polynomials A(x) and B(x), D(x)=A(x)×B(x), is a
polynomial with maximum degree 2m−2 and can be written
as follows.

. �
IK
LM �G	\1G ;] � 0, ^ , � � 1\

GC3
M �\1G'�01��	G1�01�� ;] � �, ^ ,2� � 2�01�

GC\
�8�R

We implemented the above scheme in a matrix form. Thus,

we put A in a three-section multiplicand matrix. The upper
part is a lower triangular submatrix. The middle part is a �� � 9 � 1� ` 9 submatrix. The lower part is an upper
triangular submatrix.

(9)

By converting Eq. (8) into matrix form Eq. (10), the Gth
term of polynomial D(x), dG, can be expressed as Eq. (10).

 F � �F1�	3 � �F1�	� � �3	F1� �10�

where G is the digit size of the underlying LSD multiplier.

As it is seen in Fig. 3, there are three steps for implementing
the LSD algorithm. Steps 1 and 2 of the LSD multiplier as is
represented in Eq. (11) can be implemented in parallel.

 ?�G� � ?�G1�� BF �� ���� �11� .�G� � ?�G1�� DG1� � .�G1��

Step 1 of the LSD algorithm reduces m+G bits to m bits and

step 2 shows the partial products. The final result is obtained
in step 3 in which m+G-1 bits are reduced to m bits. The
implementation architecture for different stages of the LSD
multiplier is depicted in Fig. 4. Step 1 is performed by the left
side of Fig. 4, step 2 is performed by the multiplication
function and step 3 is performed by the right side of Fig. 4.

C. Finite-Field Multiplicative Inversion
Based on Fermat's Little Theorem (FLT) and using an

ingenious rearrangement of the required field operations, the
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was
presented in [5]. The main advantage of ITMIA algorithm in
comparison with the Extended Euclidian Algorithm is that it
does not require a separate inversion module. When
computing the multiplicative inverse using ITIMA algorithm,
81 squaring must be iteratively performed in the algorithm’s
addition chain. These iterative computations are done
sequentially and therefore further parallelism is not possible
[2]. Now, to design an efficient multiplicative inversion block
based on the ITMIA, it is necessary to think how to reduce its
critical path. In other word, the critical path of the multiplier
and the critical path of the inversion block should be along
each other. If we use only one squarer module in the inversion

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

556

Fig. 4 Block diagram of the LSD multiplier implemented in this work

D. Finite-Field Multiplicative Inversion
Based on Fermat's Little Theorem (FLT) and using an

ingenious rearrangement of the required field operations, the
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was
presented in [5]. The main advantage of ITMIA algorithm in
comparison with the Extended Euclidian Algorithm is that it
does not require a separate inversion module. When
computing the multiplicative inverse using ITIMA algorithm,
81 squaring must be iteratively performed in the algorithm’s
addition chain. These iterative computations are done
sequentially and therefore further parallelism is not possible
[2]. Now, to design an efficient multiplicative inversion block
based on the ITMIA, it is necessary to think how to reduce its
critical path. In other word, the critical path of the multiplier
and the critical path of the inversion block should be along
each other. If we use only one squarer module in the inversion
block, this module should accomplish squaring for the input of
the inversion block, output of the multiplier and also its own
output (for consecutive squaring) and therefore, we are forced
to use a 3 to 1 multiplexer at the input of the squarer. Output
of this squarer together with a number of combinational gates
such as AND, OR, and NOT gates are connected to the input
of the multiplier. As a result of such architecture, the critical
path will place on the squarer which will create a bottleneck
for reducing the clock cycle time. We can break this critical
path by changing the architecture so that a 2 to 1 multiplexer
is used in place of a 3 to 1 multiplexer at the cost of adding
another squarer in the inverter architecture. The first squarer is
used for squaring at stages 1, 3, and 8 and also for the final
stage squaring, while the other required squarings in Table I is
accomplished with the second squarer, since at the stages 1, 3,
and 8, u0 = 1 and only one squaring need to be performed
while at the other stages several squaring are performed (see
appendix for more details). The schematics of the designed
architecture for multiplicative inversion over finite field
GF(2163) is shown in Fig. 5.

TABLE I
 Βb�A� COEFFICIENT GENERATION FOR M-1 =162 [2]

i dG rule
efghi ���j�khl · fghl ��� fgh��� � ��kh1�

0 1 - - fgm��� � ��i1�

1 2 2d3 nfgm ���o�km · fgm ��� fgi��� � ��l1�

2 4 2d� nfgi ���o�ki · fgi ��� fgl��� � ��p1�

3 5 d3�d� nfgl ���o�km · fgm ��� fgq��� � ��r1�

4 10 2d� nfgq ���o�kq · fgq ��� fgp��� � ��im1�

5 20 2d, nfgp ���o�kp · fgp ��� fgr��� � ��lm1�

6 40 2ds nfgr ���o�kr · fgr ��� fgt��� � ��pm1�

7 80 2d� nfgt ���o�kt · fgt ��� fgu��� � ��vm1�

8 81 d3�d� nfgu ���o�km · fgm ��� fgv��� � ��vi1�

9 162 2dw nfgv ���o�kv · fgv ��� fgx ��� � ��itl1�

Fig. 5 Schematic of the designed architecture for finite field

multiplicative inversion

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

557

IV. THE PROPOSED ARCHITECTURE FOR THE ECC PROCESSOR

As was mentioned, the most important strategy for
architectural timing improvements is to reorganize and reorder
the critical path such that logic structures are implemented in
parallel and to divert operations in the critical path to a
noncritical path. This technique should be used whenever a
function that currently evaluates through a serial string of
logic can be broken up and evaluated in parallel. This
assumption can dramatically speed up the implementation of a
large design. For the design of architecture for ECC scalar
multiplier, two different parts are considered; the first part that
involves in calculations in the affine coordinate system and the
other part that involves in the calculations for converting
projective coordinate to affine coordinates. For projective
calculations, parts 1 and 2 of the LD algorithm are considered.
In the design of this part of the processor, the number of
computational units is chosen in such a way that allows
parallel computations to be performed. Hence, we use three
field multipliers to implement the main loop of the algorithm
in which point addition and doubling are carried out. So,
according to section 2.1 of the LD algorithm, at the first stage,
the three multiplications y�z�, y�z�, {z� (T| y�� are
performed in parallel by using three multipliers as is shown in
Fig. 6, and then, the three other multiplications �P z1, y1y2{ z2 (T←Z1), 	z�, are accomplished in parallel at the
second stage. Hence, the delay of each iteration is reduced
from six field multiplication delay to two field multiplications.
For this part of the processor (computations in the projective
coordinates) we have used five squarers and two adders, as is
shown in Fig. 6. Four squarers are used for computing z�,, X1

4,
Z2

4 and X2
4 while the fifth squarer is used for (X1Z2+X2Z1)

2. In
addition, It is essential after the first field multiplication to
save the result of (X1Z2+X2Z1)

2 and (X2
4+bZ2

4) in the registers
t1 and t2 respectively for the later calculations. The most
important modules in the design of the scalar point multiplier
processor are field multiplication, field inversion and field
squaring. The key point here is that the critical path must be
placed on the longest path among these modules. Since the
inverter module was designed such that its critical path is
coincided with the multiplier’s critical path and since the
multiplier’s path is larger than the squarer’s path, the critical
path need to be placed on the multiplier. Please notice that if
resource sharing is used in implementing the field squarer, the
number of required computational elements will decrease;
however, since for squaring of different values we are forced
to use multiplexers at the input of this computational unit that
are controlled with conditional statements, the critical path
length will increase. To avoid long critical path, the
architecture should be designed synchronous and by using
combinational logic. In addition, in the design of the
projective calculations, separate calculations have not been
performed for using the initial values of part 1 of the LD
algorithm, since if further computational modules are designed
for these calculations, the complexity of the critical path and
the amount of required area will increase. We can avoid
additional or unnecessary calculations by using calculations of
part 2 of the algorithm for obtaining the results for part 1.

In the proposed design, calculations of part 1 need to be
performed whenever the most significant bit of the key is 1.
So, when ki = 1, if the values of Eq. (12) are used in the
calculations of part 2.1, then the required initial values of the
LD algorithm are obtained in accordance with part 1 of the LD
algorithm.

X1←1, Z1←0, X2← xP, Z2←1 (12)

The results of the calculation in section 2.1 of the LD

algorithm are obtained as Eq. (13) by using the values of
Eq. (13).

X1← xP, Z1←1, X2← xP

4+b, Z2← xP
2 (13)

As it is seen in Fig. 7, whenever the key bit is equal to 1, the

values of ‘1’, ‘0’, and �� are entered into the multiplexers to
connect to the appropriate inputs to make the terms of Eq.
(13). After designing the computational units for projective
coordinates, its input and output ports should be connected
together based on the key bits to complete the iteration in the
LD algorithm. When designing the architecture for
calculations in the projective coordinate system in part 2.1 of
the LD algorithm, to set up part 2.2 of the algorithm which
works with zero bits of the key, it is enough to swap X1 and Z1
with X2 and Z2 respectively when the key bits change. So, we
need to use a 2 to 1 multiplexer that is controlled with the key
bits. Therefore, in order to avoid long critical path, another
strategy should be considered. As it is seen from the
architecture of Fig. 7, in order to prevent further complexity
when swapping X1 and Z1 with X2 and Z2, the input-output
paths of point addition and doubling have been separated from
each other. The idea behind this subject is to connect the
outputs of point addition and doubling to the inputs of the
adder, independent of the values of the key bits. For example,
if we consider the following point addition operation for
ki =1, inputs to this operation are X1, X2, Z1 and Z2 and outputs
are saved in X1 and Z1.

T←Z1, Z1← (X1Z2+X2Z1)
2, X1← xPZ1+X1X2TZ2 (14)

When a key bit changes from ki = 1 to ki = 0, this change

will lead to change in the terms X1Z2+X2Z1 and X1X2TZ2.
However, since whenever the value of any key bit changes
only X1 and Z1 are swapped with X2 and Z2, the terms
X1Z2+X2Z1 and X1X2TZ2 will remain unchanged. So, the point
addition operation can be repeated in the iterative part of the
algorithm without involvements of the key bits and only after
the end of the loop, the registers are swapped with each other.
The point doubling operation for ki = 1 is performed in
accordance with Eq. (15).

T←X2, X2←X2

4 +bZ2
4, Z2←T 2Z2

2 (15)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

558

Fig. 6 The architecture designed for the computation of point addition and point doubling in projective coordinates of the LD

algorithm

This operation for ki = 0 is done by swapping X2 and Z2
with X1 and Z1 respectively. Therefore, output registers are
swapped in order to provide proper inputs for the point
doubling operation based on the key bits in the iterative part of
the LD algorithm. In order to realize that when the initial
values are entered into the calculations and also to be aware of
the iterations of the LD algorithm based on the key bits, it is
necessary to combine the module designed in Fig. 8 with a key
shift register in a new structure. The aim of this work is that
the inputs and outputs of the architecture of Fig. 8 are properly
connected to each other when all values of the key are
scanned. The new design is shown in Fig. 7. The second part
of the processor involves in calculations that convert
projective coordinates to affine coordinates. It is obvious from
the LD algorithm that parts 3 and 4 of this algorithm require
many calculations to be implemented. In addition, most of the
calculations are performed in a sequential manner. A possible
sequence of the instructions from standard Projective to affine
coordinates is proposed in [2] in which only one inversion unit
is used for converting projective coordinates to affine
coordinates. As it is seen form the LD algorithm, by
calculating (xPZ1Z2)

−1, another inversion, X1/Z1, can be
calculated using (xPZ2X1)*(xPZ1Z2)

−1. In this approach, the
number of field inverters is reduced with the cost of increase
in the number of field multipliers. However, considering the
sequence of the algorithm and due to repeated referrals to
these multipliers, if we use several field multipliers the length
of the critical path will increase. For implementing this
algorithm, ten field multiplications should be performed. In
addition, for performing twelfth to seventeenth steps, we need
to wait for the calculation of (xPZ1Z2)

−1 and therefore a long
computational delay will be inevitable. As it is seen from the
second part of the scalar multiplier processor which involves
in converting projective coordinates to affine coordinates,
there are many computations that should be done sequentially.

Fig. 7 Architecture of point addition and doubling iteration based on

the key bits

As was mentioned, in order to keep the critical path on the
multiplier, we need to design this part of the algorithm with
combinational logic as much as possible. Another approach
for the implementation is based on step 4 of the LD algorithm
as it is seen in Eq. (16).

y3 ← (xP+X1/Z1)[(X1+xZ1)(X2+xPZ2)+(xP

2+yp)(Z1 Z2)]
(xPZ1Z2)

−1 + yP (16)

There are two field inversions and five field multiplications
in Eq. (17). One way to implement the above function is to use
two field inverter and three parallel field multiplier units.
However, this causes that these multipliers to remain unused
in other stages since the results of multiplications in the next
steps are dependent to the results of the previous steps. This
subject will cause an unbreakable delay which prohibits
further speed up. Another design that leads to more efficient

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

559

implementation is to enter (Z1Z2)
−1

 in the square brackets of
Eq. (16). This will result in Eq. (17).

y3 ← (xP +X1/Z1)[(X1/Z1+ xP)(X2/Z2+ xP)+(xP 2+y)] (xP)−1 + yP

(17)

Therefore, first we calculate Z1
−1, Z2

−1
 and xP

 −1 using three
parallel field inverters concurrently and then implement five
required multiplications of Eq. (17) by using two multipliers
that are implemented in parallel in three stages. Also, for this
part of calculations we also need five adder units. The final
value of variable x in affine coordinate system in accordance
with part 2 of the LD algorithm is x3=X1/Z1 for which we have
to calculate Z1

−1 by using an inverter and then multiply the
result by X1. Since X1*Z1

−1
 is used for the next multiplication,

(X1/Z1+xP)*(X2/Z2+xP), it is necessary to save the result of
X1*Z1

−1. However, saving this value in a register and using it
in next clock cycles will increase the critical path. To avoid
this, this register should be eliminated. Since in the conversion
of coordinates, implementation of the multipliers have been
done in a parallel combinational manner (i.e., five
multiplications are performed in three stages using two
multipliers), in the second stage of multiplication the result of
first multiplication will be lost. However, in the third stage of
multiplication one of the multipliers is unused and could be
used for calculating X1*Z1

−1. So, the multiplication X1*Z1
−1 is

repeated in the third stage to eliminate the need for saving data
in this section of the processor. Finally, one of the important
steps that must be considered in the design of scalar multiplier
is to select the word length (G). Due to iterative calculations in
the projective coordinate system (part 2 of the LD algorithm),
fast performing of calculations is very important in the design
of an efficient ECC processor. So, choosing large G values for
the multipliers used in the design of the first part of the
processor (i.e., the multipliers in Fig. 7 or projective
calculations) will be more appropriate. The word lengths that
were used in this part of the processor is G1= 41. Since
calculations of the third and fourth part of the LD algorithm
are used only once at the end of the algorithm and there is no
iteration as part 2 of the algorithm, there is no need to select
large values for G. Instead, since there are relatively a large
number of computational units in this part of the processor, a
relatively small value for G should be chosen to reduce the
required implementation area. The word’s length used in this
part of the processor is G2=11.

V. IMPLEMENTATION RESULTS

The ECC processor was implemented using synthesizable
VHDL codes on Xilinx XC4VLX200. Performance of the
proposed scalar multiplication for is shown in table II. The
proposed design completes one scalar point multiplication in 326 N �}� 9�⁄ �)+12 N �}� 9�⁄ �)+1509 cycles. The number of
required clock cycles for ECC point multiplication with
G1 = 41 and G2 =11 is 2993 cycles. The term “}� 9�⁄ �”
indicates the number of cycles required to perform finite field
multiplication in part 2 of the LD algorithm or calculations in
the projective coordinate system. The term “}� 9�⁄ �”
indicates the number of cycles required to perform finite field
multiplication in parts 3 and 4 of the LD algorithm or

calculations for converting projective coordinates to affine
coordinates. In order to decide how efficient a design is, we

utilize the efficiency defined as
{��d���d�?H�� � �	P����P4�� � as a figure of

merit, where Throughput is defined as ��H]P;� TH��d�;4� `�d�	�H �T DP���d�	�H �T -�4��� and hardware area can be

defined as number of four inputs LUTs as well as CLB slices.
Table II presents performance of the proposed scalar
multiplier. The last column in this table shows the algorithmic
efficiency defined as throughput/area. It would be more
accurate to use throughput/#slices, but slice counts were not
reported by the authors of some other designs. Therefore, we
have used throughput/#LUTs. In Table III, a number of high
speed elliptic curve processors (ECP) are compared with the
proposed one. As it is seen from table III, the proposed design
is more efficient than the other designs reported in the open
literature expect one of the proposed schemes reported in [15].
Please note that although that design utilizes 4.82 times less
LUT compared with our design, it is almost 4 times slower
than our design with G = 41. The design proposed by Kim
et.al. in [19] is almost 15% faster than our design but in
consumes 25% more resources than our implementation.

TABLE II
PERFORMANCE OF THE PROPOSED SCALAR MULTIPLIER

G1 G2
Freq.

(MHz)
Time
(µs)

No. of
Cycles

Area
(Slices)

Area
(LUT)

Efficiency

41 11 251.054 11.92 2993 19604 36727 372.1

TABLE III
PERFORMANCE OF THE SCALAR MULTIPLIERS

Efficiency
Area

(LUT)
Area

(Slices)
Time
(µs)

Freq.
(MHz)

FPGA Ref.

265 3002 - 210 76.7 XCV400E [8]
56 20068 - 144 66.4 XCV2000E [9]

44 - 18079 106 90.2
VinexII
V8000

[10]

- -
18314
+ 24

RAMs
63 46.5 XCV2600E [11]

- - - 60 54 XC2V600-4 [12]

- - 8450 280 100
Virtex II
pro 30

[13]

316 26364 16209 19.55 153.9
Virtex-4
VLX200

[14]

532 7559 3416 46.5 100 XC2V2000 [15]

340 2812 13376 34.11 93.3 XC2V6000 [16]

70 10017 - 75 66
Virtex
2000E

[17]

- - - 49 - Stratix II [18]

- - 24,363 10 143 XC4VLX80 [19]

VI. CONCLUSIONS

A high-performance ECC processor was implemented using
FPGA technology. We used a careful parallel implementation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

560

strategy to reduce the critical path of the Itoh-Tsujii’s Finite-
Field Inversion. In addition, in the design of the ECC
processor, by using three parallel multiplier units and reducing
the number of unused cycles in each stage we reduced the
processor delay which is mainly related to the calculations in
the projective coordinate system. Separation of point doubling
path from point addition path and using appropriate initial
values for the initial setup of the processor reduced the
complexity of the processor. The results show that the
designed architecture can be well suited to the applications
that require high performance.

REFERENCES
[1] D. Hankerson, A. Menezes, S. Vanstone, Guide to elliptic curve

cryptography, Springer, 2004.
[2] Rodriguez-Henriquez et.al, Cryptographic Algorithms on

Reconfigurable Hardware, Springer, 2006.
[3] T. Wollinger, J. Guajardo, and C. Paar, “Security on FPGAs: State-of-

the-art and Implementations Attacks,” ACM Trans. on Embedded
Computing Sys., 3(3):534- 574, 2004.

[4] J. Lopez and R. Dahab, “Fast multiplication on elliptic curves over
GF(2m) without precomputation,”, CHES, MA, USA, 1999.

[5] T. Itoh and S. Tsujii, “A Fast Algorithm for Computing Multiplicative
Inverses in GF(2m) Using Normal Basis,” Information and Computing,
78:171-177, 1988.

[6] W. Stallings, Cryptography and Network Security, 4th Ed., Prentice-
Hall, 2006.

[7] S. Kummar, T. Wollinger, and C. Paar, “Optimum Digit Serial GF(2m)
Multipliers for Curve Based Cryptography,” IEEE Trans. Comp., vol.
55, no 10. 2006

[8] G. Orlando and C. Paar., “A high-performance reconfigurable elliptic
curve processor for GF(2m),” CHES, MA, USA, 2000.

[9] N. Gura, S. C. Shantz, H. Eberle, S. Gupta, V. Gupta, D. Finchelstein, E.
Goupy, and D. Stebila, “An end-to-end systems approach to elliptic
curve cryptography,” CHES, CA, USA, 2002.

[10] K. Jarvinen, M. Tommiska, and J. Skytta, “A scalable architecture for
elliptic curve point multiplication,” ICFPT, Brisbane, Australia, 2004.

[11] F. Rodriguez-Henriquez, N. A. Saqib, and A. Diaz-Perez, “A fast
parallel implementation of elliptic curve point multiplication over
GF(2m),” Microprocessors Microsyst., vol. 28, pp. 329–339, 2004.

[12] R. C. C. Cheung, N. J. Telle, W. Luk, and P. Y. K. Cheung,
“Customizable elliptic curve cryptosystems,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst.”, vol. 13, no. 9, pp. 1048–1059, Sep. 2005.

[13] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Superscalar
coprocessor for high-speed curve-based cryptography," CHES,
Yokohama, Japan, 2006

[14] W.N. Chelton and M. Benaissa, “Fast elliptic curve cryptography on
FPGA, "IEEE Trans. on Very Large Scale Integration (VLSI) Systems,”
vol. 16, no. 2, Feb. 2008, pp. 198-205.

[15] B. Ansari and a. Hasan, “High-Performance Architecture of Elliptic
Curve Scalar multiplication”, IEEE Trans. on Comp., Vol. 57, No. 11,
pp. 1443-1453, Nov. 2008.

[16] Yong-ping Dan et. al., “High-performance hardware architecture of
elliptic curve cryptography processor over GF(2163), J. Zhejiang Univ.
Sci., A 2009 10(2):301-310

[17] J. Lutz and Hasan, A., “High performance FPGA based elliptic curve
cryptographic coprocessor," ITCC, Las Vegas, USA, Apr. 5-7, vol. 2,
pp. 486-492, 2004,

[18] K. Jarvinen and J. Skytta, “On parallelization of high-speed processors
for elliptic curve cryptography,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, 16 (9) (2008) 1162–1175.

[19] C. H. Kim, S. Kwon, C. P. Hong, “FPGA implementation of high
performance elliptic curve cryptographic processor over GF(2163),” J.
of Sys. Architecture, 54 (10) (2008) 893–900

