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Abstract—A new and highly efficient architecture for elliptic 
curve scalar point multiplication which is optimized for a binary field 
recommended by NIST and is well-suited for elliptic curve 
cryptographic (ECC) applications is presented. To achieve the 
maximum architectural and timing improvements we have 
reorganized and reordered the critical path of the Lopez-Dahab scalar 
point multiplication architecture such that logic structures are 
implemented in parallel and operations in the critical path are 
diverted to noncritical paths. With G=41, the proposed design is 
capable of performing a field multiplication over the extension field 
with degree 163 in 11.92 s with the maximum achievable frequency 
of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the 
chip area is occupied, where G is the digit size of the underlying 
digit-serial finite field multiplier. 

 
Keywords—Elliptic Curve Cryptography, FPGA implementation, 

Scalar point multiplication 
 

I. INTRODUCTION 

LLIPTIC CURVE CRYPTOGRAPHY (ECC) is a public 
key cryptography system superior to the well-known RSA 

cryptography: for the same key size, it gives a higher security 
level than RSA [1, 2]. Intuitively, there are numerous 
advantages of using field-programmable gate-array (FPGA) 
technology to implement in hardware the computationally 
intensive operations needed for ECC. These advantages are 
comprehensively studied and listed by Wollinger, et. al. in [3]. 
In particular, performance, cost efficiency, and the ability to 
easily update the cryptographic algorithm in fielded devices 
are very attractive for hardware implementations. Several 
recent FPGA-based hardware implementations of ECC have 
achieved high-performance throughput and efficiency. In this 
work we present a new architecture as well as an efficient 
ECC FPGA implementation over GF(2163) that has 
considerable advantages compared to other implementations 
as regards to speed and area. The proposed architecture is 
based on a modified Lopez-Dahab elliptic curve point 
multiplication algorithm [4] in which we have reorganized and 
reordered the data path carefully to achieve maximum 
performance and efficiency. As we know, the efficiency of an 
algorithm is measured by the scarce resources it consumes. 
Typically the measure used is time, but sometimes other 
measures such as space and number of processors are also 
considered. Our basic strategy for architectural timing 
improvement is to reorganize the critical path such that logic 
structures are implemented in parallel. Usually, this technique 
is used whenever a function that currently evaluates through a 
serial string of logic can be broken up and evaluated in 
parallel.  
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By using a modified field multiplier and two squarer 
modules for separating the paths in which squaring is repeated 
several times we have designed an efficient architecture for 
the Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) [5]. 
In the design of the ECC processor, we have separated 
sequentially executed operations into parallel operations and 
have carefully reordered paths to divert operations in the 
critical path to noncritical paths in order to minimize the 
combinatorial delay of the critical path. The architecture of the 
ECC processor has been designed in such a way that the 
calculations of point addition are separated and are performed 
independent of the key which in turn considerably reduces the 
processing delay. The results we obtained show that by using 
the mentioned optimization techniques and by implementing a 
modified G-bit digit serial finite-field multiplier, with G = 41 
our proposed design is able to compute GF(2163) elliptic curve 
scalar point multiplication operations in 11.92 s with the 
maximum achievable frequency of 251 MHz on Xilinx Virtex-
4 (XC4VLX200) while 19606 slices or 22% of the chip area is 
occupied which makes the design suitable for high speed 
applications. The organization of the article is as follows: In 
Section 2, a brief introduction of the mathematical background 
of ECC is presented. In Section 3, the algorithm optimization 
decomposition in parallel and resource occupation for 
implementation of the modular arithmetic logic unit and the 
finite field arithmetic units in hardware are detailed. In Section 
4 the proposed architecture for ECC processor is illustrated. In 
section 5, the implementation results and performance 
obtained are compared with those in other published works. 
Finally, in the conclusions we summarize the results of our 
discussions. 

II. MATHEMATICAL BACKGROUND 

A.  Mathematical Background  
It has been turned out that the form of cubic equation 

appropriate for elliptic curve cryptographic applications which 
has been recommended by NIST is [1, 6] 
 �� � �� �  �� �  ��� �  	 
�� �����                                           �1� 
 
where it is understood that the variables � and � and the 
coefficients � and 	 are elements of GF(2m) and calculations 
are performed in GF(2m). Let us consider the finite field 
GF(2163) generated using the irreducible polynomial  ���� �  ���� � �� � �� � �� � 1l. This is a NIST 
recommended field for ECC applications. An elliptic curve 
group over GF(2m) consists of the points on the corresponding 
elliptic curve, together with a point at infinity, �. The set of 
points that satisfy the Eq. (1) together with the element � 
forms an addition Abelian group with respect to the elliptic 
point addition operation. � serves as the additive identity. 
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Thus, � = - � and for any point P on the curve, P + � = P and 
P + (-P) = �. It can be shown that a finite Abelian group can 
be defined based on the set ���(a,b), provided that 	 � 0. The 
rules for addition can be stated as follows. For all points P, Q 

 ���(a,b): 
1) P + � = P. 
2) If � � ��� , ���, then �� + ��� , ��� = �. The point  ���, ��+��) is the negative of �, denoted as –P. 
3) If � � ��� , ��� and � � 
� , � � with � �  � and   � � � �, then ! � � � � �  ��", �"� is      
determined by the following rules: 
 �" �  #� �  # � �� �  � �  �                   �2� �"= #��� � �"� + �" � ��                                       

 

where # �  %&' %()&' )(
 

4) If  � � ���, ��� then ! � 2� �  ��" , �"� is determined by 
the following rules:                   �" �  #� �  # � �                                             �3� �" = ��� �  �# � 1��"                           
where  

λ = �� + 
%()( 

 
B.  Elliptic Curve Cryptography 
It has been shown that the points on an elliptic curve can be 

represented using either two or three coordinates. In affine-
coordinate representation, a finite point on E(GF(2m)) is 
specified by two coordinates �, �  GF(2m) satisfying Eq. (2) 
and (3). We can make use of the concept of a projective plane 
over the field GF(2m) [2]. In this way, one can represent a 
point using three rather than two coordinates. Then, given a 
point P with affine-coordinate representation �, � there exists 
a corresponding projective-coordinate representation X, Y and 
Z such that, P(x;y) = P(X;Y;Z). As a means of avoiding the 
expensive field inversion operation, it is more convenient to 
work with Lopez-Dahab (LD) projective coordinates which is 
highly attractive for hardware implementations. The Lopez-
Dahab algorithm is shown in Fig. 1.  
 

INPUT: k = (kt−1, . . ., k1, k0)2 with kt−1 = 1, P = (xP, yP) ∈ E(F2
m ). 

OUTPUT: kP. 

1. X1← xP,  Z1←1,  X2←��, +b,  Z2←���. {Compute (P,2P)} 

2. For i from t −2 downto 0 do 

     2.1 If ki = 1 then 

               T←Z1, Z1←(X1Z2 + X2Z1)
2, X1← xP Z1 + X1X2T Z2. 

               T←X2, X2←X2
4 +bZ2

4, Z2←T 2Z2
2. 

     2.2 Else 

               T←Z2, Z2←(X1Z2 + X2Z1)
2, X2← xP Z2+X1X2Z1T . 

                T←X1, X1←X1
4 +bZ1

4, Z1←T 2Z1
2. 

3. x3←X1/Z1. 

4. y3←( xP +X1/Z1)[(X1+ xP Z1)(X2+ xP Z2)+ (���+y)(Z1 Z2)]( xP 

Z1Z2)
−1 + yP. 

5. Return (x3, y3) 

Fig. 1 The Lopez-Dahab scalar point multiplication over GF(2m) [4] 

III.  HARDWARE ARCHITECTURES FOR FINITE FIELD 

OPERATIONS OVER GF(2M) 

A. Finite Field Reduction 
Assuming that we have already computed the product 

polynomial D(x)= A(x)B(x) and we want to obtain the modular 
product of -��� such that  
 -���=.��� �� ����                                                               �4� 
 
Recall that the polynomial product D and the modular product C; 
have 2m-1 and m; coordinates, respectively, i.e., 
   . � [�01�, �01�, … , 0'�, 0 , … , �,  3];   -=[401� , 401�, … , 4�,  435;                                                      �5� 
 

One of the most efficient approaches for hardware 
implementation is reduction in finite fields using fast 
reduction algorithm corresponding to the field polynomial. 
Fig. 2 represents the implementation of the reduction modulo ���� used in this article. It has been assumed that the 
maximum degree of .��� is equal to 162+G in which the 
sentences with degree 163 ≤i≤162+G are mapped to the 
sentences with degree i < 163. 

 
 

 

 

 

 

 

 

 
 
 
 
 

Fig. 2 Reduction algorithm for -��� = .��� �� ����. 
 

B. Finite Field Multiplication 
Field multiplication is by far the most costly arithmetic 

operation which directly affects the working frequency and 
speed of the ECC processor [2]. One can make an speed-area 
trade-off by using a serial-parallel strategy, in which the 
multiplication of two arbitrary field elements is accomplished 
by using a procedure inspired in the well-known digit-
serial/parallel (LSD) finite field multipliers. In this work, we 
have designed LSD multiplier directly at digit-level. Based on 
[7], LSD multiplication algorithms are classified as least 
significant digit (LSD) first and most significant digit (MSD) 
first algorithms. It has been shown that the LSD first algorithm 
consumes fewer gates and has shorter critical path compared 
with the MSD first algorithm. Various approaches have been 
proposed for efficient implementation of the LSD multiplier. 
With digit size G, the total number of digits in 9:�20� will be ; � <� 9= >. 
Assume ? � ∑ �ABA01�AC3  and D � ∑ 	ABA01�AC3  such that  

Input : D = [���'E, ���'E, … , �,  3], ���� � ���� � �� � �� � �� � 1; 
Output : -= [4��� , 4���, … , 4�, 435; 

if  G = 0  then - ← D; 
else 

[4��� , … , 4F5  ← [���1E, … ,  3]; 
[4F1� , … , 435  ← 0; 
for i from 1 to G do 4G1�      ←  4G1�     ��H  ���'G1� ; 4�'G1�  ←  4�'G1� ��H  ���'G1� ; 4�'G1�  ←  4�'G1� ��H  ���'G1� ; 4�'G1�  ←  4�'G1�  ��H  ���'G1� ; 

Return C; 
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DG �
IJ
K
JLM 	FNG'AB AF1�

AC3
      0 O P O ; � 2

M 	FNG'AB A
01�1F�Q1��

AC3
P � ; � 1

R                                �6� 

 - � ? N D �� ���� � ∑ 4AB A01�AC3       
� SD3? � D�
?BF  �� T���� � D�
?BF · BF  �� �����

�DQ1� V?BFN�Q1�� · BF  �� ����W X   �� ����   �7� 

 
The LSD algorithm is represented in Fig. 3. 
 

Input: A,B ∈∈∈∈ GF(2m) 
Output:  C ∈∈∈∈ GF(2m), C =  AB over  GF(2m) 
Set: A(0) = a, D(0) = 0, Z � <� 9= > 
for  i from 1 to n do 

   
1� ?�G� � ?�G1��BF  �� ����,         2� .�G� � ?�G1�� · DG1�  �  .�G1��      

Where 

     ?�G� � ∑ ?A�G�BA01�AC3  

     .�G� � ∑ A�G�BA0'F1�AC3             and 

DG � [ ∑ 	FNG'ABAF1�AC3       0 O P O ; � 2∑ 	FNG'ABA01�1FN�Q1��AC3 P � ; � 1R  
end for 

 3) Return  - � .�Q� �� ����  
 

  Fig. 3 The LSD multiplication algorithm [7] 
 

Consider the two-step classical multiplication in GF(2m) 
which involves in a polynomial multiplication and a 
reduction modulo an irreducible polynomial. The product of 
the polynomials A(x) and B(x), D(x)=A(x)×B(x), is a 
polynomial with maximum degree 2m−2 and can be written 
as follows. 

 

. �
IK
LM �G	\1G  ;  ] � 0, ^ , � � 1\

GC3                               
M �\1G'�01��	G1�01�� ;  ] � �, ^ ,2� � 2�01�

GC\
�8�R 

 
We implemented the above scheme in a matrix form. Thus, 

we put A in a three-section multiplicand matrix. The upper 
part is a lower triangular submatrix. The middle part is a �� � 9 � 1� ` 9 submatrix. The lower part is an upper 
triangular submatrix.  

(9) 

By converting Eq. (8) into matrix form Eq. (10), the Gth 
term of polynomial D(x), dG, can be expressed as Eq. (10). 

 F � �F1�	3 � �F1�	� � �3	F1�                                        �10� 

 
where G is the digit size of the underlying LSD multiplier. 

As it is seen in Fig. 3, there are three steps for implementing 
the LSD algorithm. Steps 1 and 2 of the LSD multiplier as is 
represented in Eq. (11) can be implemented in parallel.  

 ?�G� �  ?�G1�� BF  �� ����                                              �11�  .�G� �  ?�G1�� DG1� � .�G1��                                                                           
 
Step 1 of the LSD algorithm reduces m+G bits to m bits and 

step 2 shows the partial products. The final result is obtained 
in step 3 in which m+G-1 bits are reduced to m bits. The 
implementation architecture for different stages of the LSD 
multiplier is depicted in Fig. 4. Step 1 is performed by the left 
side of Fig. 4, step 2 is performed by the multiplication 
function and step 3 is performed by the right side of Fig. 4. 

 
C. Finite-Field Multiplicative Inversion 
Based on Fermat's Little Theorem (FLT) and using an 

ingenious rearrangement of the required field operations, the 
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was 
presented in [5]. The main advantage of ITMIA algorithm in 
comparison with the Extended Euclidian Algorithm is that it 
does not require a separate inversion module. When 
computing the multiplicative inverse using ITIMA algorithm, 
81 squaring must be iteratively performed in the algorithm’s 
addition chain. These iterative computations are done 
sequentially and therefore further parallelism is not possible 
[2]. Now, to design an efficient multiplicative inversion block 
based on the ITMIA, it is necessary to think how to reduce its 
critical path. In other word, the critical path of the multiplier 
and the critical path of the inversion block should be along 
each other. If we use only one squarer module in the inversion  
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Fig. 4 Block diagram of the LSD multiplier implemented in this work 

 
D. Finite-Field Multiplicative Inversion 
Based on Fermat's Little Theorem (FLT) and using an 

ingenious rearrangement of the required field operations, the 
Itoh-Tsujii Multiplicative Inverse Algorithm (ITMIA) was 
presented in [5]. The main advantage of ITMIA algorithm in 
comparison with the Extended Euclidian Algorithm is that it 
does not require a separate inversion module. When 
computing the multiplicative inverse using ITIMA algorithm, 
81 squaring must be iteratively performed in the algorithm’s 
addition chain. These iterative computations are done 
sequentially and therefore further parallelism is not possible 
[2]. Now, to design an efficient multiplicative inversion block 
based on the ITMIA, it is necessary to think how to reduce its 
critical path. In other word, the critical path of the multiplier 
and the critical path of the inversion block should be along 
each other. If we use only one squarer module in the inversion 
block, this module should accomplish squaring for the input of 
the inversion block, output of the multiplier and also its own 
output (for consecutive squaring) and therefore, we are forced 
to use a 3 to 1 multiplexer at the input of the squarer. Output 
of this squarer together with a number of combinational gates 
such as AND, OR, and NOT gates are connected to the input 
of the multiplier. As a result of such architecture, the critical 
path will place on the squarer which will create a bottleneck 
for reducing the clock cycle time. We can break this critical 
path by changing the architecture so that a 2 to 1 multiplexer 
is used in place of a 3 to 1 multiplexer at the cost of adding 
another squarer in the inverter architecture. The first squarer is 
used for squaring at stages 1, 3, and 8 and also for the final 
stage squaring, while the other required squarings in Table I is 
accomplished with the second squarer, since at the stages 1, 3, 
and 8, u0 = 1 and only one squaring need to be performed 
while at the other stages several squaring are performed (see 
appendix for more details). The schematics of the designed 
architecture for multiplicative inversion over finite field 
GF(2163) is shown in Fig. 5.  

 
 

TABLE I 
 Βb�A� COEFFICIENT GENERATION FOR M-1 =162 [2] 

 

i dG rule 
efghi ���j�khl · fghl ��� fgh��� � ��kh1� 

0 1 - - fgm��� � ��i1� 

1 2 2d3 nfgm ���o�km · fgm ��� fgi��� � ��l1� 

2 4 2d� nfgi ���o�ki · fgi ��� fgl��� � ��p1� 

3 5 d3�d� nfgl ���o�km · fgm ��� fgq��� � ��r1� 

4 10 2d� nfgq ���o�kq · fgq ��� fgp��� � ��im1� 

5 20 2d, nfgp ���o�kp · fgp ��� fgr��� � ��lm1� 

6 40 2ds nfgr ���o�kr · fgr ��� fgt��� � ��pm1� 

7 80 2d� nfgt ���o�kt · fgt ��� fgu��� � ��vm1� 

8 81 d3�d� nfgu ���o�km · fgm ��� fgv��� � ��vi1� 

9 162 2dw nfgv ���o�kv · fgv ��� fgx ��� � ��itl1� 

 

 
Fig. 5 Schematic of the designed architecture for finite field 

multiplicative inversion 
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IV.  THE PROPOSED ARCHITECTURE FOR THE ECC PROCESSOR 

As was mentioned, the most important strategy for 
architectural timing improvements is to reorganize and reorder 
the critical path such that logic structures are implemented in 
parallel and to divert operations in the critical path to a 
noncritical path. This technique should be used whenever a 
function that currently evaluates through a serial string of 
logic can be broken up and evaluated in parallel. This 
assumption can dramatically speed up the implementation of a 
large design. For the design of architecture for ECC scalar 
multiplier, two different parts are considered; the first part that 
involves in calculations in the affine coordinate system and the 
other part that involves in the calculations for converting 
projective coordinate to affine coordinates. For projective 
calculations, parts 1 and 2 of the LD algorithm are considered. 
In the design of this part of the processor, the number of 
computational units is chosen in such a way that allows 
parallel computations to be performed. Hence, we use three 
field multipliers to implement the main loop of the algorithm 
in which point addition and doubling are carried out. So, 
according to section 2.1 of the LD algorithm, at the first stage, 
the three multiplications y�z�, y�z�, {z� (T| y�� are 
performed in parallel by using three multipliers as is shown in 
Fig. 6, and then, the three other multiplications �P z1, y1y2{ z2 (T←Z1), 	z�, are accomplished in parallel at the 
second stage. Hence, the delay of each iteration is reduced 
from six field multiplication delay to two field multiplications. 
For this part of the processor (computations in the projective 
coordinates) we have used five squarers and two adders, as is 
shown in Fig. 6. Four squarers are used for computing z�,, X1

4, 
Z2

4 and X2
4 while the fifth squarer is used for (X1Z2+X2Z1)

2. In 
addition, It is essential after the first field multiplication to 
save the result of (X1Z2+X2Z1)

2 and (X2
4+bZ2

4) in the registers 
t1 and t2 respectively for the later calculations. The most 
important modules in the design of the scalar point multiplier 
processor are field multiplication, field inversion and field 
squaring. The key point here is that the critical path must be 
placed on the longest path among these modules. Since the 
inverter module was designed such that its critical path is 
coincided with the multiplier’s critical path and since the 
multiplier’s path is larger than the squarer’s path, the critical 
path need to be placed on the multiplier. Please notice that if 
resource sharing is used in implementing the field squarer, the 
number of required computational elements will decrease; 
however, since for squaring of different values we are forced 
to use multiplexers at the input of this computational unit that 
are controlled with conditional statements, the critical path 
length will increase. To avoid long critical path, the 
architecture should be designed synchronous and by using 
combinational logic. In addition, in the design of the 
projective calculations, separate calculations have not been 
performed for using the initial values of part 1 of the LD 
algorithm, since if further computational modules are designed 
for these calculations, the complexity of the critical path and 
the amount of required area will increase. We can avoid 
additional or unnecessary calculations by using calculations of 
part 2 of the algorithm for obtaining the results for part 1.  

In the proposed design, calculations of part 1 need to be 
performed whenever the most significant bit of the key is 1. 
So, when ki = 1, if the values of Eq. (12) are used in the 
calculations of part 2.1, then the required initial values of the 
LD algorithm are obtained in accordance with part 1 of the LD 
algorithm. 

 
X1←1, Z1←0, X2← xP, Z2←1                                              (12) 

 
The results of the calculation in section 2.1 of the LD 

algorithm are obtained as Eq. (13) by using the values of  
Eq. (13). 

 
X1← xP, Z1←1, X2← xP

4+b, Z2← xP
2                             (13) 

 
As it is seen in Fig. 7, whenever the key bit is equal to 1, the 

values of ‘1’, ‘0’, and �� are entered into the multiplexers to 
connect to the appropriate inputs to make the terms of Eq. 
(13). After designing the computational units for projective 
coordinates, its input and output ports should be connected 
together based on the key bits to complete the iteration in the 
LD algorithm. When designing the architecture for 
calculations in the projective coordinate system in part 2.1 of 
the LD algorithm, to set up part 2.2 of the algorithm which 
works with zero bits of the key, it is enough to swap X1 and Z1 
with X2 and Z2 respectively when the key bits change. So, we 
need to use a 2 to 1 multiplexer that is controlled with the key 
bits. Therefore, in order to avoid long critical path, another 
strategy should be considered. As it is seen from the 
architecture of Fig. 7, in order to prevent further complexity 
when swapping X1 and Z1 with X2 and Z2, the input-output 
paths of point addition and doubling have been separated from 
each other. The idea behind this subject is to connect the 
outputs of point addition and doubling to the inputs of the 
adder, independent of the values of the key bits. For example, 
if we consider the following point addition operation for  
ki =1, inputs to this operation are X1, X2, Z1 and Z2 and outputs 
are saved in X1 and Z1. 

 

T←Z1, Z1← (X1Z2+X2Z1)
2, X1← xPZ1+X1X2TZ2                        (14) 

 
When a key bit changes from ki = 1 to ki = 0, this change 

will lead to change in the terms X1Z2+X2Z1 and X1X2TZ2. 
However, since whenever the value of any key bit changes 
only X1 and Z1 are swapped with X2 and Z2, the terms 
X1Z2+X2Z1 and X1X2TZ2 will remain unchanged. So, the point 
addition operation can be repeated in the iterative part of the 
algorithm without involvements of the key bits and only after 
the end of the loop, the registers are swapped with each other. 
The point doubling operation for ki = 1 is performed in 
accordance with Eq. (15). 

 
T←X2, X2←X2

4 +bZ2
4, Z2←T 2Z2

2                                             (15) 
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Fig. 6 The architecture designed for the computation of point addition and point doubling in projective coordinates of the LD 

algorithm
 

This operation for ki = 0 is done by swapping X2 and Z2 
with X1 and Z1 respectively. Therefore, output registers are 
swapped in order to provide proper inputs for the point 
doubling operation based on the key bits in the iterative part of 
the LD algorithm. In order to realize that when the initial 
values are entered into the calculations and also to be aware of 
the iterations of the LD algorithm based on the key bits, it is 
necessary to combine the module designed in Fig. 8 with a key 
shift register in a new structure. The aim of this work is that 
the inputs and outputs of the architecture of Fig. 8 are properly 
connected to each other when all values of the key are 
scanned. The new design is shown in Fig. 7. The second part 
of the processor involves in calculations that convert 
projective coordinates to affine coordinates. It is obvious from 
the LD algorithm that parts 3 and 4 of this algorithm require 
many calculations to be implemented. In addition, most of the 
calculations are performed in a sequential manner. A possible 
sequence of the instructions from standard Projective to affine 
coordinates is proposed in [2] in which only one inversion unit 
is used for converting projective coordinates to affine 
coordinates. As it is seen form the LD algorithm, by 
calculating (xPZ1Z2)

−1, another inversion, X1/Z1, can be 
calculated using (xPZ2X1)*(xPZ1Z2)

−1. In this approach, the 
number of field inverters is reduced with the cost of increase 
in the number of field multipliers. However, considering the 
sequence of the algorithm and due to repeated referrals to 
these multipliers, if we use several field multipliers the length 
of the critical path will increase. For implementing this 
algorithm, ten field multiplications should be performed. In 
addition, for performing twelfth to seventeenth steps, we need 
to wait for the calculation of (xPZ1Z2)

−1 and therefore a long 
computational delay will be inevitable. As it is seen from the 
second part of the scalar multiplier processor which involves 
in converting projective coordinates to affine coordinates, 
there are many computations that should be done sequentially. 

 

 
Fig. 7 Architecture of point addition and doubling iteration based on 

the key bits 
 

As was mentioned, in order to keep the critical path on the 
multiplier, we need to design this part of the algorithm with 
combinational logic as much as possible. Another approach 
for the implementation is based on step 4 of the LD algorithm 
as it is seen in Eq. (16).  

 
y3 ← (xP+X1/Z1)[(X1+xZ1)(X2+xPZ2)+( xP

2+yp)(Z1 Z2)]        
(xPZ1Z2)

−1 + yP                                                                      (16) 
 

There are two field inversions and five field multiplications 
in Eq. (17). One way to implement the above function is to use 
two field inverter and three parallel field multiplier units. 
However, this causes that these multipliers to remain unused 
in other stages since the results of multiplications in the next 
steps are dependent to the results of the previous steps. This 
subject will cause an unbreakable delay which prohibits 
further speed up. Another design that leads to more efficient 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

559

 

 

implementation is to enter (Z1Z2)
−1

 in the square brackets of 
Eq. (16). This will result in Eq. (17). 

 
y3 ← (xP +X1/Z1)[( X1/Z1+ xP)( X2/Z2+ xP)+(xP 2+y)]   (xP)−1 + yP                                                   

(17) 
 

Therefore, first we calculate Z1
−1, Z2

−1
 and xP

 −1 using three 
parallel field inverters concurrently and then implement five 
required multiplications of Eq. (17) by using two multipliers 
that are implemented in parallel in three stages. Also, for this 
part of calculations we also need five adder units. The final 
value of variable x in affine coordinate system in accordance 
with part 2 of the LD algorithm is x3=X1/Z1 for which we have 
to calculate Z1

−1 by using an inverter and then multiply the 
result by X1. Since X1*Z1

−1
 is used for the next multiplication, 

(X1/Z1+xP)*(X2/Z2+xP), it is necessary to save the result of 
X1*Z1

−1. However, saving this value in a register and using it 
in next clock cycles will increase the critical path. To avoid 
this, this register should be eliminated. Since in the conversion 
of coordinates, implementation of the multipliers have been 
done in a parallel combinational manner (i.e., five 
multiplications are performed in three stages using two 
multipliers), in the second stage of multiplication the result of 
first multiplication will be lost. However, in the third stage of 
multiplication one of the multipliers is unused and could be 
used for calculating X1*Z1

−1. So, the multiplication X1*Z1
−1 is 

repeated in the third stage to eliminate the need for saving data 
in this section of the processor. Finally, one of the important 
steps that must be considered in the design of scalar multiplier 
is to select the word length (G). Due to iterative calculations in 
the projective coordinate system (part 2 of the LD algorithm), 
fast performing of calculations is very important in the design 
of an efficient ECC processor. So, choosing large G values for 
the multipliers used in the design of the first part of the 
processor (i.e., the multipliers in Fig. 7 or projective 
calculations) will be more appropriate. The word lengths that 
were used in this part of the processor is G1= 41. Since 
calculations of the third and fourth part of the LD algorithm 
are used only once at the end of the algorithm and there is no 
iteration as part 2 of the algorithm, there is no need to select 
large values for G. Instead, since there are relatively a large 
number of computational units in this part of the processor, a 
relatively small value for G should be chosen to reduce the 
required implementation area. The word’s length used in this 
part of the processor is G2=11.  

V. IMPLEMENTATION RESULTS 

The ECC processor was implemented using synthesizable 
VHDL codes on Xilinx XC4VLX200. Performance of the 
proposed scalar multiplication for is shown in table II. The 
proposed design completes one scalar point multiplication in 326 N �}� 9�⁄ �)+12 N �}� 9�⁄ �)+1509 cycles. The number of 
required clock cycles for ECC point multiplication with  
G1 = 41 and G2 =11 is 2993 cycles. The term “}� 9�⁄ �” 
indicates the number of cycles required to perform finite field 
multiplication in part 2 of the LD algorithm or calculations in 
the projective coordinate system. The term “}� 9�⁄ �” 
indicates the number of cycles required to perform finite field 
multiplication in parts 3 and 4 of the LD algorithm or 

calculations for converting projective coordinates to affine 
coordinates. In order to decide how efficient a design is, we 

utilize the efficiency defined as 
{��d���d�?H�� � �	P����P4�� � as a figure of 

merit, where Throughput is defined as ��H]P;� TH��d�;4� `�d�	�H �T DP���d�	�H �T -�4���  and hardware area can be 

defined as number of four inputs LUTs as well as CLB slices. 
Table II presents performance of the proposed scalar 
multiplier. The last column in this table shows the algorithmic 
efficiency defined as throughput/area. It would be more 
accurate to use throughput/#slices, but slice counts were not 
reported by the authors of some other designs. Therefore, we 
have used throughput/#LUTs. In Table III, a number of high 
speed elliptic curve processors (ECP) are compared with the 
proposed one. As it is seen from table III, the proposed design 
is more efficient than the other designs reported in the open 
literature expect one of the proposed schemes reported in [15]. 
Please note that although that design utilizes 4.82 times less 
LUT compared with our design, it is almost 4 times slower 
than our design with G = 41. The design proposed by Kim 
et.al. in [19] is almost 15% faster than our design but in 
consumes 25% more resources than our implementation. 

 

TABLE II 
PERFORMANCE OF THE PROPOSED SCALAR MULTIPLIER 

 

G1 G2 
Freq. 

(MHz) 
Time 
(µs) 

No. of 
Cycles 

Area 
(Slices) 

Area 
(LUT) 

Efficiency 

41 11 251.054 11.92 2993 19604 36727 372.1 

 

TABLE III 
PERFORMANCE OF THE SCALAR MULTIPLIERS 

 

Efficiency 
Area 

(LUT) 
Area 

(Slices) 
Time 
(µs) 

Freq. 
(MHz) 

FPGA Ref. 

265 3002  - 210 76.7 XCV400E [8] 
56 20068  - 144 66.4 XCV2000E [9] 

44 - 18079 106 90.2 
VinexII 
V8000 

[10] 

- - 
18314 
+ 24 

RAMs  
63 46.5 XCV2600E [11] 

- - - 60 54 XC2V600-4 [12]  

- - 8450 280 100 
Virtex II 
pro 30 

[13] 

316 26364 16209 19.55 153.9 
Virtex-4 
VLX200 

[14] 

532 7559 3416 46.5 100 XC2V2000 [15] 

340 2812 13376 34.11 93.3 XC2V6000 [16] 

70 10017 - 75 66 
Virtex 
2000E 

[17] 

- - - 49 - Stratix II [18] 

- - 24,363  10  143 XC4VLX80 [19] 

VI.  CONCLUSIONS 

A high-performance ECC processor was implemented using 
FPGA technology. We used a careful parallel implementation 
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strategy to reduce the critical path of the Itoh-Tsujii’s Finite-
Field Inversion. In addition, in the design of the ECC 
processor, by using three parallel multiplier units and reducing 
the number of unused cycles in each stage we reduced the 
processor delay which is mainly related to the calculations in 
the projective coordinate system. Separation of point doubling 
path from point addition path and using appropriate initial 
values for the initial setup of the processor reduced the 
complexity of the processor. The results show that the 
designed architecture can be well suited to the applications 
that require high performance.  
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