International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:3, 2011

Efficient and extensible data processing framework
in ubiquitous sensor networks

Junghoon Lee, Gyung-Leen Park, Ho-Young Kwak, Cheol Min Kim

Abstract—This paper presents the design and implements the
prototype of an intelligent data processing framework in ubiquitous
sensor networks. Much focus is put on how to handle the sensor data
stream as well as the interoperability between the low-level sensor
data and application clients. Our framework first addresses systematic
middleware which mitigates the interaction between the application
layer and low-level sensors, for the sake of analyzing a great volume
of sensor data by filtering and integrating to create value-added
context information. Then, an agent-based architecture is proposed
for real-time data distribution to efficiently forward a specific event
to the appropriate application registered in the directory service via
the open interface. The prototype implementation demonstrates that
our framework can host a sophisticated application on the ubiquitous
sensor network and it can autonomously evolve to new middleware,
taking advantages of promising technologies such as software agents,
XML, cloud computing, and the like.

Keywords—ubiquitous sensor network, stream data processing,
middleware design, real-time data distribution, agent architecture

I. INTRODUCTION

Nowadays, wireless sensor networks have been successfully
applied to environmental and wildlife habitat monitoring, and
still keep extending their application areas [1]. Intelligent and
efficient management endowed by the sensor network also
improves productivity and profit of the agricultural and live-
stock farms. Sensor data, inherently quite different from the
traditional data records, are inherently created in the form of
a real-time, continuous, ordered sequence of sensor readings.
Here, the temporal order can be decided either implicitly by
arrival time or explicitly by timestamp [2]. Accordingly, a data
stream is defined as a continuous sequence of tuples. It is
impossible to control the temporal order or to locally store
entire data stream [3]. The data item is removed as soon as
it is received from the data stream and processed. Structure
of data items in a data stream can change in time. Moreover,
many data streams can include the spatial tag not just the
temporal order, possibly hosting a geographic application on
the sensor network.

A sensor network can be viewed as a large database system
which responds to the query issued from various applica-
tions [4]. After all, queries on the sensor stream must run

Junghoon Lee and Gyung-Leen Park are with the Department of Computer
Science and Statistics, Jeju National University, Republic of Korea. e-mail:
{jhlee, glpark}@jejunu.ac.kr

Ho-Young Kwak is with the Department of Computer Engineering, Jeju
National University, Republic of Korea. e-mail: kwak@jejunu.ac.kr.

Cheol Min Kim is with the Department of Computer Education, Jeju
National University, Republic of Korea. e-mail: cmkim@jejunu.ac.kr.

This research was supported by the MKE (The Ministry of Knowledge
Economy), through the project of Region technical renovation, Republic of
Korea.

continuously over a limited period and incrementally return
new results as new data arrives. Here, a continuous query is
issued once and may remain active for hours and days. The
unboundedness of a stream prevents the issuer from getting
exact answers. A key to inferring high-level behavior is fusing
historic sensor data with general commonsense knowledge of
real-world constraints. Practically, most modern sensor node
installs TinyOS, which is a free and open source component-
based operating system [5]. In this platform, TinyDB is a
query processing system for extracting information from a
network of TinyOS sensors. TinyDB provides a simple, SQL-
like interface to specify the data you want to extract, along
with additional parameters, like the rate at which data should
be refreshed. Hence, the database view of the sensor network
is reasonable also in practice.

In addition to the monitoring operation, the current reli-
ability level of wireless communication allows to run even a
process control function on the sensor network [6]. An efficient
control scheme based on the embedded sensor technology is
essential for the intelligent environment and seamless interac-
tion with users. However, existing control systems, especially
in the agricultural and livestock areas, lacks a user-oriented
interface, as it is mainly built on top of the noncooperative
control devices. Thus, it is necessary to integrate heteroge-
neous control devices to provide a systematic view to the
users. To this end, the system must create the embedded
environmental information by combining various low-level
values of on/off, temperate, humidity, CO,, ventilation, wind
velocity, and precipitation sensors.

In the mean time, the agent represents an intelligent object
automatically interacting with the changing external conditions
and reacting to them. For example, a human agent interacts
with the physical world by means of body organizations, while
a robot agent keeps track of the external change via the camera
or infrared sensors. Specifically, a software agent, working
inside the computing world, takes binary information as input
and decides its reaction also in the binary form. An intelligent
agent possibly automates the repeated work, reminds a user of
what he may forget, and classifies the complex data. As such,
in the recent RFID and sensor network, much effort is put
on the agent architecture capable of collecting, transmitting,
storing, and distributing real-time sensor data.

After all, for efficient monitoring and intelligent control in
the ubiquitous sensor network, or USN in short, it is neces-
sary to design a system-wide framework combining above-
mentioned features. In this regard, this paper is to present the
design and implement the prototype of an intelligent USN
mainly targeting at the agricultural and livestock farms. It

285

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:3, 2011

focuses on how to handle the sensor data stream and user-
generated queries for a variety of applications. Our framework
first addresses a USN middleware which mitigates the inter-
action between the application layer and low-level sensors,
defining the respective functions of service, server-side, and in-
network middleware layers. Then, an agent-based architecture
is proposed for real-time data distribution to efficiently forward
a specific event to the appropriate application which may
decide the control action based on the well-defined logic and
knowledge.

II. BACKGROUND AND RELATED WORK

As for continuous query processing, [7] proposed the
SyncQuery language that expresses composable queries over
streams, pointing out that composition of queries, and hence
supporting views is not possible in the append-only stream
model. This language employs the tagged stream model in
which a data stream is treated as a sequence of modifica-
tions over the given relation. Particularly, the sliding-window
approach is generalized by introducing the synchronization
principle that empowers SyncSQL with a formal mechanism to
express queries with arbitrary refresh condition. Besides, this
work includes an algebraic framework for SyncSQL queries,
couple of equivalances and transformation rules, and a query-
matching algorithm.

Specifically, XML data stream processing is also of inter-
est, as XML becomes common part of information systems,
including RFID (Radio Frequency IDentifier), ad-hoc sensor
data collection, network traffic management, and so-called
service-oriented architecture [8]. Generally, XML streams are
created as a second-hand product obtained from information
exchange in XML systems, rather than from the raw sensor
values. XML data streams can be viewed as a sequence of
XML documents, and each data item in the stream is a valid
standalone XML document, which is independent of other
items in the stream. Moreover, queries on data stream can
support data mining and filtering. While the first evaluates
queries that span over a long time period, processing a great
deal of time-sequenced data, the second takes the data items
from the stream matching the filtering condition. Anyway,
processing XML has an attractive real-world motivation.

Sometimes, each tuple can include a spatial tag such as
GPS reading in addition to the temporal tag, especially when
the system includes a mobile component. Project Lachesis has
proposed a number of rigorously defined data structures and
algorithms for analyzing and generating location histories [9].
In their approach, stays are instances where a vehicle has spent
some time at a single location, while destinations are clusters
of stays. Based on this classification, this system investigated
two probabilistic models, both with and without first-order
Markovian conditioning. In addition, the records of a same
GPS tag can be used to fix the positioning error in stream
data manipulation [10]. The location field is also important in
a fixed sensor node, when the node is dependent on the terrain
effect and this must be integrated in the analysis model [11].

III. USN MIDDLEWARE

Middleware can work between the sensor layer and the
diverse monitor and control applications. It can analyze the
great volume of sensor data by filtering and integrating to
create, store, manage, and retrieve the value-added context
information. It is also possible to dispatch the information
to the industrial process control, and even synthesize the
multiple services on the middleware platform. Our framework
is illustrated in Figure 1, which consists of 3 layers of
in-network middleware, server-side middleware, and service
middleware.

Application layer

[USN application common interface || Discovery module]

Service
[Service agent | Service management| | Middleware query|| Middleware

\ USN middleware interface |

‘ USN middleware interface ‘

‘ Security ‘ ‘ Meta information ‘

Sensor data mgmt Query mgmt DBMS Server-side

| gt | p— ‘ Data logger Middleware

[Middleware contro| | Data logger] Meta Info

‘ USN gateway management module ‘

‘Sensordata mgmt‘ ‘ Sensor monitoring‘ ‘Sensor monitoring‘ In-network
Middleware

\ Hardware common abstract interface |

RFID tag, Temperature/Humidity/Lightness/.. sensors Hargware layer

Fig. 1. USN middleware architecture

To begin with, the in-network layer embeds in the sensor
node, providing a sensor network monitor and the common
sensor network interface. For sensor monitoring, our system
differentiates raw sensor values from computed values, and
respectively represents their temporal dynamics. The network
configuration is given as a form of metadata specification
to match the sensor and actuator identifier in the network
location. By this, along with basic network monitoring, it is
possible to cope with the heterogeneity of sensor networks
and network topology changes. Additionally, sensor network
abstraction is the fundamental of the common sensor network
interface. It can provide a consistent middleware interface,
sensor network adapter management, message format stan-
dardization, and the like. The network abstraction covers the
underlying communication mechanism and actual network
devices. In addition, the message format is defined for data
sensing, data storage, data processing, and report generation
to the upper layer module.

Next, the server-side layer mainly includes intelligent ma-
nipulation, context information management, and metadata
interpretation. To filter the meaningful value from the set of
data which keep being accumulated over a long time interval,
the sensor mining module conducts data classification and
time series analysis. Here, the abnormal situation is detected
based on the predefined pattern and registered knowledge. The
intelligent manipulator takes both the real-time sensor value
and the history data to define and interpret a specific event.
Based on the metadata given by an application to specify the

286

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:5, No:3, 2011

respective event detection condition, the middleware can catch
the event and notify to the application. The context information
is stored in the middleware and forwarded to the server in
the form of the filtered information, summary values, or low-
level sensor data. metadata specification is registered by the
application server in the middleware in the form of a XML
document. To this end, the middleware layer provides the
interface to register, retrieve, and update the metadata.

The service middleware layer exports an open USN appli-
cation interface, internally consisting of a service discovery
module, application agents, and middleware query handlers.
This API makes it easy to program an application through the
USN middleware, taking advantage of object abstraction and
various intelligence techniques. Particularly, each functional
module is designed separately and implemented in the DLL
(Dynamic Link Library) components. Moreover, it possible to
extend API set according to the addition of a new service.

IV. AGENT MODULE

One of the most common applications in USN is necessarily
event detection and reaction [12]. The agent-based architecture
requires not just a database system which can simply store
and retrieve the collected data. Instead, a distribution function
is essential to monitor the real-time sensor data, detect an
event, and select an appropriate application that can handle
it as depicted in Figure 2. Add, modify, and delete operations
are 3 major event types taking place in the database. Any
external entity that invokes those operations makes a data
item to proceed to the forwarding module via trigger utility.
Then, the forwarding module converts the data into the XML
message and sends to the corresponding remote handler. The
real-time data distribution server receives a message from the
message queue and parses it. After filtering, the data item is
transferred to and buffered at the thread pool belonging to
the service associated with the data [13]. Each data item is
forwarded to the remote application via the XML interface
for better interoperability.

XML XML XML

Forwarding Inter | APP1 || inter | APP2 || |nter | APP3

Module

Real-time sensor
data storage

Internet

/ Thread pool

Message| |Data

T ™

buffering

Fig. 2. Real-time data distribution scheme

The real-time data distribution server can monitor the server
status as well as control the server application. It can initiate,
pause, resume, and stop the respective service component
selectively. The user interface also provides CPU and memory

utilization graph, current message queue status, per-thread
statistics, and other useful information as shown in Figure 3.

“E S e
DR '-’;\':@l LR
= g e A e

e PR, | Tead P Tev
e

et

@
5

B

BE

B
eidin Y

FErAzEEE
SRR SEAE

Fig. 3. Real-time data distribution

As a pilot application, the temperature monitor tracks the
current temperature of a specific position selected via the
geographic map. According to the initiation command, the
server module begins to collect and store sensor readings.
During the lifetime of this operation, the event detection is
carried out based on the criteria specified in the query. The
client also retrieves the current temperature value to monitor
the up-to-date temperature change. Figure 4 and 5 show the
Ul implemented in this application. First of all, they display
the map, location of sensors along with the current status of
them. In addition, the series of sensor values are scrolled in
the listbox, while a graph is created to plot the temperature
change. Figure 4 indicates the normal status where no sensor
value deviates fromthe given bound, and all nodes are marked
blue. Whereas, in Figure 5, one sensor node detects the value
out of the normal range and this node turns red.

IMAGE

| NODE INFORMATION™ |
T LT 1 -3 Location

Gt e

B

ENENEENENENENNNRENENNNENNNNNNENNNNERENENE EECH

Fig. 4. Normal status indication

V. CONCLUDING REMARKS

This paper has presented the design and implemented the
prototype of an intelligent USN data processing framework,
based on the result of a research and technical project named
as Development of convergence techniques for agriculture,
fisheries, and livestock industries based on the ubiquitous
sensor networks. Our system mainly focuses on how to handle
the great volume of the sensor data stream as well as the inter-
operability between the low-level sensor data and application

287

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:5, No:3, 2011

E-E

EEE

i IMAGE

“” - =

S R R SRR PRI 3 R3RS

it

4

SEREBERHRE ETE

b

EEREEREEE

Fig. 5. Abnormal status detection

clients. USN middleware was first addressed to mitigate the in-
teraction between the application layer and low-level sensors,
defining the respective functions of service, server-side, and in-
network middleware layers. Then, an agent-based architecture
is proposed for real-time data distribution to efficiently detect
and forward a specific event to the appropriate application
which may decide the control action based on the well-defined
logic and knowledge.

The prototype implementation demonstrates that our frame-
work can host a sophisticated application on the ubiquitous
sensor network and it can autonomously evolve to a new
middleware, taking advantages of new technologies such as
software agents, XML, reliable communication protocols,
cloud computing, and the like.

As future work, we are planning to design an inference
engine capable of achieving context information, analyzing
information using the well-defined knowledge, and providing
a user with accurate target status to decide the prompt and
correct reaction. In addition, clear logic processing can create
a new descriptive context information by merging multiple
context information sets.

REFERENCES

[1] L. Golab, M. Oszu, “Issues in data stream management,” ACM SIGMOD
Record, Vol. 32, Issue 2, 2003, pp. 5-14.
[2] U. Sricastava, J. Widom, “Flexible time management in data stream

systems,” ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, 2004, pp. 263-274.

[3] S. Madden, M. Franklin, J. Hellerstein, W. Hong, “The design of an
acquisitional query processor for sensor networks.” ACM SINGMOD
2003.

[4] S. Madden and M. J. Franklin, “Fjording the stream: An architecture for
queries over streaming sensor data,” Proc. of the 2002 Intl. Conf. on Data
Engineering, 2002.

[5] http://'www.tinyos.net

[6] J. Lee, H. Song, A. K. Mok, “Design of a reliable communication system
for grid-style traffic control networks,” The 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2010, pp. 133-142,

[7] T. Ghanem, A. Elmagarmid, P. Larson, W. Aref, “Supporting views in data
stream management systems,” ACM Transactions on Database Systems,
Vol. 35, No. 1, 2010.

[8] J. Ulrych, “Processing XML data streams: A survey,” WDS Proc. Con-
tributed Papers, 2008, pp.218-223.

[9] R. Hariharan and K. Toyama, “Project Lachesis: Parsing and modeling
location histories”, Lecture Notes in Computer Science, Springer Verlag,
Vol. 3234, 2004, pp.106-124.

[10] J. Lee, G. Park, C. Sung, H. Choi, “A Cooperative Position Fix Scheme

Based on a Group Management on the Vehicular Network,” Journal of

Information Science and Engineering, Vol. 26, No. 1, 2010, pp. 15-26.

[11] J. Lee, J. Hong, “Design and implementation of a spatial data processing
engine for the telematics network,” Applied Computing and Computa-
tional Science, 2008, pp.39-43.

[12] C. Lee, A. K. Mok, P. Konana, “Monitoring of Timing Constraints with
Confidence Threshold Requirements,” IEEE Trans. Computers, Vol. 65,
No. 7, 2007, pp. 977-991.

[13] H. Woo and A. K. Mok, “Real-time monitoring of uncertain data
streams using probabilistic similarity,” Proc. of IEEE Real-Time Systems
Symposium, 2007, pp. 288-300.

288

