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Abstract—Steady incompressible couple stress fluid flow through
two dimensional symmetric channel with stenosis is investigated.
The flow consisting of a core region to be a couple stress fluid
and a peripheral layer of plasma (Newtonian fluid). Assuming the
stenosis to be mild, the equations governing the flow of the proposed
model are solved using the slip boundary condition and closed form
expressions for the flow characteristics (the dimensionless resistance
to flow and wall shear stress at the maximum height of stenosis) are
derived. The effects of various parameters on these flow variables
have been studied. It is observed that the resistance to flow as well
as the wall shear stress increase with the height of stenosis, viscosity
ratio and Darcy number. However, the trend is reversed as the slip
and the couple stress parameter increase.

Keywords—Stenosis, Couple stress fluid, Slip condition, Peripheral
layer.

I. INTRODUCTION

THE term stenosis denotes the narrowing of an artery due
to the development of arteriosclerotic plaques or other

types of abnormal tissue development. This can cause circu-
latory disorders by reducing or occluding the blood supply
which may result in serious consequences (cerebral strokes,
myocardial infarction). Hence, the mathematical modelling of
this type of flows may help in proper understanding and pre-
vention of arterial diseases. The actual reason for the formation
of stenosis is not known but many researchers have studied its
effect on the flow characteristics (Young[1]; Zendehbudi and
Moayeri [2]; Radhakrishnamacharya and Srinavasa Rao[3]) by
assuming blood as a Newtonian fluid. But blood shows a non-
Newtonian behaviour at low shear rates in tubes of smaller
diameters ( Whitmore[4]; Forrestor and Young[5]; Shukla et
al.[6]; Misra and Ghosh[7]; Jain et al.[8] and Gupta et al.[9]).
The non-Newtonian behaviour of blood is mainly due to
the suspension of red blood cells in plasma. When neutrally
buoyant corpuscles are contained in a fluid and there exists
a velocity gradient due to shearing stress, corpuscles have
rotatory motion. Furthermore, it is observed that corpuscles
have spin angular momentum, in addition to orbital angular
momentum. As a result, the symmetry of stress tensor is lost
in the fluid motion that is subjected to spin angular momen-
tum. The fluid that has neutrally buoyant corpuscles, when
observed macroscopically, exhibits non-Newtonian behaviour,
and its constitutive equation is expressed by Stokes[10]. This
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represents the simplest generalization of the classical viscous
fluid theory that sustains couple stresses and the body couples.
The important feature of these fluids is that the stress tensor
is not symmetric and their accurate flow behaviour cannot
be predicted by the classical Newtonian theory. The main
effect of couple stresses will be to introduce a size dependent
effect that is not present in the classical viscous theories.
The importance of consideration of couple stress effects in
studies of physiological and some other fluids was indicated
by Cowin[11]. Studies on the couple stress fluid behaviour
are very useful, because such studies bear the potential to
better explain the behaviour of rheologically complex fluids,
such as liquid crystals, polymeric suspensions that have long-
chain molecules, lubrication as well as human/sub-human
blood (Stokes[10]). Sankad and Radhakrishnamacharya[12],
Srinavasacharya and Srikanth[13] and Naeem et al.[14] studied
the flow of couple stress fluid under different conditions.
It is experimentally observed that when blood flows through
narrow tubes, there exists a cell-free plasma layer near
the wall ( Bugliarello and Hyden[15]) and (Bugliarello and
Sevilla[16]). In view of their experiments, it is preferable to
represent the flow of blood through narrow tubes by a two
layered model instead of one layered model. Shukla el al.[17]
have considered a two layered model in which the peripheral
plasma layer and the core are both Newtonian fluids. Shukla
et al.[18] have also carried out a two layered model in which
fluids in both regions are non-Newtonian in character and
examined the influence of the peripheral layer viscosity on
the resistance to flow. Chaturani and Kaloni[19], Chaturani
and Ponalagusamy[20] and Ponalagusamy and Tamil Selvi[21]
have also contributed towards the flow of blood represented
by a two layered model.
In the present study, the effect of slip on flow through two
dimensional symmetric channel with mild stenosis has been
investigated. The flow region is assumed to consist of a core
with couple stress fluid and a peripheral layer with Newtonian
fluid. Assuming the stenosis to be mild and using the slip
boundary condition, the equations governing the flow have
been solved and analytical expressions for the resistance to
flow and the wall shear stress at the maximum height of steno-
sis have been derived. The effects of couple stress parameter,
viscosity ratio, Darcy number, slip parameter and height of
stenosis on the flow characteristics have been investigated and
shown graphically.
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II. MATHEMATICAL FORMULATION

We consider steady and incompressible fluid flow in a
channel, with Newtonian fluid in the peripheral layer and
couple stress fluid in the core region. Cartesian coordinate
system is chosen so that the x-axis coincides with the
center line of the channel and the y-axis normal to it. The
stenosis is supposed to be mild and develops in a symmetric
manner. The geometry of the wall is taken as (Shukla et al.[6])

h

h0
=

{
1− δs

2h0
(1 + cos 2π

L0
[x− d− L0

2 ]), d ≤ x ≤ d+ L0

1 , otherwise
(1)

where h0 is the mean half width of the non-stenotic region of
the channel, L is the length of the channel, L0 is the length
of stenosis and δs is the maximum height of stenosis.(Fig.1)
The geometry of the interface between the peripheral and the
core region is taken as(Shukla et al.[6])

h1

h0
=

{
β − δi

2h0
(1 + cos 2π

L0
[x− d− L0

2 ]), d ≤ x ≤ d+ L0

β , otherwise
(2)

where β is the ratio of the central mean half width to the
channel mean half width in the unobstructed region and δi is
the maximum bulging of the interface at x = d + L0/2 due
to the presence of stenosis.(Fig.1) The appropriate equations

Fig. 1. Geometry of arterial stenosis with peripheral layer

describing the flow in the central region and peripheral layer
are given as(Srinavasacharya and Srikanth[13])

ρ1

[∂q
∂t

+(q ·�)q
]
= −� p+μ1∇2q− η∇4q; 0 ≤ y ≤ h1(x)

(3)

ρ2

[∂q1
∂t

+(q1 ·�)q1

]
= −�p+μ2∇2q1 ;h1(x) ≤ y ≤ h(x)

(4)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 , ρ1 and ρ2 are the densities and

q = (u1, v1, 0) and q1 = (u2, v2, 0) are the velocity
vectors of the fluids in the central region and peripheral layer
respectively, p is the fluid pressure, t is time, μ2 is the
viscosity of plasma in the peripheral layer, μ1 is the viscosity
coefficient of the classical fluid in the core region and η is
the couple stress fluid viscosity.
For the present problem, by neglecting body forces and
body couples(Alemayehu and Radhakrishnamacharya[22]) and
taking the restrictions for mild stenosis ( Young[1]) , Eqs.(3)
and (4) get reduced to

dp

dx
= μ1

∂2u1

∂y2
− η

∂4u1

∂y4
; 0 ≤ y ≤ h1(x) (5)

dp

dx
= μ2

∂2u2

∂y2
; h1(x) ≤ y ≤ h(x) (6)

∂u1

∂x
= 0 at y = 0 (7)

u2 =
−h0

√
Da

α1

∂u2

∂y
at y = ±h(x) (8)

∂2u1

∂y2
= 0 at y = ±h1(x) (9)

u1 = u2 and τ1 = τ2 at y = ±h1(x) (10)

Here (8) is the Saffman’s slip boundary condition(Bhatt and
Sacheti[23]) and (9) indicates the vanishing of couple stress.
Further, Da is the permeability parameter (or Darcy number)
and α1 is the slip parameter, τ1 and τ2 are the shearing stress
of the central and peripheral layers, respectively.
Solving (5) and (6), subject to the boundary conditions (7)-
(10), the expressions for velocities u1 and u2 can obtained
as

u1(y) = − h2
0

2μ2

dp

dx

[
(
h

h0
)2 − μ2(

y
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)2

− 2 μ2
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2
√
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(
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)− 2Da

α2
1

+
2 μ2
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cosh(m( y
h0
))

cosh(m(h1
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))

]
for 0 ≤ y ≤ h1(x) (11)

u2(y) = − h2
0

2μ2

dp

dx

[
(
h

h0
)2 − (

y

h0
)2 +

2
√
Da

α1
(
y

h0
)

− 2Da

α2
1

]
for h1(x) ≤ y ≤ h(x) (12)

where μ2 = μ2/μ1 and m = h0(μ1/η)
1/2 is the couple stress

parameter.

III. ANALYSIS

The flow flux Q , which is defined as

Q = 2

∫ h1

0

u1dy + 2

∫ h

h1

u2dy (13)
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can be obtained in the following form using (11) and (12),

Q = −2 h3
0

3μ2

dp

dx

[
(
h

h0
)3 − (1− μ2)(

h1

h0
)3

− 3 μ2

m2
(
h1

h0
) +

3
√
Da

2α1

(
(
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h0
)2 + (

h

h0
)2
)

− 3Da

α2
1

(
h
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(14)

Introducing the the following dimensionless quantities

x
′
=

x

L
, L

′
0 =

L0

L
, d

′
=

d

L
(15)

in (1) and (2), and from (14) the pressure gradient can be
obtained as( after dropping the primes)

dp

dx
= −3μ2Q

2h3
0

1

G
(16)

where

G = (
h
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3
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h
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Integrating (16) with respect to x, we get pressure difference
along the total length of a channel as

Δp =
3μ2Q

2h3
0

∫ 1

0

1

G
dx (17)

The resistance to flow, denoted by λ , is defined by

λ =
Δp

Q
=

3μ2

2h3
0

∫ 1

0

1

G
dx (18)

The shearing stress at the wall is given as

τw = −μ2
∂u2

∂y

∣∣∣
y=h

(19)

The wall shear stress at the maximum height of stenosis, i.e.
at x = d+ L0/2 obtained from (19) as

τs =
3μ2Q

2h2
0

A1

A2
(20)

where

ε1 = 1− (δs/h0), ε2 = 1− (δi/h0), A1 = (ε1 +

√
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),
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+
3
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2 + (ε2)
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3μ2

m3
tanh(m ε2).

Using h1 = βh and δi = βδs(Shukla et al.[6]) , expressions for
the dimensionless resistance to flow λ and shearing stress τs
can be obtained as:

λ = μ2I
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0
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(21)
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,

λ =
λ

λc
, τs =

τs
τc
.

Terms λc and τc are the resistance to flow and the wall shear
stress, respectively in the absence of peripheral layer with no
stenosis.

IV. RESULTS AND DISCUSSION

The resistance to flow and the wall shear stress are the two
important characteristics in the study of fluid flow through a
stenosed artery. The expressions for resistance to the flow and
wall shear stress, given by (21) and (22) respectively have
been numerically evaluated using MATHEMATICA software
for different values of relevant parameters and presented
graphically.
Figs.2-7 show the effects of various parameters on the resis-
tance to the flow. It can be observed that the resistance to
the flow increases with the height of the stenosis (Figs.2-7).
This result agrees with the previous results obtained by Shukla
et al.[6]; Chaturani and Ponalagusamy[20], Maruthi Prasad
and Radhakrishnamacharya[24]. Further, it can be noticed
that the resistance to the flow increases with viscosity ratio
(μ2)(Fig.2), Darcy number (Fig.3), half width ratio(β ) (Fig.4)
and length of the stenosis (Fig.5) but decreases with couple
stress parameter (Fig.6) and the slip parameter(Fig.7).
Figs.8-12 show the effects of various parameters on the
wall shear stress at the maximum height of the steno-
sis. The wall shear stress increases with the height of
the stenosis (Figs.8-12). This result agrees with previous
results obtained by Shukla et al.[6], Maruthi Prasad and
Radhakrishnamacharya[24], Chaturani and Ponalagusamy[20].
Moreover, the wall shear stress increases with viscosity
ratio(μ2) (Fig.8), Darcy number (Fig.9) and half width ratio(β)
(Fig.10) but decreases with the slip parameter(Fig.11) and the
couple stress parameter(Fig.12). However, the decrease with
couple stress parameter is not very significant.

V. CONCLUSION

A mathematical model for the steady flow of couple stress
fluid in the core region of a two layered flow having mild
stenosis in the lumen of the channel has been investigated.
It has been shown that both the resistance to flow and the
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Fig. 2. Effect ofμ2 on λ (d = 0.4,L0 = 0.2,α1 = 0.02,Da = 0.005,m =
0.2,β = 0.95)
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Fig. 3. Effect of Da on λ (d = 0.4,L0 = 0.2,α1 = 0.02,μ2 = 0.5,m =
0.2,β = 0.95)
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Fig. 4. Effect of β on λ (d = 0.4,L0 = 0.2,α1 = 0.02,μ2 = 0.5,m =
0.2,Da = 0.005)

0.00 0.05 0.10 0.15 0.20
0.492

0.493

0.494

0.495

0.496

0.497

0.498

0.499

0.500

0.501

0.502

0.503

λ

δs / h0

 L
0
=0.2

 L
0
=0.22

 L
0
=0.24

Fig. 5. Effect of L0 on λ (d = 0.4,β = 0.95,α1 = 0.02,μ2 = 0.5,m =
0.2,Da = 0.005)
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Fig. 6. Effect of m on λ (d = 0.4,β = 0.95,α1 = 0.02,μ2 = 0.5,L0 =
0.2,Da = 0.005)
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Fig. 7. Effect of α1 on λ (d = 0.4,β = 0.95,m = 0.2,μ2 = 0.5,L0 =
0.2,Da = 0.005)
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Fig. 8. Effect of μ2 on τs (β = 0.95,m = 0.2,α1 = 0.02,Da = 0.005)
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Fig. 9. Effect of Da on τs (β = 0.95,m = 0.2,α1 = 0.02,μ2 = 0.5)
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Fig. 10. Effect of β on τs (Da = 0.005,m = 0.2,α1 = 0.02,μ2 = 0.5)
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Fig. 11. Effect of α1 on τs (Da = 0.005,m = 0.2,β = 0.95,μ2 = 0.5)
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Fig. 12. Effect of m on τs (Da = 0.005,α1 = 0.02,β = 0.95,μ2 = 0.5)

wall shear stress at the maximum height of the stenosis
decreases with the slip parameter. Further, it is observed that
the resistance to flow and the wall shear stress at the maximum
height of the stenosis increase with the viscosity ratio (μ2).
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