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Abstract—Classification of electroencephalogram (EEG) signals 

extracted during mental tasks is a technique that is actively pursued 
for Brain Computer Interfaces (BCI) designs. In this paper, we 
compared the classification performances of univariate-
autoregressive (AR) and multivariate autoregressive (MAR) models 
for representing EEG signals that were extracted during different 
mental tasks. Multilayer Perceptron (MLP) neural network (NN) 
trained by the backpropagation (BP) algorithm was used to classify 
these features into the different categories representing the mental 
tasks. Classification performances were also compared across 
different mental task combinations and 2 sets of hidden units (HU): 2 
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different 
mental tasks from 4 subjects were used in the experimental study and 
combinations of 2 different mental tasks were studied for each 
subject. Three different feature extraction methods with 6th order 
were used to extract features from these EEG signals: AR 
coefficients computed with Burg’s algorithm (ARBG), AR 
coefficients computed with stepwise least square algorithm (ARLS) 
and MAR coefficients computed with stepwise least square 
algorithm. The best results were obtained with 20 to 100 HU using 
ARBG. It is concluded that i) it is important to choose the suitable 
mental tasks for different individuals for a successful BCI design, ii) 
higher HU are more suitable and iii) ARBG is the most suitable 
feature extraction method. 
 

Keywords—Autoregressive, Brain-Computer Interface, 
Electroencephalogram, Neural Network.  

I. INTRODUCTION 
VER the last ten years, the volume and pace of Brain 
Computer Interface (BCI) research have grown 

tremendously [1, 2]. In 1995 there were no more than six 
active BCI research groups, and in the year 2000, there were 
more than 20 [2]. BCI designs are very useful for completely 
paralysed individuals to communicate with their external 
surroundings using their brain thoughts. These individuals 
could have become completely paralysed after being involved 
in an accident or due to some diseases. BCI designs are also 
suitable for use in simple hands off menu selection on the 
screen.  
 There are a few non-invasive methods for obtaining these 
brain signals to be utilised in a BCI design. 
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Electroencephalogram (EEG) signals recorded at the scalp 
during particular mental tasks have been used by some of the 
research groups [3-8]. Some others have utilised single-trial 
visual evoked potential signals where the subjects gaze at a 
screen full of alphabets or menus. Syncronisation and 
desynchronisation of µ-rhythm extracted during sensory motor 
tasks is another method for BCI design [9-11]. Reviews of 
some of these technologies and developments in this area are 
given by Vaughan et al [1], Wolpaw et al [2] and Mason and 
Birch [6]. 

In this paper, we adopted classification of EEG signals 
extracted during mental tasks for our BCI design. The 
advantage of this method over the other existing BCIs is that it 
does not require any in-between interface but the choice of 
mental tasks, feature extraction methods and classifiers could 
affect the performance greatly. Therefore, our objective in this 
paper is to study the performance of a bi-state BCI design 
across different mental task combinations, 3 different AR 
feature extraction methods and 2 sets of hidden units (HU); 
one higher and one lower.  

The EEG signals were recorded during 5 different mental 
tasks from 4 healthy subjects. These mental tasks were: 
geometrical figure rotation, mathematical multiplication, 
mental letter composing, visual counting and a baseline-
resting task. The 3 different feature extraction methods were  

• 6th order autoregressive (AR) coefficients computed with 
Burg’s algorithm (ARBG) 

• 6th order autoregressive (AR) coefficients computed with 
stepwise Least Squares algorithm (ARLS) 

• 6th order multivariate autoregressive (MAR) coefficients 
computed with stepwise Least Squares algorithm  

These features were then used by a MLP-BP NN with single 
hidden layer which consisted of 

• 2 to 10 HU in steps of 2, or 

• 20 to 100 HU in steps of 20 

to classify different combinations of 2 mental tasks. Two 
mental tasks were chosen because the output of the studied 
BCI design is bi-state. The output of this BCI design could be 
used with some translation schemes like Morse Code [7] or to 
control the movement of a cursor to select a target on a 
computer screen, which would provide a communication 
channel for paralysed individuals to communicate with others. 
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II. METHODOLOGY 

A. Data 
The EEG data used in this study were collected by Keirn 

and Aunon [5]. The subjects were seated in an Industrial 
Acoustics Company sound controlled booth with dim lighting 
and noise-less fan (for ventilation). An Electro-Cap elastic 
electrode cap was used to record EEG signals from positions 
C3, C4, P3, P4, O1 and O2 (shown in Figure 1), defined by 
the 10-20 system [12] of electrode placement. The impedances 
of all electrodes were kept below 5 KΩ. Measurements were 
made with reference to electrically linked mastoids, A1 and 
A2. The electrodes were connected through a bank of 
amplifiers (Grass7P511), whose band-pass analog filters were 
set at 0.1 to 100 Hz. The data were sampled at 250 Hz with a 
Lab Master 12-bit A/D converter mounted on a computer. 
Before each recording session, the system was calibrated with 
a known voltage. Signals were recorded for 10s during each 
task and each task was repeated for 10 sessions where the 
sessions were held on different weeks. The EEG signal for 
each mental task was segmented into 20 segments with length 
0.5 s, so each EEG segment was 125 samples in length. 
 

EEG
C4C3

P3 P4

O1 O2

A1 A2

 
Fig. 1 Electrode placement 

 
 In this paper, EEG signals from 4 subjects performing 5 
different mental tasks were used1. In the original dataset, there 
were 7 subjects participating in the study but we chose only 4 
subjects here as the other 3 had fewer than 10 sessions or 
some errors in the recording. These mental tasks were: 
a) Baseline task. The subjects were asked to relax and think 

of nothing in particular. This task was used as a control 
and as a baseline measure of the EEG signals. 

b) Math task. The subjects were given nontrivial 
multiplication problems, such as 42 times 18 and were 
asked to solve them without vocalising or making any 
other physical movements. The tasks were non-repeating 
and designed so that an immediate answer was not 
apparent. The subjects verified at the end of the task 
whether or not he/she arrived at the solution and no subject 
completed the task before the end of the 10 s recording 
session. 

c) Geometric figure rotation task. The subjects were given 30 
s to study a particular three-dimensional block object, after 

 
1 The data is available online at 

http://www.cs.colostate.edu/eeg/index.html#Data. 

which the drawing was removed and the subjects were 
asked to visualise the object being rotated about an axis. 
The EEG signals were recorded during the mental rotation 
period. 

d) Mental letter composing task. The subjects were asked to 
mentally compose a letter to a friend or a relative without 
vocalising. Since the task was repeated several times the 
subjects were told to continue with the letter from where 
they left off. 

e) Visual counting task. The subjects were asked to imagine a 
blackboard and to visualise numbers being written on the 
board sequentially, with the previous number being erased 
before the next number was written. The subjects were 
instructed not to verbalise the numbers but to visualise 
them. They were also told to resume counting from the 
previous task rather than starting over each time. 

Keirn and Aunon [5] specifically chose these tasks since 
they involve hemispheric brainwave asymmetry (except for 
the baseline task). For example, it was shown by Osaka [13] 
that arithmetic tasks exhibit a higher power spectrum in the 
right hemisphere whereas visual tasks do so in the left 
hemisphere. As such, Keirn and Aunon [5] and later Anderson 
et al [3] proposed that these tasks are suitable for brain-
computer interfacing. 

B. Feature Extraction 
In this paper, we have used 3 different AR feature extraction 

methods to extract features from the EEG signals and then 
classifying the features using 2 sets of different number of HU 
in the MLP-BP NN architecture. In the first method, AR 
coefficients were computed using Burg’s method [14-16]. In 
the second method, AR parameters were estimated by using 
stepwise Least Square algorithm with data from a single 
channel used at a time and in the third method, the 
multivariate AR coefficients were estimated using stepwise 
Least Square algorithm with data from 6 channels used all at 
once. The following discussion details the 3 different feature 
extraction processes.  
 

1) 6th order AR coefficients with Burg’s algorithm 
A real valued, zero mean, stationary, nondeterministic, 
autoregressive process of order p is given by 
 

∑
=

+−−=
p

k
k neknxanx

1
)()()(  , 

 
(1) 

 

where p is the model order, x(n) is the signal at the sampled 
point n, ak are the real valued AR coefficients and e(n) 
represents the error term independent of past samples. The 
term autoregressive implies that the process x(n) is seen to be 
regressed upon previous samples of itself. The error term is 
assumed to be a zero mean noise with finite variance, 2

pσ . In 

applications, the values of ak and 2
pσ  have to be estimated 

from finite samples of data x(1), x(2), x(3), … ,x(N). 
In this paper, we used Burg’s method [14-16] to estimate 

the AR coefficients. The method is more accurate as 
compared to other methods like Levinson-Durbin as it uses 
the data point directly. Furthermore, Burg algorithm uses 
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more data points by minimising both forward error and 
backward error. Order 6 was used for the AR process because 
other researchers [3, 5] have suggested the use of order 6 for 
AR process for mental task classification. Therefore, we had 6 
AR coefficients for each channel, giving a total of 36 features 
for each EEG segment from a mental task. 
 

2) 6th order AR coefficients with stepwise least square 
algorithm 

An m-variate AR(p) model for a stationary time series of state 
vectors m

vv ℜ∈ , observed at equally spaced instants v, is 
defined by 
 

∑
=

− ++=
p

i
viviv vAwv

1
,ε  )(Cnoisev =ε , 

 
(2) 

 

where the m-dimensional vectors )(Cnoisev =ε are 
uncorrelated random vectors with mean zero and covariance 
matrix mxmC ℜ∈ , and the matrices A1, A2, ..., Ap mxmℜ∈  are 
the coefficient matrices of the AR model [19]. The parameter 
vector mw ℜ∈  is a vector of intercept terms that is included 
to allow for a nonzero mean of the time series, 
 

<vv> = (I-A1-...-Ap)-1w, (3) 
 

where < • > denoted an expected value. 
If the coefficient matrices A1, A2, ..., Ap and the intercept 

vector w of an AR model are estimated with the method of 
least squares, the residual covariance matrix ∧

C  of the 
estimated model is a fairly reliable estimator of the noise 
covariance matrix C. The least squares estimates of AR 
parameters are obtained by casting an AR model in the form 
of an ordinary regression model and estimating the parameters 
of regression model with the method of least squares. The 
least squares modeling criterion is widely used in connection 
with the AR model because it is particularly suitable for 
solving the related optimization problem [17]. Numerically, 
the least squares problem for the ordinary regression model 
can be solved with standard methods that involve the 
factorization of a data matrix. However, in this study, stepwise 
least squares algorithm by Neumaier and Schneider [18] was 
used to estimate the parameter due to its computational 
efficiency and stability. Mathematical details of this method 
are given in Appendix B. 

Although the m-variate AR(p) model is generally used with 
multi-channels, in this paper, we have used only a single 
channel at a time in the computation of parameters instead of 
multi-channel and unexpectedly obtained good results. The 
model order was fixed at 6 to ensure a fair comparison with 
the above-mentioned method. Therefore, we had a total of 6 
AR coefficients for each channel, giving a total of 36 features 
for each EEG segment from a mental task. 

C. MLP-BP NN 
In this paper, MLP NN with single hidden layer trained by the 
BP algorithm [19] was used to classify different combinations 
of 2 mental tasks represented by the different EEG features. 
Figure 2 shows the architecture of the MLP-BP NN used in 

this study. Both the hidden and output layer used hyperbolic 
tangent function as activation function. The inputs were 
normalised from -1 to 1 using the minimum and maximum 
value of each feature as this would improve the NN training. 
As mentioned earlier, for experiments involving ARBG and 
ARLS, the number of inputs was 36 while for MAR, it was 
216. Weights and biases were initialised according to the 
Nguyen-Widrow algorithm. This algorithm chooses values in 
order to distribute the active region of each neuron in the unit 
evenly across the unit's input space. Advantages of this 
initialisation over purely random weights and biases are faster 
training and the use of more or all the available hidden units. 
 BP algorithm with adaptive learning rate and momentum 
stabilisation was used to train the MLP NN. This training 
algorithm was chosen after some preliminary experiments. 
The output units were set at 2 so that the NN could classify 
into either of the 2 categories representing the mental task. 
There were 2 experiments conducted with different number of 
HU: 

• 2 to 10 in steps of 2, and 
• 20 to 100 in steps of 20 

In other words, one experiment was conducted with 2, 4, 6, 8, 
10 HU and the other with 20, 40, 60, 80, 100 HU.  
 A total of 200 EEG patterns (20 segments for EEG each 
signal x 10 sessions) were used for each subject for each 
mental task in all the experiments. Therefore, for each 
experiment, there were 400 EEG patterns from 2 mental tasks, 
where half of the patterns were used in training and the 
remaining half in testing.   

A modified 10 fold cross validation technique was used to 
increase the reliability of the results. In this method, the entire 
data for an experiment (i.e. 400 EEG patterns) were split into 
10 parts. Training and testing were conducted for 5 times 
where for each time, we used 5 randomly selected parts for 
training and the rest 5 different parts for testing. So for each 
HU size, the MLP-BP training and testing were repeated for 5 
times. Overall, the training and testing were repeated for 6000 
times (10 HU sizes x 10 mental task combinations x 3 features 
extraction methods x 5 cross-validation repetitions x 4 
subjects). Training was conducted until the mean square error 
(between desired and target) fell below 0.0001 or reached a 
maximum iteration limit of 1000. The mean square error 
denotes the error limit to stop NN training. The desired target 
output was set to 1.0 for the particular category representing 
the mental task of the EEG pattern being trained, while for the 
other category, it was set to 0.  

Figure 3 shows the overall flow of the methodology. 
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Fig. 2 MLP-BP NN architecture 

 
 

Mental Task EEG
signals

(6 channels)

Feature extraction:
ARBG
ARLS
MAR

Cross validation MLP-
BP NN classification:

Different HU sizes
Different AR methods

 
Fig. 3 Flow of Methodology 

III. RESULTS 
Table I shows the MLP-BP NN classification results using 

ARBG, ARLS and MAR methods with 2 to 10 HU in steps of 
2 and 20 to 100 HU in steps of 20 for subject 1. Tables 2, 3 
and 4 show similar results for subjects 2, 3 and 4, respectively. 
The classification performances are shown in terms of 
percentage. Only the averaged classification percentages using 
the modified 10 fold cross validation techniques from either 2 
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20 are 
shown instead of their individual classification percentages. 
This is to save space. The additional row, ‘average’ shows the 
average of these averages over the 10 different mental task 
combinations. The term coefficient variation (CV) represents 
standard deviation divided by the mean. 
 

TABLE I 
MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT 1 

 
 
 

 

TABLE II 
MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT 2 

 
 

TABLE III 
MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT 3 

 
 

TABLE IV 
MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT  4 
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IV. DISCUSSION 
Overall, it could been from Tables 1-4 that 20-100 HU gave 

significantly better results as compared to 2-10 HU for all the 
feature extraction methods using Student t-test (p<0.00001) 
from all 4 subjects for all 3 feature extraction methods. This is 
also the case when comparing the averaged and best 
classification performances. When comparing best 
classification performance for each mental task combination, 
MAR method never gave the best performance for any of the 
subjects. In this regard, ARBG method gave the best 
classification performance more number of times as compared 
to ARLS for all the subjects. For subject 1, only ARBG 
method gave the best classification performance for all the 
mental task combinations. However, the classification 
performances between ARBG and ARLS were closer to each 
other as compared to MAR, which are most likely due to the 
similarity of the uni-variate AR modeling for ARBG and 
ARLS. Classification performances using MAR method also 
varied hugely between different mental task combinations as 
compared to ARBG and ARLS, which is shown by the CV 
values in the tables. 
 As far as the best mental task combinations are concerned, 
it varied for different subjects. For subject 1, the mental task 
that gave the best performance was baseline-rotation 
(83.08%), while it was letter-count (75.24%), rotation-count 
(80.28%) and baseline-maths (84.66%) for subjects 2, 3 and 4. 
It is also interesting to note that for subject 3, the best mental 
task combination was rotation-count for all the feature 
extraction methods. 

V. CONCLUSION 
In this paper, we have studied the effects of AR features 

and number of MLP-BP hidden units on the classification 
performance for designing BCIs. Classification results 
indicated 20-100 HU gave better performance for all the 
subjects with the ARBG method as the best method to extract 
features from EEG signals. This conclusion is based on the 
average and best classification performance over all the 
mental task combinations as it is difficult to conclude based 
on classification performance of single mental task pairs. 
Though more HU might increase the training and testing time 
for MLP-BP NN, it is advantageous as it generally results in 
higher classification performances compared to lower HU. 
Finally, we showed that it is appropriate to design individual 
BCIs, i.e. those that are suitable for use by a particular 
individual. Our experimental results showed that we cannot 
expect to build universal BCIs for use by all. This is because 
the thought patterns from different individuals are not the 
same and therefore different mental tasks result in varying 
classification performance. The results showed that in most 
cases, the suitable mental task pairs for each subject (i.e. the 
mental task pair that gave the best classification 
performances) are invariant to the feature extraction method. 
Therefore, it is more important to choose suitable mental task 
pairs for each individual as compared to the feature extraction 
method for a successful BCI design. 

APPENDIX 
Suppose an m-dimensional time series of N+p state vector 

vv (v=1-p, ..., N) is available, the time series consisting of p 
pre-sample state vector v1-p, ..., v0 and N state vectors v1, v2, ..., 
vN that form what we call the effective sample. The parameters 
A1, A2, ..., Ap, w and C of an AR(p) model of fixed order are 
to be estimated.  

The following description of multivariate AR is extracted 
from [18]. An AR(p) model can be cast in the form of a 
regression model 

 

vnv Buv ε+= , =vε noise(C), v= 1, 2, ..., N (A.1) 

with parameter matrix 

B = (w A1 A2 ... Ap) (A.2) 

and with predictors 
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of dimension np = mp + 1. Casting an AR model in the form of 
a regression model is an approximation in that in a regression 
model, the predictors uv are assumed to be constant, whereas 
the state vectors vv of an AR process are a realization of a 
stochastic process. The approximation of casting an AR model 
into the form of a regression model amounts to treating the 
first predictor 
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In terms of the moment matrices 
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where the least squares estimate of the parameter matrix B can 
be written as 

1−
∧

= WUB  . (A.6) 

The residual covariance matrix 
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(A.7) 

is an estimate of the noise covariance matrix C and can be 
expressed as 

)(1 1 T

p

WWUV
nN
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∧

−
−

=  .  

(A.8) 

The residual covariance matrix 
∧

C  is propotional to a Schur 
complement of the matrix 
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which is the moment matrix KK T=Γ  belonging to the 
data matrix 
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The least squares estimates can be computed from a QR 
factorization of the data matrix 

QRK =  , (A.11) 

with an orthogonal matrix Q and an upper triangular matrix 
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The QR factorization of the data matrix K leads to the 
Cholesky factorization RRKK TT ==Γ  of the moment 
matrix. 
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and from this Cholesky factorization, one finds the 
representation 
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(A.14) 

for the least squares estimates of the parameter matrix B and 
of the noise covariance matrix C. The estimated parameter 

matrix 
∧

B is obtained as the solution of a triangular system of 
equations, and the residual covariance matrix ∧

C  is given in a 
factored form that shows explicitly that the residual 
covariance matrix is positive semi-definite. 
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