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Abstract—Classification of electroencephalogram (EEG) signals
extracted during mental tasks is a technique that is actively pursued
for Brain Computer Interfaces (BCI) designs. In this paper, we
compared the classification performances of univariate-
autoregressive (AR) and multivariate autoregressive (MAR) models
for representing EEG signals that were extracted during different
mental tasks. Multilayer Perceptron (MLP) neural network (NN)
trained by the backpropagation (BP) algorithm was used to classify
these features into the different categories representing the mental
tasks. Classification performances were also compared across
different mental task combinations and 2 sets of hidden units (HU): 2
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different
mental tasks from 4 subjects were used in the experimental study and
combinations of 2 different mental tasks were studied for each
subject. Three different feature extraction methods with 6™ order
were used to extract features from these EEG signals: AR
coefficients computed with Burg’s algorithm (ARBG), AR
coefficients computed with stepwise least square algorithm (ARLS)
and MAR coefficients computed with stepwise least square
algorithm. The best results were obtained with 20 to 100 HU using
ARBG. It is concluded that i) it is important to choose the suitable
mental tasks for different individuals for a successful BCI design, ii)
higher HU are more suitable and iii) ARBG is the most suitable
feature extraction method.

Keywords—Autoregressive, Brain-Computer
Electroencephalogram, Neural Network.

Interface,

1. INTRODUCTION

VER the last ten years, the volume and pace of Brain
Computer Interface (BCI) research have grown
tremendously [1, 2]. In 1995 there were no more than six
active BCI research groups, and in the year 2000, there were
more than 20 [2]. BCI designs are very useful for completely
paralysed individuals to communicate with their external
surroundings using their brain thoughts. These individuals
could have become completely paralysed after being involved
in an accident or due to some diseases. BCI designs are also
suitable for use in simple hands off menu selection on the
screen.
There are a few non-invasive methods for obtaining these
brain signals to be | utilised in a BCI design.

R.Palaniappan is with the Dept. of Computer Science, University of Essex,
Colchester, CO4 3SQ, United Kingdom (phone: +44-(0)1206872773, e-mail:
rpalan@essex.ac.uk; palani@jiee.org)

N. Huan is with the Faculty of Information Science and Technology,
Multimedia University, Malaysia (e-mail:njhuan@mmu.edu.my).

Electroencephalogram (EEG) signals recorded at the scalp
during particular mental tasks have been used by some of the
research groups [3-8]. Some others have utilised single-trial
visual evoked potential signals where the subjects gaze at a
screen full of alphabets or menus. Syncronisation and
desynchronisation of p-rhythm extracted during sensory motor
tasks is another method for BCI design [9-11]. Reviews of
some of these technologies and developments in this area are
given by Vaughan et al [1], Wolpaw et al [2] and Mason and
Birch [6].

In this paper, we adopted classification of EEG signals
extracted during mental tasks for our BCI design. The
advantage of this method over the other existing BCIs is that it
does not require any in-between interface but the choice of
mental tasks, feature extraction methods and classifiers could
affect the performance greatly. Therefore, our objective in this
paper is to study the performance of a bi-state BCI design
across different mental task combinations, 3 different AR
feature extraction methods and 2 sets of hidden units (HU);
one higher and one lower.

The EEG signals were recorded during 5 different mental
tasks from 4 healthy subjects. These mental tasks were:
geometrical figure rotation, mathematical multiplication,
mental letter composing, visual counting and a baseline-
resting task. The 3 different feature extraction methods were

e 6™ order autoregressive (AR) coefficients computed with
Burg’s algorithm (ARBG)

e 6™ order autoregressive (AR) coefficients computed with
stepwise Least Squares algorithm (ARLS)

e 6™ order multivariate autoregressive (MAR) coefficients
computed with stepwise Least Squares algorithm

These features were then used by a MLP-BP NN with single
hidden layer which consisted of

e 2to 10 HU in steps of 2, or
e 20to 100 HU in steps of 20

to classify different combinations of 2 mental tasks. Two
mental tasks were chosen because the output of the studied
BCI design is bi-state. The output of this BCI design could be
used with some translation schemes like Morse Code [7] or to
control the movement of a cursor to select a target on a
computer screen, which would provide a communication
channel for paralysed individuals to communicate with others.
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II. METHODOLOGY

A. Data

The EEG data used in this study were collected by Keirn
and Aunon [S5]. The subjects were seated in an Industrial
Acoustics Company sound controlled booth with dim lighting
and noise-less fan (for ventilation). An Electro-Cap elastic
electrode cap was used to record EEG signals from positions
C3, C4, P3, P4, Ol and O2 (shown in Figure 1), defined by
the 10-20 system [12] of electrode placement. The impedances
of all electrodes were kept below 5 KQ. Measurements were
made with reference to electrically linked mastoids, Al and
A2. The electrodes were connected through a bank of
amplifiers (Grass7P511), whose band-pass analog filters were
set at 0.1 to 100 Hz. The data were sampled at 250 Hz with a
Lab Master 12-bit A/D converter mounted on a computer.
Before each recording session, the system was calibrated with
a known voltage. Signals were recorded for 10s during each
task and each task was repeated for 10 sessions where the
sessions were held on different weeks. The EEG signal for
each mental task was segmented into 20 segments with length
0.5 s, so each EEG segment was 125 samples in length.

Fig. 1 Electrode placement

In this paper, EEG signals from 4 subjects performing 5
different mental tasks were used'. In the original dataset, there
were 7 subjects participating in the study but we chose only 4
subjects here as the other 3 had fewer than 10 sessions or
some errors in the recording. These mental tasks were:

a) Baseline task. The subjects were asked to relax and think
of nothing in particular. This task was used as a control
and as a baseline measure of the EEG signals.

b) Math task. The subjects were given nontrivial
multiplication problems, such as 42 times 18 and were
asked to solve them without vocalising or making any
other physical movements. The tasks were non-repeating
and designed so that an immediate answer was not
apparent. The subjects verified at the end of the task
whether or not he/she arrived at the solution and no subject
completed the task before the end of the 10 s recording
session.

¢) Geometric figure rotation task. The subjects were given 30
s to study a particular three-dimensional block object, after

! The data is available online at
http://www.cs.colostate.edu/eeg/index.html#Data.

which the drawing was removed and the subjects were
asked to visualise the object being rotated about an axis.
The EEG signals were recorded during the mental rotation
period.

d) Mental letter composing task. The subjects were asked to
mentally compose a letter to a friend or a relative without
vocalising. Since the task was repeated several times the
subjects were told to continue with the letter from where
they left off.

e) Visual counting task. The subjects were asked to imagine a
blackboard and to visualise numbers being written on the
board sequentially, with the previous number being erased
before the next number was written. The subjects were
instructed not to verbalise the numbers but to visualise
them. They were also told to resume counting from the
previous task rather than starting over each time.

Keirn and Aunon [5] specifically chose these tasks since
they involve hemispheric brainwave asymmetry (except for
the baseline task). For example, it was shown by Osaka [13]
that arithmetic tasks exhibit a higher power spectrum in the
right hemisphere whereas visual tasks do so in the left
hemisphere. As such, Keirn and Aunon [5] and later Anderson
et al [3] proposed that these tasks are suitable for brain-
computer interfacing.

B. Feature Extraction

In this paper, we have used 3 different AR feature extraction
methods to extract features from the EEG signals and then
classifying the features using 2 sets of different number of HU
in the MLP-BP NN architecture. In the first method, AR
coefficients were computed using Burg’s method [14-16]. In
the second method, AR parameters were estimated by using
stepwise Least Square algorithm with data from a single
channel used at a time and in the third method, the
multivariate AR coefficients were estimated using stepwise
Least Square algorithm with data from 6 channels used all at
once. The following discussion details the 3 different feature
extraction processes.

1) 6" order AR coefficients with Burg’s algorithm
A real valued, zero mean, stationary, nondeterministic,
autoregressive process of order p is given by

x(n)=—Zakx(n—k)+e(n) , )

where p is the model order, x(n) is the signal at the sampled
point n, @ are the real valued AR coefficients and e(n)
represents the error term independent of past samples. The
term autoregressive implies that the process x(n) is seen to be
regressed upon previous samples of itself. The error term is
assumed to be a zero mean noise with finite variance, 0'§~ In

applications, the values of a; and o} have to be estimated
from finite samples of data x(1), x(2), x(3), ... ,X(N).

In this paper, we used Burg’s method [14-16] to estimate
the AR coefficients. The method is more accurate as
compared to other methods like Levinson-Durbin as it uses
the data point directly. Furthermore, Burg algorithm uses
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more data points by minimising both forward error and
backward error. Order 6 was used for the AR process because
other researchers [3, 5] have suggested the use of order 6 for
AR process for mental task classification. Therefore, we had 6
AR coefficients for each channel, giving a total of 36 features
for each EEG segment from a mental task.

2) 6" order AR coefficients with stepwise least square
algorithm
An m-variate AR(p) model for a stationary time series of state
vectors v, e R™, observed at equally spaced instants v, is

defined by

P
V, =W+ AV, +¢,, & =noise(C), @

i=1

where the m-dimensional vectors g =noise(C)are

uncorrelated random vectors with mean zero and covariance
matrix C € R™", and the matrices Ay, Ay, ..., Ay € R™" are
the coefficient matrices of the AR model [19]. The parameter
vector We R™ is a vector of intercept terms that is included
to allow for a nonzero mean of the time series,

<v> = (L-A-..-A,) 'w, 3)

where < ® > denoted an expected value.

If the coefficient matrices A;, A, ..., Ay and the intercept
vector W of an AR model are estimated with the method of
least squares, the residual covariance matrix ¢ of the
estimated model is a fairly reliable estimator of the noise
covariance matrix C. The least squares estimates of AR
parameters are obtained by casting an AR model in the form
of an ordinary regression model and estimating the parameters
of regression model with the method of least squares. The
least squares modeling criterion is widely used in connection
with the AR model because it is particularly suitable for
solving the related optimization problem [17]. Numerically,
the least squares problem for the ordinary regression model
can be solved with standard methods that involve the
factorization of a data matrix. However, in this study, stepwise
least squares algorithm by Neumaier and Schneider [18] was
used to estimate the parameter due to its computational
efficiency and stability. Mathematical details of this method
are given in Appendix B.

Although the m-variate AR(p) model is generally used with
multi-channels, in this paper, we have used only a single
channel at a time in the computation of parameters instead of
multi-channel and unexpectedly obtained good results. The
model order was fixed at 6 to ensure a fair comparison with
the above-mentioned method. Therefore, we had a total of 6
AR coefficients for each channel, giving a total of 36 features
for each EEG segment from a mental task.

C. MLP-BP NN

In this paper, MLP NN with single hidden layer trained by the
BP algorithm [19] was used to classify different combinations
of 2 mental tasks represented by the different EEG features.
Figure 2 shows the architecture of the MLP-BP NN used in

this study. Both the hidden and output layer used hyperbolic
tangent function as activation function. The inputs were
normalised from -1 to 1 using the minimum and maximum
value of each feature as this would improve the NN training.
As mentioned earlier, for experiments involving ARBG and
ARLS, the number of inputs was 36 while for MAR, it was
216. Weights and biases were initialised according to the
Nguyen-Widrow algorithm. This algorithm chooses values in
order to distribute the active region of each neuron in the unit
evenly across the unit's input space. Advantages of this
initialisation over purely random weights and biases are faster
training and the use of more or all the available hidden units.

BP algorithm with adaptive learning rate and momentum
stabilisation was used to train the MLP NN. This training
algorithm was chosen after some preliminary experiments.
The output units were set at 2 so that the NN could classify
into either of the 2 categories representing the mental task.
There were 2 experiments conducted with different number of
HU:

e 2to 10 in steps of 2, and

e 20 to 100 in steps of 20
In other words, one experiment was conducted with 2, 4, 6, 8,
10 HU and the other with 20, 40, 60, 80, 100 HU.

A total of 200 EEG patterns (20 segments for EEG each
signal x 10 sessions) were used for each subject for each
mental task in all the experiments. Therefore, for each
experiment, there were 400 EEG patterns from 2 mental tasks,
where half of the patterns were used in training and the
remaining half in testing.

A modified 10 fold cross validation technique was used to
increase the reliability of the results. In this method, the entire
data for an experiment (i.e. 400 EEG patterns) were split into
10 parts. Training and testing were conducted for 5 times
where for each time, we used 5 randomly selected parts for
training and the rest 5 different parts for testing. So for each
HU size, the MLP-BP training and testing were repeated for 5
times. Overall, the training and testing were repeated for 6000
times (10 HU sizes x 10 mental task combinations x 3 features
extraction methods x 5 cross-validation repetitions x 4
subjects). Training was conducted until the mean square error
(between desired and target) fell below 0.0001 or reached a
maximum iteration limit of 1000. The mean square error
denotes the error limit to stop NN training. The desired target
output was set to 1.0 for the particular category representing
the mental task of the EEG pattern being trained, while for the
other category, it was set to 0.

Figure 3 shows the overall flow of the methodology.
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Fig. 3 Flow of Methodology

III. RESULTS

Table I shows the MLP-BP NN classification results using
ARBG, ARLS and MAR methods with 2 to 10 HU in steps of
2 and 20 to 100 HU in steps of 20 for subject 1. Tables 2, 3
and 4 show similar results for subjects 2, 3 and 4, respectively.
The classification performances are shown in terms of
percentage. Only the averaged classification percentages using
the modified 10 fold cross validation techniques from either 2
to 10 HU in steps of 2 and 20 to 100 HU in steps of 20 are
shown instead of their individual classification percentages.
This is to save space. The additional row, ‘average’ shows the
average of these averages over the 10 different mental task
combinations. The term coefficient variation (CV) represents
standard deviation divided by the mean.

TABLE
MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT 1

Feature extraction metuod

TABLE III

MLP-BP NN CLASSIFICATION RESULTS FOR SUBJECT 3
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IV. DISCUSSION

Overall, it could been from Tables 1-4 that 20-100 HU gave
significantly better results as compared to 2-10 HU for all the
feature extraction methods using Student t-test (p<0.00001)
from all 4 subjects for all 3 feature extraction methods. This is
also the case when comparing the averaged and best
classification  performances. @~ When comparing  best
classification performance for each mental task combination,
MAR method never gave the best performance for any of the
subjects. In this regard, ARBG method gave the best
classification performance more number of times as compared
to ARLS for all the subjects. For subject 1, only ARBG
method gave the best classification performance for all the
mental task combinations. However, the classification
performances between ARBG and ARLS were closer to each
other as compared to MAR, which are most likely due to the
similarity of the uni-variate AR modeling for ARBG and
ARLS. Classification performances using MAR method also
varied hugely between different mental task combinations as
compared to ARBG and ARLS, which is shown by the CV
values in the tables.

As far as the best mental task combinations are concerned,
it varied for different subjects. For subject 1, the mental task
that gave the best performance was baseline-rotation
(83.08%), while it was letter-count (75.24%), rotation-count
(80.28%) and baseline-maths (84.66%) for subjects 2, 3 and 4.
It is also interesting to note that for subject 3, the best mental
task combination was rotation-count for all the feature
extraction methods.

V. CONCLUSION

In this paper, we have studied the effects of AR features
and number of MLP-BP hidden units on the classification
performance for designing BCls. Classification results
indicated 20-100 HU gave better performance for all the
subjects with the ARBG method as the best method to extract
features from EEG signals. This conclusion is based on the
average and best classification performance over all the
mental task combinations as it is difficult to conclude based
on classification performance of single mental task pairs.
Though more HU might increase the training and testing time
for MLP-BP NN, it is advantageous as it generally results in
higher classification performances compared to lower HU.
Finally, we showed that it is appropriate to design individual
BClIs, i.e. those that are suitable for use by a particular
individual. Our experimental results showed that we cannot
expect to build universal BCIs for use by all. This is because
the thought patterns from different individuals are not the
same and therefore different mental tasks result in varying
classification performance. The results showed that in most
cases, the suitable mental task pairs for each subject (i.e. the
mental task pair that gave the best classification
performances) are invariant to the feature extraction method.
Therefore, it is more important to choose suitable mental task
pairs for each individual as compared to the feature extraction
method for a successful BCI design.

APPENDIX

Suppose an m-dimensional time series of N+p state vector
vy (v=1-p, ..., N) is available, the time series consisting of p
pre-sample state vector Vi, ..., Vo and N state vectors vy, Vy, ...,
vy that form what we call the effective sample. The parameters
Al, A2, ..., Ap, w and C of an AR(p) model of fixed order are
to be estimated.

The following description of multivariate AR is extracted
from [18]. An AR(p) model can be cast in the form of a
regression model

v, =Bu, +¢,, ¢ =noise(C), v=1,2,..,N (A.1)

v

with parameter matrix

B=WAA; ... A) (A2)
and with predictors
1
v
uv _ v-1 s
(A3)
Vo,

of dimension n, = mp + 1. Casting an AR model in the form of
a regression model is an approximation in that in a regression
model, the predictors U, are assumed to be constant, whereas
the state vectors v, of an AR process are a realization of a
stochastic process. The approximation of casting an AR model
into the form of a regression model amounts to treating the
first predictor

v,
u= "
(A4)
Vi,
In terms of the moment matrices
N N T N
U=>uuy, V=>vv, W=>vu -
v=1 V=l V=l (A.5)

where the least squares estimate of the parameter matrix B can
be written as

B=wWU"" (A-6)
The residual covariance matrix
A l N A AT th A A
C:N—n e, Withg =v, -Bu,- (A7)
p v=1

is an estimate of the noise covariance matrix C and can be
expressed as

L w-wuwy-
N-n, (A.8)

C-

The residual covariance matrix C is propotional to a Schur
complement of the matrix
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= U wr =i e (uT vT),

wov ) &y, (A.9)

which is the moment matrix I' = K"K belonging to the
data matrix

TS
K — ’ (A.10)
uy vy

The least squares estimates can be computed from a QR
factorization of the data matrix

K=0QR, (A.11)

with an orthogonal matrix Q and an upper triangular matrix

R—(R“ R12J_ (A.12)
0 R,

The QR factorization of the data matrix K leads to the

Cholesky factorization I'=K'K =R"R of the moment
matrix.

U WT :RTR: RlTlRll
W RITZRH

and from this
representation

RlTl Rlz ,
RITZ RIZ + R;—Z R22 (A13)

Cholesky factorization, one finds the

A B T A
B = (RIIIRIZ) and C = WR;RH s

) (A.14)

for the least squares estimates of the parameter matrix B and
of the noise covariance matrix C. The estimated parameter

matrix Bis obtained as the solution of a triangular system of
equations, and the residual covariance matrix ¢ is given in a
factored form that shows explicitly that the residual
covariance matrix is positive semi-definite.
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