
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1879

Abstract—In this paper, the processing of sonar signals has been

carried out using Minimal Resource Allocation Network (MRAN)
and a Probabilistic Neural Network (PNN) in differentiation of
commonly encountered features in indoor environments. The
stability-plasticity behaviors of both networks have been
investigated. The experimental result shows that MRAN possesses
lower network complexity but experiences higher plasticity than
PNN. An enhanced version called parallel MRAN (pMRAN) is
proposed to solve this problem and is proven to be stable in
prediction and also outperformed the original MRAN.

Keywords—Ultrasonic sensing, target classification, minimal
resource allocation network (MRAN), probabilistic neural network
(PNN), stability-plasticity dilemma.

I. INTRODUCTION
ANY efficient neural network techniques have been
widely used in today’s robotic and automation

technology over traditional statistical techniques. Pattern
classification has become an important topic for robotics
research in many applications [1]. These classifiers are
capable of predicting the shape of objects or obstacles
surrounding the robot by means of processing the input data
received from numerous types of sensors or detectors on the
robot. They also make less assumption than the traditional
statistical methods and hence robustness can certainly be
achieved even though the input data is generated through a
non-linear system.

There are various types of methods for generating the data
of objects surrounding a robot. One reason why sonar or radar
systems are favored is because of their cost-effectiveness
besides their capability of emulating the remarkable
perception and pattern recognition behavior of humans and
animal [2]–[4]. A comparison between neural networks and
standard classifiers for radar-type emitter detection is given by
Wilson [5]. Another acoustic imaging system that combines
holography and multi-layer feed-forward neural networks for
three-dimensional object recognition is proposed in [6]. In [7],
a neural network is used to recognize three-dimensional cubes
and tetrahedrons by means of sonar. Neural networks have
also been employed to classify the sonar returns from
undersea targets [3], [8] for providing the sea floor contour.

Generally, different objects with different curvatures will

reflect the sonar signals at different angles and intensity.
These signals supply the data of the distance between the
target and the detector that serve as the input to the neural
networks. Many researchers have employed different kinds of
target differentiation algorithms in an earlier work [9]. An
RBF network learning algorithm called minimal resource
allocation network (MRAN) was developed by Lu YingWei et
al. [10], [11] as a sequential learning algorithm that employs a
scheme for adding and pruning RBFs hidden neurons, so as to
achieve a parsimonious network structure. However, RBF
type of network is always found to experience the stability-
plasticity problem due to its low capability in maintaining the
history after adapting to a new environmental change [12].

In this paper, we investigate the use of neural networks in
processing the sonar signals reflected by different targets for
indoor environments. It describes how MRAN algorithm
performs on pattern classification of various targets. A
statistical comparison is made between its performance and
the one of Probabilistic Neural Network (PNN). Here the
robustness and plasticity of the MRAN neural network are
tested and compared in two different stages. In the first
approach, the comparison result shows that the original
MRAN has a high level of plasticity that deteriorates its
capability in maintaining the neurons’ weights of the
previously encountered patterns. Generally, its weights change
rapidly adapting towards the most recent received data and
hence eventually causing the network to recognize only that
particular pattern. In the second approach, an enhanced
version that integrates multiple MRANs together is
implemented for processing the networks in parallel in order
to reduce the plasticity problem suffered in the single MRAN.
Generally by assigning one MRAN to handle each pattern to
be classified, the performance is proven to have improved
drastically and the neural network is no longer plastic and
unstable.

II. FUNDAMENTALS OF SONAR SENSING
The term ‘ultrasonic’ applied to sound refers to anything

above the frequencies of audible sound, and nominally
includes anything over 20 kHz. Sonar sensing is commonly
used in communication and navigation. Ultrasonic sound can
be produced by transducers that operate either by the
piezoelectric effect or the magneto-strictive effect.

W.S. Lim, and M.V.C. Rao

Effective Sonar Target Classification via
Parallel Structure of Minimal Resource

Allocation Network

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1880

Researchers have shown that, by proper sonar transducer
selection, both the wide and narrow areas can be covered.
Besides, sonar sensors are impervious to external disturbances
such as vibration, infrared radiation, ambient noise and EMI
radiation makes sonar sensing suitable for many applications.
Moreover, dust, dirt, or high-moisture environment has very
little effect on the performance of the sonar sensors. Since
sound can be timed from when it leaves the transducer to
when it returns, distance measuring can be achieved. Precise
distances of object from the sensor are measured via time
intervals between transmitted and reflected echo of the
ultrasonic sound. This is commonly known as the time-of-
flight (TOF). The distance d between the sensor and the object
can be obtained by d = vt / 2 when the echo amplitude first
exceeds a preset level back at the receiver at time t. Here, v is
the speed of sound in air.

The target primitives modeled in this study are wall, corner,
and edge (Fig. 1). In our system, a commercially available
robot simulator, Amigobot modelled P2AT is employed for
data collection. Five identical acoustic sonar transducers on
the front side of the robot were utilized as shown in Fig. 2.
Each transducer can operate both as a transmitter and a
receiver and detects echo signals reflected from targets within
its own sensitivity region.

III. TARGET CLASSIFICATION WITH NEURAL NETWORK
Till today, many research works have been done to

encounter the stability-plasticity problems in neural networks
such as in [13]–[16] for pattern classifications and function
approximation. This dilemma can be stated as a series of
questions. How can a learning system remain adaptive
(plastic) in response to a significant input, yet remain stable in
response to an irrelevant input? How does the system know to
switch between its plasticity and stable modes? How can the
system retain previously learned information while continuing
to learn new things?

A major restriction on traditional artificial neural networks
is that the approximation capability will be frozen after the
completion of training process. This results in a gradual
degradation of estimation performance when applied to non-
stationary environment. In solving this problem, the key
challenge is the requirement to maintain a compromise
between robustness toward interference and the adaptability to
environment changes. Until recent decades, artificial neural
networks have been providing us with many successful
evidences on the application of multivariate and nonlinear
time series prediction [17], [18]. However, traditional neural
networks always perform unsatisfactorily in non-stationary
cases because of a deficiency of feedback mechanism to
accommodate the input distribution changes. Missing this
feedback mechanism, the common way to adapt the
distribution skewness is to completely clearing the existing
network memory and begin with a new training set including
information about current changes.

The target differentiation algorithm used in earlier works
like in [19] is reviewed. It has given useful ideas of how to
differentiate targets by means of their shapes and radius of
curvature. In this paper, two types of neural network
algorithms are introduced, namely Minimal Resource
Allocation Network (MRAN) and Probabilistic Neural
Network (PNN) for classifying the three primitive targets.
Since PNN is just serving as a comparison tool for
experimental purposes, its algorithm and architecture would
not be further explored in detail.

A. Minimal Resource Allocation Network
The structure of a basic RBF network with Gaussian

functions as its radial basis functions (similar to the structure
used in MRAN) can be seen in Fig. 3. It can be observed that
to construct a neural network like this, four types of
parameters are required. They are the number of hidden
neurons h in the network, the center positions µ’s for all the
hidden neurons h in the network, the corresponding width
values σ’s for Gaussian function and the connection weights
α’s between the hidden layer and the output layer.

The sequential learning MRAN algorithm employs a

scheme for adding and pruning RBF hidden neurons, so as to

Fig. 1 Cross sections of the target primitives differentiated in this work

 wall edge corner
90°

90°

Distance
from target, r

Sonar sensitivity
region Robot

Fig. 2 Sensitivity region of an array of ultrasonic transducers in P2AT robot

15°
15°

X1

X2

Xn

∑

∑

1y

py
•
•
•

•
•
•

•
•
•

 Input Layer

 Hidden Layer

 Output Layer bias

bias

 σh µh

 σ2
 µ2

 σ1
 µ1 α11

α12

αp1

Fig. 3 The Structure of RBF Neural Network with Gaussian Function

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1881

achieve a parsimonious network structure. In MRAN, the
network begins with no hidden neurons. The response
(output) of a hidden unit to the network input at the ith

 instant,
xi, can be expressed as follows,

),...,1(),
)(

1exp()(
2

2
hkxx i

kii
k

ik =−−= µ
σ

φ (1)

where i
kµ is the center vector for the kth hidden unit at ith

instant and i
kσ is the width for the Gaussian function at that

time. denotes the Euclidean norm and h indicates the total

number of hidden neurons in the network. For networks with
multiple outputs iŷ of p dimensions, the overall network

response is a mapping f : pq ℜ→ℜ , which is

 ∑
=

+==
h

k
ik

i
k

i
ii xxfy

1
0),()(ˆ φαα (2)

where q
ix ℜ∈ . The coefficient vector i

kα is the connecting
weight vector of the kth hidden unit to output layer, which is in

the vector form of []Ti
pk

i
lk

i
k

i
k αααα ,...,,...,1= . Thus, the

coefficient matrix of the network can be expressed
as],...,,...[1

i
h

i
k

ii
hpA ααα=× . i

0α is the bias vector which is
Ti

p
i
l

ii],...,,...,[00100 αααα = . As each training data pair (input

and output) is received the network builds itself up based on
two growth criteria, (3) and (4).

||xi - µi
nr || > εi (3)

|| ei || = || yi –)(ik xφ || > emin (4)

where µi

nr is the center (of the hidden unit) which is closest
to xi (the input received). ei is the calculated error, the
difference between output received, yi and the network output,

)(ik xφ . εi , emin are thresholds to be selected appropriately.

The algorithm adds new hidden neurons or adjusts the existing
network parameters according to the training data received.
The algorithm also incorporates a pruning strategy that is used
to remove hidden neurons that do not contribute significantly
to the output. Consequently, this algorithm reduces the
network complexity compared to other methods (like PNNs).
A complete learning flow diagram of MRAN is given in Fig.
4. Other research work on function approximation by MRAN
can also be seen in [20]. Some other ideas of growing and
pruning as in [28] and [29] are also referred.

B. Parallel MRAN (pMRAN)
The concept of multiple MRANs has been studied and

employed to enhance the performance of the original single
MRAN network from stability and plasticity point of view.
Initial works have been carried out in this research to
determine the pattern classification performance of a single
MRAN, and the experimental result shows that it is unstable
and plastic, especially in sequential learning [21]. Analysis

from the result proves that it stands as a good classifier in
terms of quick learning capability and adaptation with low
network complexity, but unfortunately when more new
patterns are encountered, the old memory deteriorates.
Consequently, the single MRAN only classifies well for the
pattern most recently encountered. The challenge taken in
solving this problem is to stabilize the network in such a way
that the network complexity (in terms of number of neurons
generated) are still maintained in an acceptable range, and
MRAN is of one best choice since it incorporates a pruning
strategy. Hence, the concept of multiple MRAN is adopted for
this case, where each pattern is assigned to a single MRAN,
and the classification accuracy results obtained in this work
are promising and favorable.

In this section, the structure and the process flow of the

parallel MRAN (as shown in Fig. 5) are discussed. The
number of MRAN classifiers used in the network is decided
solely by the number of patterns or classes to be classified,
meaning that each class is handled by one MRAN. In this way,
each MRAN is trained only by the same cluster of information
and consequently that network is restricted to recognize only
that particular pattern. Firstly, the training data is distributed
according to class type by a pattern separator before it is
transferred to each MRAN classifier respectively. This can be
easily realized since each training data comes with its desired
output. For three different target types in this experiment, the

get the first training
data

compute the network output values

Compare the network output value (f(x))
with the actual value (yi) and calculate the

error (ei)

No

Yes

add a new hidden
neuron

Do some hidden neurons
satisfy the criteria for pruning?

prune the hidden neurons

Yes

No

end the training?

end

Yes
No

Fig. 4 Flow diagram for MRAN learning algorithm

start the algorithm with no hidden neurons

Adjust the weights’ values, the
values of centers and widths on
existing hidden neurons

get the next
training data

Are the criteria for
adding hidden neurons

satisfied?

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1882

codes 001, 010 and 100 are pre-assigned to wall, corner and
edge respectively. In the pattern separator, these codes are
being identified and the training data pairs (training input and
output pair) are then distributed by class. Once all the data is
segregated and passed on to the classifiers, the training
process is executed in all the classifiers and new neurons are
generated according to (3) and (4). The weight (α), center (µ)
and width (σ) are three major parameters that represent the
Gaussian function of each neuron and these parameters are
perpetually tuned to accommodate the incoming training data.
Therefore, the values of these parameters are kept within
certain specific range for each pattern in the multiple MRANs
structure (pMRAN).

When training is completed, the trained pMRAN is tested

with new testing data. From this data, each trained classifier
calculates and predicts its own output and passes on the
information to the voting layer. In this stage, we have adopted
a classical method of voting where the winner-takes-all in
deciding the correct pattern or class. Generally in gaussian
nature, the effective gaussian amplitude (G) of a test point (x)
is inversely proportional to the distance between the point and
the center (µ) of a gaussian function, given by G(x) = exp[-(x
- µ)2 / σ 2]. Typically, when a network detects the pattern of
its own, it is very likely to produce a higher output value
because the pattern is located nearer to the center(s) of its
neuron(s). Whereas the neurons from other classes may
comparatively produce lower output value since the pattern is
further from their centers. In this sense, we possibly choose
the highest output value among the classifiers to indicate that
particular classified class.

C. Probabilistic Neural Network
 PNN realizes the Parzen-window estimators in feed-

forward neural network architecture. For a pattern
classification problem of c classes, the hidden activation
function (transfer function) wi (i = 1, 2,…, c) of the network
(assuming that each class is represented by one output node) is
denoted by the Parzen window function K(·), and those
distinct hidden nodes are assigned for different classes in the

training process. Then the output yi of the ith output node for
PNN can be expressed as follows:

ciwxp
xx

K i
j

H

j

i

,...,2,1)/(
)(

y
1

i =≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ∑

= α
 (5)

where Hi is the number of hidden nodes of PNN
corresponding to the ith class, xj’s are the hidden center
vectors of respective jth hidden nodes, which are all the
training sample vectors from training sample set for PNN. For
a general pattern recognition problem involved in c classes, Hi
is just equal to the number Ni of the training samples for the
ith class. So, the total number N of training samples for c

classes is N = ∑c

i iH . Generally, the following is always true:

H ≤ N (6)
From (5) and (6), we can see that
• The hidden node number of PNN is just equal to the total
 number of training samples [22].
• PNN is a self-supervised classifier, in which the nodes do

not need any external supervised signals, based on the class
labels of the training samples [23].

• PNN is also a directly testing classifier without training (the
weights are set to be 0s or 1s), and the decision surfaces
among patterns from distinct classes are formed by their
conditioned probability density function [24]–[26].

IV. EXPERIMENTAL SETUP
In our system, a commercially available robot simulator

(Fig.8), Amigobot modeled P2AT which incorporates built-in
noise and interference to ensemble real physical environment,
is employed for data collection. Five identical acoustic sonar
transducers on the front side of the robot were utilized, as

Input training patterns

Pattern separator

Voting layer

MRAN #1

Trained Multiple MRAN Networks

MRAN #2 MRAN #n …….

Predicted output

Input testing patterns

Fig. 5 Parallel MRAN structure

xn

x1

x2

x3

 y1

 yn

 y2

 Fig. 6 The structure scheme of the probabilistic neural network

wi1

wi2

wi4

wi3

win

 x1

 x2

 x3

 x4

 xn

zi yi ∑
 +1

 Fig. 7 The structure scheme of one hidden neuron of PNN

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1883

shown in Fig. 2. Each transducer can operate both as
transmitter and receiver and detect echo signals reflected from
targets within its own sensitivity region. On the discrete
network location shown in Fig. 9, the robot is positioned at the
black dot locations (41 dots in total) for collecting training
data while the white dot positions (40 dots in total) are for
obtaining testing data. In each position (black or white), 5
echo signals from 5 transducers are collected from over 40
different locations, therefore, providing 600 (5 sensors x 40
locations x 3 target types) training and testing data each. Each
collected data is totally independent from one another.

Three training methods are employed to judge the
robustness and plasticity of the networks, namely the original
MRAN, the newly proposed pMRAN and PNN. The main
reason for introducing the classical PNN in this work is for
comparison purposes due to its high stability behavior. It also
confirms that the training and testing data used are appropriate
and have certain satisfactory level of correctness. Firstly, the
network is trained in a way that it received data collected from
one target type, followed by second and then the third target
type in sequence. In the second method, they are trained by
randomly mixed data of all three target types. In the third
training method, both networks are trained in a similar way to
the first method, but it is further extended by repeating the
first target type training again in sequence. After the training
process, the networks are tested to investigate their robustness
and stability by data collected at different locations on the
discrete network. Each dot is positioned at approximately 10
cm away from its neighboring dots in a square mesh network.

There are 3 output nodes for MRAN and each of these

output nodes corresponds to each type of target. For
simplification of calculation, the three outputs are scaled to
yield only the value of 0 or 1, where the largest value among
the three outputs would be a “1” while the other two remained
as “0”. The output node with a “1” indicates the type of target
detected. In other words, we employed the “winner takes all”
method for selecting the network predicted target. This in turn
gave every test result in combination of 0 and 1 only (001, 010
or 100). Hence, the correct target type classification
percentages are calculated out from the test results and
summarized for every training method. Each training data that
the network received consists of 5 inputs (from 5 sensors)
representing the estimated distances of the robot from the
target, and 3 desired outputs that represent the target type. The
three desired outputs were classically predefined by three
different coding, 001, 010 and 100 representing wall, corner
and edge respectively. During training process, neurons in
MRAN are generated one by one according to (3) and (4) as
stated earlier. When a new neuron is generated, it will hold
three different important parameters, namely the weight of the
neuron (α), the center location (µ) and width (σ) of its
gaussian function. Each set of weight, center and width values
contained in each neuron is significant and differs from one to
another. Since MRAN is also equipped with efficient pruning
strategy, it has the capability of pruning any insignificant
neuron(s) throughout the training process. This implies that
the values of weight, center and width in each neuron are
constantly updated whenever a new neuron is generated, or an
existing insignificant neuron is pruned.

 All the networks are trained and the testing accuracy is
computed for all three training methods. Whenever a new
target is encountered by MRAN, the network has the tendency
to adjust its weights to adapt to the new pattern. The
adjustment of the weights may affect on the information of
past encountered target types stored in the neurons earlier.
Consequently, the most recent target type encountered by the
network would most probably be getting the highest correct
classification accuracy, whilst the earliest encountered target

 Fig. 9 Discrete network locations. Black-dot: training; White-dot: testing

object

10 cm

10 cm

Fig. 8 Amigobot simulation software

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1884

type might have possibly been forgotten. In view to this
plasticity and stability problem, multiple MRANs are
combined together to process the data simultaneously.
Regardless of how the input training data is mixed up or
distributed, the data will always be segregated by individual
class first, and then only fed into their respective network for
learning. In pMRAN, the number of MRAN networks used
depends on the number of classes or patterns to be classified,
where each MRAN handles just one class. This approach
restricts the network just to deal with only one target type and
the weights developed in the neurons are constraint only to
one of a kind. After being trained with three different methods
on MRAN, and a parallel training of each class on pMRAN,
the networks are tested with the same set of testing data. All
network parameters settings are common for both MRAN and
pMRAN for the entire training process. The corresponding
results of correct classification accuracy for MRAN and
pMRAN are shown in Table I. The performance test of the
classical PNN is also carried out in this work for comparison
purposes.

V. COMPARATIVE ANALYSIS AND DISCUSSION
In this section we present the results on target

differentiation performance of MRAN and pMRAN trained in
two different approaches, while using PNN as a comparative
tool. All the networks are compared on their accuracy of
estimating the correct target, namely wall, corner and edge. As
discussed in the previous section, all the data used for testing
the networks are different from the data used for training. This
is to further ensure that the robustness and stability of the
networks are tested comprehensively. In the following Table
1, the numerical values show the percentages of correct target-
type classification.

TABLE I
 COMPARATIVE RESULTS AMONG MRAN, PNN AND PMRAN

 THE NUMERICAL VALUES SHOW THE CLASSIFICATION ACCURACY FOR EACH
TARGET TYPE

Network used MRAN PNN

 Target type Wall Corner Edge Wall Corner Edge

Method 1 0% 19% 100% 97% 93% 91%

Method 2 58.2% 48.7% 52.6% 97% 93% 91%

Method 3 100% 26% 0% 97% 93% 91%

A. MRAN Performance Study
• In the original MRAN, perfect classification (100%) is

obtained for object / target-type that is trained last in the
sequence, i.e. for training Method 1 and 3. This implies the
network learns very quickly (only 200 training data for each
target type) and able to classify accurately on what it has
just learned.

• In training Method 1, edge is the last batch of training data
received by the network, and edge is the only target
accurately classified where as for wall and corner, the
network failed to classify them accurately.

• The same case holds good for training Method 3, where wall
data is repeated at the end of the training process, and as
expected, wall has the perfect classification percentage this
time.

• In training Method 2, the network classifies poorly in
overall when the training data is randomly mixed.

From the accuracy results, it is observed that MRAN has the
tendency to adjust its weights to adapt to a new pattern. The
adjustment of the weights has affected on the information of
past encountered target types stored in the neurons earlier. As
a result, the most recent target type encountered by the
network possessed the highest correct classification accuracy,
whilst the earliest encountered target type have been forgotten.
Apart from that, it is observed that the total number of hidden
neurons generated in MRAN for each training method is 20,
19 and 11 in methods 1, 2 and 3 respectively. From the
statistical analysis, generally more neurons are generated
whenever edge target type is encountered. In method 3, wall
data is repeated again to train the network and it is observed
that some of the neurons generated earlier for target edge have
been pruned and as a result lower number of neurons is
obtained in this case.

B. pMRAN performance study
• In pMRAN, the multiple MRANs managed to establish a

stable classification performance, where the lowest accuracy
i.e. 86% is achieved for edge. The highest accuracy
achieved is from corner i.e. 94%, followed by wall, 91%.

• The weights in each neuron generated for each target type
are maintained throughout the training process since each
MRAN is supplied with only one type of class data. Hence,
each network only recognizes the target type that it has
learned and produces a strong output to indicate that
particular target type.

In the observation of pMRAN, the number of neurons
generated in each individual network is much lower than that
in MRAN, which is 2, 3 and 5 for target type wall, corner and
edge respectively. In overall, only 10 neurons are used in
pMRAN and are already sufficient to produce stable
performance and high accuracy compared to 11 to 20 neurons
in MRAN. The number of MRAN classifiers used in the
network is decided solely by the number of patterns or classes
to be classified. Therefore, each MRAN is trained only by the
same cluster of information and consequently that network is

pMRAN

(Three independent MRAN
networks handling three different
classes. Each network is trained

with only one class type)

Wall Corner Edge

91% 94% 86%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1885

restricted to recognize only that particular pattern. As
mentioned before, the weight (α), center (µ) and width (σ) are
three major parameters that represent the Gaussian function of
each neuron and these parameters are perpetually tuned to
accommodate the incoming training data. Therefore, the
values of these parameters are kept within certain specific
range for each pattern in the pMRAN structure, without being
replaced or eliminated due to other classes incoming patterns.

C. PNN performance study
On the other hand, the results from PNN show that
• The highest classification percentage is from wall, followed

by edge and then corner.
• Generally, the classification percentage for all targets

achieved the satisfactory level (above 90%). The main
reason for introducing the classical PNN in this work is for
comparison purposes due to its high stability behavior. It
also confirms that the training and testing data used are
appropriate and have certain satisfactory level of
correctness.

The number of hidden neurons generated in a classical PNN
depends on the sample or data size used [22]. In this case, the
sample size used is 600 data which consequently causing
about 600 hidden neurons being generated. Hence, this large
amount of hidden neurons adds to the complexity of the
network. However, PNN does not suffer from unstable and
plasticity problems because generally it creates a separate
neuron for each training sample. These generated neurons are
neither pruned nor adjusted and hence the weights of every
neuron are maintained. For moderately sized databases this is
not a problem, but unfortunately it will be a major drawback
for large databases and major applications where it increases
the complexity of the network and consequently deteriorates
the speed.

VI. CONCLUSION
The percentage of correct target type classification is high at

100% for the last target trained by the classical MRAN for
training method 1 and method 3. This shows that the target
type that is most recently trained will give high classification
accuracy. Unfortunately, it classifies poorly on those target
types that are earlier trained. In other words, the weights
carried by the hidden neurons during training process
experience rapid change, making the network tend to “forget”
what it learned previously. No doubt, it learns very quickly,
but it only “remembers” what is trained most recently, thus
making the classical MRAN unstable and plastic. Due to this
reason, MRAN is seldom applied as pattern classifier in earlier
research works. However, modifying the original single
MRAN to multiple MRANs that learn in parallel solves the
plasticity and stability problems as proven in pMRAN. The
result shows consistent prediction for all three targets and
generally its performance is close to that of PNN that is well
known for its good stability. Besides, the advantage of using
MRAN network is its low complexity due to a small number
of hidden neurons generated during the training, and is

furthermore improved by its incorporated pruning strategy.
PNN shows to be a stable network but the disadvantage is, it
requires large number of hidden neurons that leads to high
network complexity which deteriorates its processing speed
compared to MRAN.

REFERENCES
[1] R. P. Lippman, “An introduction to computing with neural nets”, IEEE

ASSP Mag., pp. 4 – 22, Apr. 1987.
[2] W. W. L. Au, “Comparison of sonar discrimination – dolphin and

artificial neural network”, J. Acoust. Soc. Amer., pt. 1, vol. 95, no. 5, pp.
2728 – 2735, 1994.

[3] H. L. Roitblat, W. W. L. Au, P. E. Nachtogall, R. Shizumura, and G.
Moons, “Sonar recognition of targets embedded in sediment”, Neural
Netw., vol. 8, no. 7/8, pp. 1263 – 1273, 1995.

[4] J. A. Simmons, P. A. Saillant, J. M. Wotton, T. Haresign, M. J.
Feragamo, and C. F. Moss, “Composition of biosonar images for target
recognition by echolocating bats”, Neural Netw., vol. 18, no. 7/8 , pp.
1239 – 1261, 1995.

[5] G. B. Willson, “Radar classification using a neural network”, Proc.
SPIE, Optical Engineering and Photonics in Aerospace Sensing:
Application of Neural Networks, vol. 1294, pp. 200 – 210, 1990.

[6] S. Watanabe and M. Yoneyama, “An ultrasonic visual sensor for three-
dimensional object recognition using neural networks”, IEEE Trans.
Robot. Automat., vol. 8, pp. 240 – 249, Apr. 1992.

[7] I. E. Dror, M. Zagaeski, and C. F. Moss, “3-dimensional target
recognition via sonar – a neural network model”, Neural Networks, vol.
8, no. 1, pp. 149 – 160, 1995.

[8] R. P. Gorman and T. J. Sejnowski, “Learned classification of sonar
targets using a massively parallel network”, IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 36, no. 7, pp. 1135 – 1140, 1998.

[9] B. Ayrulu and B. Barshan, “Identification of target primitives with
multiple decision-making sonars using evidential reasoning,” Int. J.
Robot. Res., vol. 17, no. 6, pp. 598 – 623, 1998.

[10] L. Yingwei, N. Sundararajan, and P. Saratchandran, “Performance
evaluation of a sequential minimal Radial Basis Function (RBF) neural
network learning algorithm,” IEEE Trans. Neural Networks, vol. 9, pp.
308-318, Mar. 1998.

[11] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequential
learning scheme for function approximation using minimal radial basis
function neural networks,” Neural Computing., vol. 9, pp. 461-478, Feb.
1997.

[12] M. Chan, C. Fung, “Incremental Adaption of Resource-Allocating
Network for Non-Stationary Time Series,” Neural Networks, 1999.
IJCNN '99. IEEE International Joint Conference, Volume: 3 , 10-16,
July 1999, pp. 1554 -1559 vol.3

[13] B. L. Pulito, T. R. Damarla, S. Nariani, “A Two-Dimensional Shift
Invariant Image Classification Neural Network which overcomes the
Stability / Plasticity Dilemma,” Neural Networks, 1990., 1990 IJCNN
International Joint Conference on 17-21 June 1990, pp. 825 –833, vol.2

[14] J. P. Albright, “An implementation and Evaluation of the ART1 Neural
Network For Pattern Recognition,” Neural Networks, 1994. IEEE World
Congress on Computational Intelligence., 1994 IEEE International
Conference, Volume: 1 , 27 June-2 July 1994, pp. 498 –502, vol.1

[15] Youngtae Park, “An ART2 trained Two-Stage Learning on Circularly
Ordered Data Sequence,” Neural Networks, 1994. IEEE World Congress
on Computational Intelligence., 1994 IEEE International Conference,
Volume: 5 , 27 June-2 July 1994, pp. 2928 –2933, vol.5

[16] Rok Rape, Dusan Fefer, Janko Drnovsek. Time Series Prediction with
Neural Networks: A Case Study of Two Examples, IMTC’94, IEEE,
May 1994.

[17] Ben Jacobsen. Time Series Properties of Stock Returns, Kluwer
BedrijfsInformatie, 1997.

[18] Donald F. Specht, “Enhancements To Probabilistic Neural Networks,”
Neural Networks, 1992. IJCNN., IEEE International Joint Conference,
Volume: 1 , 7-11, June 1992, pp. 761 – 768, vol.1

[19] B. Barshan, B. Ayrulu, and S. W. Utete, “Neural Network-Based Target
Differentiation Using Sonar for Robotics Applications,” IEEE Trans.
Robotics and Automation, vol. 16, pp. 435 – 442, August 2000.

[20] N. Sundararajan, P. Saratchandran and, Lu Ying Wei, book of “Radial
Basis Function Neural Network,” by School of Electrical & Electronic
Engineering, Nanyang Tech. Univ, S’pore.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

1886

[21] W. S. Lim, M.V.C. Rao, C.K. Loo,“Sequential Learning Neural
Network For Sonar Target Differentiation,” Neural Network World 2/04,
187-197.

[22] D. F. Specht, “Probablistic Neural Networks,” Neural Networks 3 (1990)
109-118.

[23] D. F. Specht, “Probabilistic neural networks for classification, mapping,
or associative memory,” ICNN, vol.1 (San Diego, CA), July 1988, pp.
525-532.

[24] D. J. Marchette and C. E. Priebe, “The adaptive kernel neural network,”
Reports: AD-A217 230, 1989.

[25] P. S. Naloney, “The use of probabilistic neural networks to improve
solution times for hull-to-emitter correlation problems,” IJCNN,
Sheraton Washington, Vol.1, 1989, pp. 289-294.

[26] D. F. Specht, “Application of probabilistic neural networks,” SPIE,
Appl. Artif. Neural Networks 1294 (1990) 344-353.

[27] J. J. Guo, P. B. Luh, “Selecting input factors for clusters of Gaussian
radial basis function networks to improve market clearing price
prediction,” Power Systems, IEEE Transactions, Volume 18, Issue 2,
May 2003 Page(s):665 – 672.

[28] G. B. Huang, P. Saratchandran, N. Sundararajan, “A generalized
growing and pruning RBF neural network for function approximation,”
Neural Networks, IEEE Transactions, Volume 16, Issue 1, Jan. 2005
Page(s):57 – 67.

[29] G. B. Huang, P. Saratchandran, N. Sundararajan, “An efficient
sequential learning algorithm for growing and pruning RBF networks,”
Systems, Man and Cybernetics, Part B, IEEE Transactions, Volume 34,
Issue 6, Dec. 2004 Page(s):2284 – 2292.

