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Abstract—In this paper, the processing of sonar signals has been 

carried out using Minimal Resource Allocation Network (MRAN) 
and a Probabilistic Neural Network (PNN) in differentiation of 
commonly encountered features in indoor environments. The 
stability-plasticity behaviors of both networks have been 
investigated. The experimental result shows that MRAN possesses 
lower network complexity but experiences higher plasticity than 
PNN. An enhanced version called parallel MRAN (pMRAN) is 
proposed to solve this problem and is proven to be stable in 
prediction and also outperformed the original MRAN. 
 

Keywords—Ultrasonic sensing, target classification, minimal 
resource allocation network (MRAN), probabilistic neural network 
(PNN), stability-plasticity dilemma.  

I. INTRODUCTION 
ANY efficient neural network techniques have been 
widely used in today’s robotic and automation 

technology over traditional statistical techniques. Pattern 
classification has become an important topic for robotics 
research in many applications [1]. These classifiers are 
capable of predicting the shape of objects or obstacles 
surrounding the robot by means of processing the input data 
received from numerous types of sensors or detectors on the 
robot. They also make less assumption than the traditional 
statistical methods and hence robustness can certainly be 
achieved even though the input data is generated through a 
non-linear system.  

There are various types of methods for generating the data 
of objects surrounding a robot. One reason why sonar or radar 
systems are favored is because of their cost-effectiveness 
besides their capability of emulating the remarkable 
perception and pattern recognition behavior of humans and 
animal [2]–[4]. A comparison between neural networks and 
standard classifiers for radar-type emitter detection is given by 
Wilson [5]. Another acoustic imaging system that combines 
holography and multi-layer feed-forward neural networks for 
three-dimensional object recognition is proposed in [6]. In [7], 
a neural network is used to recognize three-dimensional cubes 
and tetrahedrons by means of sonar. Neural networks have 
also been employed to classify the sonar returns from 
undersea targets [3], [8] for providing the sea floor contour.  

Generally, different objects with different curvatures will 

 
 

reflect the sonar signals at different angles and intensity. 
These signals supply the data of the distance between the 
target and the detector that serve as the input to the neural 
networks. Many researchers have employed different kinds of 
target differentiation algorithms in an earlier work [9]. An 
RBF network learning algorithm called minimal resource 
allocation network (MRAN) was developed by Lu YingWei et 
al. [10], [11] as a sequential learning algorithm that employs a 
scheme for adding and pruning RBFs hidden neurons, so as to 
achieve a parsimonious network structure. However, RBF 
type of network is always found to experience the stability-
plasticity problem due to its low capability in maintaining the 
history after adapting to a new environmental change [12].  

In this paper, we investigate the use of neural networks in 
processing the sonar signals reflected by different targets for 
indoor environments. It describes how MRAN algorithm 
performs on pattern classification of various targets. A 
statistical comparison is made between its performance and 
the one of Probabilistic Neural Network (PNN). Here the 
robustness and plasticity of the MRAN neural network are 
tested and compared in two different stages. In the first 
approach, the comparison result shows that the original 
MRAN has a high level of plasticity that deteriorates its 
capability in maintaining the neurons’ weights of the 
previously encountered patterns. Generally, its weights change 
rapidly adapting towards the most recent received data and 
hence eventually causing the network to recognize only that 
particular pattern. In the second approach, an enhanced 
version that integrates multiple MRANs together is 
implemented for processing the networks in parallel in order 
to reduce the plasticity problem suffered in the single MRAN. 
Generally by assigning one MRAN to handle each pattern to 
be classified, the performance is proven to have improved 
drastically and the neural network is no longer plastic and 
unstable. 

II. FUNDAMENTALS OF SONAR SENSING 
The term ‘ultrasonic’ applied to sound refers to anything 

above the frequencies of audible sound, and nominally 
includes anything over 20 kHz. Sonar sensing is commonly 
used in communication and navigation. Ultrasonic sound can 
be produced by transducers that operate either by the 
piezoelectric effect or the magneto-strictive effect. 
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Researchers have shown that, by proper sonar transducer 
selection, both the wide and narrow areas can be covered. 
Besides, sonar sensors are impervious to external disturbances 
such as vibration, infrared radiation, ambient noise and EMI 
radiation makes sonar sensing suitable for many applications. 
Moreover, dust, dirt, or high-moisture environment has very 
little effect on the performance of the sonar sensors. Since 
sound can be timed from when it leaves the transducer to 
when it returns, distance measuring can be achieved. Precise 
distances of object from the sensor are measured via time 
intervals between transmitted and reflected echo of the 
ultrasonic sound. This is commonly known as the time-of-
flight (TOF). The distance d between the sensor and the object 
can be obtained by d = vt / 2 when the echo amplitude first 
exceeds a preset level back at the receiver at time t. Here, v is 
the speed of sound in air.  

The target primitives modeled in this study are wall, corner, 
and edge (Fig. 1). In our system, a commercially available 
robot simulator, Amigobot modelled P2AT is employed for 
data collection. Five identical acoustic sonar transducers on 
the front side of the robot were utilized as shown in Fig. 2. 
Each transducer can operate both as a transmitter and a 
receiver and detects echo signals reflected from targets within 
its own sensitivity region.      
 

 

    

  

 

 

 

 

 
 
 

 

 

III. TARGET CLASSIFICATION WITH NEURAL NETWORK  
Till today, many research works have been done to 

encounter the stability-plasticity problems in neural networks 
such as in [13]–[16] for pattern classifications and function 
approximation. This dilemma can be stated as a series of 
questions. How can a learning system remain adaptive 
(plastic) in response to a significant input, yet remain stable in 
response to an irrelevant input? How does the system know to 
switch between its plasticity and stable modes? How can the 
system retain previously learned information while continuing 
to learn new things?  

A major restriction on traditional artificial neural networks 
is that the approximation capability will be frozen after the 
completion of training process. This results in a gradual 
degradation of estimation performance when applied to non-
stationary environment. In solving this problem, the key 
challenge is the requirement to maintain a compromise 
between robustness toward interference and the adaptability to 
environment changes. Until recent decades, artificial neural 
networks have been providing us with many successful 
evidences on the application of multivariate and nonlinear 
time series prediction [17], [18]. However, traditional neural 
networks always perform unsatisfactorily in non-stationary 
cases because of a deficiency of feedback mechanism to 
accommodate the input distribution changes. Missing this 
feedback mechanism, the common way to adapt the 
distribution skewness is to completely clearing the existing 
network memory and begin with a new training set including 
information about current changes.  

The target differentiation algorithm used in earlier works 
like in [19] is reviewed. It has given useful ideas of how to 
differentiate targets by means of their shapes and radius of 
curvature. In this paper, two types of neural network 
algorithms are introduced, namely Minimal Resource 
Allocation Network (MRAN) and Probabilistic Neural 
Network (PNN) for classifying the three primitive targets. 
Since PNN is just serving as a comparison tool for 
experimental purposes, its algorithm and architecture would 
not be further explored in detail.    

 

A. Minimal Resource Allocation Network 
The structure of a basic RBF network with Gaussian 

functions as its radial basis functions (similar to the structure 
used in MRAN) can be seen in Fig. 3. It can be observed that 
to construct a neural network like this, four types of 
parameters are required. They are the number of hidden 
neurons h in the network, the center positions µ’s for all the 
hidden neurons h in the network, the corresponding width 
values σ’s for Gaussian function and the connection weights 
α’s between the hidden layer and the output layer.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The sequential learning MRAN algorithm employs a 

scheme for adding and pruning RBF hidden neurons, so as to 

Fig. 1 Cross sections of the target primitives differentiated in this work 
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Fig. 3 The Structure of RBF Neural Network with Gaussian Function
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achieve a parsimonious network structure. In MRAN, the 
network begins with no hidden neurons. The response 
(output) of a hidden unit to the network input at the ith

 instant, 
xi, can be expressed as follows, 
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where i
kµ  is the center vector for the kth hidden unit at ith 

instant and i
kσ  is the width for the Gaussian function at that 

time.  denotes the Euclidean norm and h indicates the total 

number of hidden neurons in the network. For networks with 
multiple outputs iŷ of p dimensions, the overall network 
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ii ],...,,...,[ 00100 αααα = . As each training data pair (input 

and output) is received the network builds itself up based on 
two growth criteria, (3) and (4).  

||xi - µi
nr ||   >   εi            (3) 

|| ei || = || yi – )( ik xφ ||   >   emin                (4) 
 
where  µi

nr is the center (of the hidden unit) which is closest 
to xi (the input received).  ei is the calculated error, the 
difference between output received, yi and the network output, 

)( ik xφ . εi , emin are thresholds to be selected appropriately.  
 
The algorithm adds new hidden neurons or adjusts the existing 
network parameters according to the training data received. 
The algorithm also incorporates a pruning strategy that is used 
to remove hidden neurons that do not contribute significantly 
to the output. Consequently, this algorithm reduces the 
network complexity compared to other methods (like PNNs). 
A complete learning flow diagram of MRAN is given in Fig. 
4. Other research work on function approximation by MRAN 
can also be seen in [20]. Some other ideas of growing and 
pruning as in [28] and [29] are also referred.  
 

B. Parallel MRAN (pMRAN) 
The concept of multiple MRANs has been studied and 

employed to enhance the performance of the original single 
MRAN network from stability and plasticity point of view. 
Initial works have been carried out in this research to 
determine the pattern classification performance of a single 
MRAN, and the experimental result shows that it is unstable 
and plastic, especially in sequential learning [21]. Analysis 

from the result proves that it stands as a good classifier in 
terms of quick learning capability and adaptation with low 
network complexity, but unfortunately when more new 
patterns are encountered, the old memory deteriorates. 
Consequently, the single MRAN only classifies well for the 
pattern most recently encountered. The challenge taken in 
solving this problem is to stabilize the network in such a way 
that the network complexity (in terms of number of neurons 
generated) are still maintained in an acceptable range, and 
MRAN is of one best choice since it incorporates a pruning 
strategy. Hence, the concept of multiple MRAN is adopted for 
this case, where each pattern is assigned to a single MRAN, 
and the classification accuracy results obtained in this work 
are promising and favorable.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this section, the structure and the process flow of the 

parallel MRAN (as shown in Fig. 5) are discussed. The 
number of MRAN classifiers used in the network is decided 
solely by the number of patterns or classes to be classified, 
meaning that each class is handled by one MRAN. In this way, 
each MRAN is trained only by the same cluster of information 
and consequently that network is restricted to recognize only 
that particular pattern. Firstly, the training data is distributed 
according to class type by a pattern separator before it is 
transferred to each MRAN classifier respectively. This can be 
easily realized since each training data comes with its desired 
output. For three different target types in this experiment, the 
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codes 001, 010 and 100 are pre-assigned to wall, corner and 
edge respectively. In the pattern separator, these codes are 
being identified and the training data pairs (training input and 
output pair) are then distributed by class. Once all the data is 
segregated and passed on to the classifiers, the training 
process is executed in all the classifiers and new neurons are 
generated according to (3) and (4). The weight (α), center (µ) 
and width (σ) are three major parameters that represent the 
Gaussian function of each neuron and these parameters are 
perpetually tuned to accommodate the incoming training data. 
Therefore, the values of these parameters are kept within 
certain specific range for each pattern in the multiple MRANs 
structure (pMRAN).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When training is completed, the trained pMRAN is tested 

with new testing data. From this data, each trained classifier 
calculates and predicts its own output and passes on the 
information to the voting layer. In this stage, we have adopted 
a classical method of voting where the winner-takes-all in 
deciding the correct pattern or class. Generally in gaussian 
nature, the effective gaussian amplitude (G) of a test point (x) 
is inversely proportional to the distance between the point and 
the center (µ) of a gaussian function, given by G(x) = exp[ -(x 
- µ)2 / σ 2 ]. Typically, when a network detects the pattern of 
its own, it is very likely to produce a higher output value 
because the pattern is located nearer to the center(s) of its 
neuron(s). Whereas the neurons from other classes may 
comparatively produce lower output value since the pattern is 
further from their centers. In this sense, we possibly choose 
the highest output value among the classifiers to indicate that 
particular classified class.    

 

C. Probabilistic Neural Network 
 PNN realizes the Parzen-window estimators in feed-

forward neural network architecture. For a pattern 
classification problem of c classes, the hidden activation 
function (transfer function) wi (i = 1, 2,…, c) of the network 
(assuming that each class is represented by one output node) is 
denoted by the Parzen window function K(·), and those 
distinct hidden nodes are assigned for different classes in the 

training process. Then the output yi of the ith output node for 
PNN can be expressed as follows: 
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where Hi is the number of hidden nodes of PNN 
corresponding to the ith class, xj’s are the hidden center 
vectors of respective jth hidden nodes, which are all the 
training sample vectors from training sample set for PNN. For 
a general pattern recognition problem involved in c classes, Hi 
is just equal to the number Ni of the training samples for the 
ith class. So, the total number N of training samples for c 

classes is N = ∑c

i iH . Generally, the following is always true: 

H ≤ N              (6) 
From (5) and (6), we can see that 
• The hidden node number of PNN is just equal to the total  
 number of training samples [22]. 
• PNN is a self-supervised classifier, in which the nodes do  

not need any external supervised signals, based on the class 
labels of the training samples [23]. 

• PNN is also a directly testing classifier without training (the  
weights are set to be 0s or 1s), and the decision surfaces 
among patterns from distinct classes are formed by their 
conditioned probability density function [24]–[26]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. EXPERIMENTAL SETUP 
In our system, a commercially available robot simulator 

(Fig.8), Amigobot modeled P2AT which incorporates built-in 
noise and interference to ensemble real physical environment, 
is employed for data collection. Five identical acoustic sonar 
transducers on the front side of the robot were utilized, as 
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shown in Fig. 2. Each transducer can operate both as 
transmitter and receiver and detect echo signals reflected from 
targets within its own sensitivity region. On the discrete 
network location shown in Fig. 9, the robot is positioned at the 
black dot locations (41 dots in total) for collecting training 
data while the white dot positions (40 dots in total) are for 
obtaining testing data. In each position (black or white), 5 
echo signals from 5 transducers are collected from over 40 
different locations, therefore, providing 600 (5 sensors x 40 
locations x 3 target types) training and testing data each. Each 
collected data is totally independent from one another. 
 

             

        

 

Three training methods are employed to judge the 
robustness and plasticity of the networks, namely the original 
MRAN, the newly proposed pMRAN and PNN. The main 
reason for introducing the classical PNN in this work is for 
comparison purposes due to its high stability behavior. It also 
confirms that the training and testing data used are appropriate 
and have certain satisfactory level of correctness. Firstly, the 
network is trained in a way that it received data collected from 
one target type, followed by second and then the third target 
type in sequence. In the second method, they are trained by 
randomly mixed data of all three target types. In the third 
training method, both networks are trained in a similar way to 
the first method, but it is further extended by repeating the 
first target type training again in sequence. After the training 
process, the networks are tested to investigate their robustness 
and stability by data collected at different locations on the 
discrete network. Each dot is positioned at approximately 10 
cm away from its neighboring dots in a square mesh network.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are 3 output nodes for MRAN and each of these 

output nodes corresponds to each type of target. For 
simplification of calculation, the three outputs are scaled to 
yield only the value of 0 or 1, where the largest value among 
the three outputs would be a “1” while the other two remained 
as “0”. The output node with a “1” indicates the type of target 
detected. In other words, we employed the “winner takes all” 
method for selecting the network predicted target. This in turn 
gave every test result in combination of 0 and 1 only (001, 010 
or 100). Hence, the correct target type classification 
percentages are calculated out from the test results and 
summarized for every training method. Each training data that 
the network received consists of 5 inputs (from 5 sensors) 
representing the estimated distances of the robot from the 
target, and 3 desired outputs that represent the target type. The 
three desired outputs were classically predefined by three 
different coding, 001, 010 and 100 representing wall, corner 
and edge respectively. During training process, neurons in 
MRAN are generated one by one according to (3) and (4) as 
stated earlier. When a new neuron is generated, it will hold 
three different important parameters, namely the weight of the 
neuron (α), the center location (µ) and width (σ) of its 
gaussian function. Each set of weight, center and width values 
contained in each neuron is significant and differs from one to 
another. Since MRAN is also equipped with efficient pruning 
strategy, it has the capability of pruning any insignificant 
neuron(s) throughout the training process. This implies that 
the values of weight, center and width in each neuron are 
constantly updated whenever a new neuron is generated, or an 
existing insignificant neuron is pruned.  

 All the networks are trained and the testing accuracy is 
computed for all three training methods. Whenever a new 
target is encountered by MRAN, the network has the tendency 
to adjust its weights to adapt to the new pattern. The 
adjustment of the weights may affect on the information of 
past encountered target types stored in the neurons earlier. 
Consequently, the most recent target type encountered by the 
network would most probably be getting the highest correct 
classification accuracy, whilst the earliest encountered target 

  Fig. 9 Discrete network locations. Black-dot: training; White-dot: testing  

object 
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Fig. 8 Amigobot simulation software 
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type might have possibly been forgotten. In view to this 
plasticity and stability problem, multiple MRANs are 
combined together to process the data simultaneously. 
Regardless of how the input training data is mixed up or 
distributed, the data will always be segregated by individual 
class first, and then only fed into their respective network for 
learning. In pMRAN, the number of MRAN networks used 
depends on the number of classes or patterns to be classified, 
where each MRAN handles just one class. This approach 
restricts the network just to deal with only one target type and 
the weights developed in the neurons are constraint only to 
one of a kind. After being trained with three different methods 
on MRAN, and a parallel training of each class on pMRAN, 
the networks are tested with the same set of testing data. All 
network parameters settings are common for both MRAN and 
pMRAN for the entire training process. The corresponding 
results of correct classification accuracy for MRAN and 
pMRAN are shown in Table I. The performance test of the 
classical PNN is also carried out in this work for comparison 
purposes.      

V. COMPARATIVE ANALYSIS AND DISCUSSION 
In this section we present the results on target 

differentiation performance of MRAN and pMRAN trained in 
two different approaches, while using PNN as a comparative 
tool. All the networks are compared on their accuracy of 
estimating the correct target, namely wall, corner and edge. As 
discussed in the previous section, all the data used for testing 
the networks are different from the data used for training. This 
is to further ensure that the robustness and stability of the 
networks are tested comprehensively. In the following Table 
1, the numerical values show the percentages of correct target-
type classification. 

 
 

TABLE I 
 COMPARATIVE RESULTS AMONG MRAN, PNN AND PMRAN 

 THE NUMERICAL VALUES SHOW THE CLASSIFICATION ACCURACY FOR EACH 
TARGET TYPE 

Network used MRAN PNN 

  Target type Wall Corner Edge Wall Corner Edge 

Method 1 0% 19% 100% 97% 93% 91% 

Method 2 58.2% 48.7% 52.6% 97% 93% 91% 

Method 3 100% 26% 0% 97% 93% 91% 

 
 
                  
 
 
 
 
 
 

 

A. MRAN Performance Study 
• In the original MRAN, perfect classification (100%) is 

obtained for object / target-type that is trained last in the 
sequence, i.e. for training Method 1 and 3. This implies the 
network learns very quickly (only 200 training data for each 
target type) and able to classify accurately on what it has 
just learned.  

• In training Method 1, edge is the last batch of training data 
received by the network, and edge is the only target 
accurately classified where as for wall and corner, the 
network failed to classify them accurately.  

• The same case holds good for training Method 3, where wall 
data is repeated at the end of the training process, and as 
expected, wall has the perfect classification percentage this 
time. 

• In training Method 2, the network classifies poorly in 
overall when the training data is randomly mixed. 

From the accuracy results, it is observed that MRAN has the 
tendency to adjust its weights to adapt to a new pattern. The 
adjustment of the weights has affected on the information of 
past encountered target types stored in the neurons earlier. As 
a result, the most recent target type encountered by the 
network possessed the highest correct classification accuracy, 
whilst the earliest encountered target type have been forgotten. 
Apart from that, it is observed that the total number of hidden 
neurons generated in MRAN for each training method is 20, 
19 and 11 in methods 1, 2 and 3 respectively. From the 
statistical analysis, generally more neurons are generated 
whenever edge target type is encountered. In method 3, wall 
data is repeated again to train the network and it is observed 
that some of the neurons generated earlier for target edge have 
been pruned and as a result lower number of neurons is 
obtained in this case. 

 

B. pMRAN performance study 
• In pMRAN, the multiple MRANs managed to establish a 

stable classification performance, where the lowest accuracy 
i.e. 86% is achieved for edge. The highest accuracy 
achieved is from corner i.e. 94%, followed by wall, 91%.  

• The weights in each neuron generated for each target type 
are maintained throughout the training process since each 
MRAN is supplied with only one type of class data. Hence, 
each network only recognizes the target type that it has 
learned and produces a strong output to indicate that 
particular target type.  

In the observation of pMRAN, the number of neurons 
generated in each individual network is much lower than that 
in MRAN, which is 2, 3 and 5 for target type wall, corner and 
edge respectively. In overall, only 10 neurons are used in 
pMRAN and are already sufficient to produce stable 
performance and high accuracy compared to 11 to 20 neurons 
in MRAN. The number of MRAN classifiers used in the 
network is decided solely by the number of patterns or classes 
to be classified. Therefore, each MRAN is trained only by the 
same cluster of information and consequently that network is 

pMRAN 

(Three independent MRAN 
networks handling three different 
classes. Each network is trained 

with only one class type) 
 

Wall Corner Edge 

91% 94% 86% 
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restricted to recognize only that particular pattern. As 
mentioned before, the weight (α), center (µ) and width (σ) are 
three major parameters that represent the Gaussian function of 
each neuron and these parameters are perpetually tuned to 
accommodate the incoming training data. Therefore, the 
values of these parameters are kept within certain specific 
range for each pattern in the pMRAN structure, without being 
replaced or eliminated due to other classes incoming patterns.  

 

C. PNN performance study 
On the other hand, the results from PNN show that 
• The highest classification percentage is from wall, followed 

by edge and then corner. 
• Generally, the classification percentage for all targets 

achieved the satisfactory level (above 90%). The main 
reason for introducing the classical PNN in this work is for 
comparison purposes due to its high stability behavior. It 
also confirms that the training and testing data used are 
appropriate and have certain satisfactory level of 
correctness. 

The number of hidden neurons generated in a classical PNN 
depends on the sample or data size used [22]. In this case, the 
sample size used is 600 data which consequently causing 
about 600 hidden neurons being generated. Hence, this large 
amount of hidden neurons adds to the complexity of the 
network. However, PNN does not suffer from unstable and 
plasticity problems because generally it creates a separate 
neuron for each training sample. These generated neurons are 
neither pruned nor adjusted and hence the weights of every 
neuron are maintained. For moderately sized databases this is 
not a problem, but unfortunately it will be a major drawback 
for large databases and major applications where it increases 
the complexity of the network and consequently deteriorates 
the speed. 

VI. CONCLUSION 
The percentage of correct target type classification is high at 

100% for the last target trained by the classical MRAN for 
training method 1 and method 3. This shows that the target 
type that is most recently trained will give high classification 
accuracy. Unfortunately, it classifies poorly on those target 
types that are earlier trained. In other words, the weights 
carried by the hidden neurons during training process 
experience rapid change, making the network tend to “forget” 
what it learned previously. No doubt, it learns very quickly, 
but it only “remembers” what is trained most recently, thus 
making the classical MRAN unstable and plastic. Due to this 
reason, MRAN is seldom applied as pattern classifier in earlier 
research works. However, modifying the original single 
MRAN to multiple MRANs that learn in parallel solves the 
plasticity and stability problems as proven in pMRAN. The 
result shows consistent prediction for all three targets and 
generally its performance is close to that of PNN that is well 
known for its good stability. Besides, the advantage of using 
MRAN network is its low complexity due to a small number 
of hidden neurons generated during the training, and is 

furthermore improved by its incorporated pruning strategy. 
PNN shows to be a stable network but the disadvantage is, it 
requires large number of hidden neurons that leads to high 
network complexity which deteriorates its processing speed 
compared to MRAN. 
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