
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1107

Abstract—Interactive push VOD system is a new kind of system

that incorporates push technology and interactive technique. It can
push movies to users at high speeds at off-peak hours for optimal
network usage so as to save bandwidth. This paper presents effective
software-based solution for processing mass downstream data at
terminals of interactive push VOD system, where the service can
download movie according to a viewer’s selection. The downstream
data is divided into two catalogs: (1) the carousel data delivered
according to DSM-CC protocol; (2) IP data delivered according to
Euro-DOCSIS protocol. In order to accelerate download speed and
reduce data loss rate at terminals, this software strategy introduces
caching, multi-thread and resuming mechanisms. The experiments
demonstrate advantages of the software-based solution.

Keywords—DSM-CC, data carousel, Euro-DOCSIS, push VOD.

I. INTRODUCTION
HE application of PVR (Personal video recorder)
technology provides the opportunity to deliver content

using a push-VOD model where a partition of the hard disk is
reserved for caching content that is then made available
on-demand. Push VOD is a bandwidth-saving technology that
can push movies at high speeds, and deliver them at off-peak
hours for optimal network usage. At the same time, the
interactive television (ITV) technology has provided
consumers with interactive digital services. Users can preview
free promotional clip in the conventional interactive VOD
manner to choose their favorite content to be downloaded.

In the interactive push VOD system, users select the films
they want by means of a browser, and then send their requests
to a head end server through upstream channels, in which the
amount of data is very small. In response to terminals’ requests,
the head end packages the required clips in accordance with
Euro-DOCSIS [1] standard. Upon receiving the interactive data,

Manuscript received September 26, 2006. The research is supported by
China Next Generation Internet Foundations (CNGI) (No.CNGI-04-15-2A)

Ni Hong was with Institute of Acoustics, Chinese Academy of Sciences,
Beijing, CO 100080, China (phone: 86-010-62565615; e-mail: nih@dsp.ac.cn).

Wu Guobin is with Department of Automation, University of Science and
Technology of China, Hefei, CO 230027, China (e-mail:
wuguobin@mail.ustc.edu.cn).

Wu Gang is with Department of Automation, University of Science and
Technology of China, Hefei, CO 230027, China (e-mail: wug@ustc.edu.cn).

Pan Liang was with Institute of Acoustics, Chinese Academy of Sciences,
Beijing, CO 100080, China (e-mail: panl@dsp.ac.cn).

terminals analyze it by IP protocol stack. Here, the data is
referred to as interactive data. In addition, at the head end,
movie data are encoded and packed into MPEG-2 transport
streams (TS) [2] according to DSM-CC data carousel
specification [3][4] and transmitted to client terminals through
HFC network. At terminals the received data are filtered,
parsed and re-assembled, and then written into a hard disk as
integrated movie data, which is referred to as carousel data.
Due to the mismatching speed between software
data-processing and hardware data-receiving caused by the
resource restraint of embedded system, downstream data is
more likely to be lost compared to upstream data. Therefore,
the prominent problem to be solved is how to configure the
packaging strategy at head end and to select the data-processing
method at terminals.

In this paper, effective software-based solution is proposed
to support the application of interactive push VOD system. At
ISP head end, software package generator packs downstream
data according to Euro-DOCSIS protocol, while at BSP head
end, movie data is made into packages based on data carousel.
The two kinds of packages are transmitted via HFC at different
frequencies. For the received data, terminals adopt caching
mechanism, multi-thread mechanism and resuming
mechanism. Multi-thread includes several threads such as
data-receiving thread, writing thread and the like. Meanwhile,
the data-receiving thread group and the data-analyzing thread
group can be designed correspondingly to the capacity of the
demultiplexer (demux) applied to the terminal. Our
experiments demonstrate that the proposed software-based
solution can effectively process mass downstream data within a
shorter time period and reduce packet-losing rate at terminals
when compared to others. This strategy can help improve the
performance of terminals which receive mass downstream data
in similar service.

The rest of the paper is organized as follows. Section 2
provides structure of mass downstream data. In section 3,
effective software-based solution for processing mass
downstream data in terminal is presented in detail.
Experimental environment and its results are described in
section 4. Finally, in section 5 the conclusion is given.

Effective Software-Based Solution for
Processing Mass Downstream Data in

Interactive Push VOD System
Ni Hong, Wu Guobin, Wu Gang, and Pan Liang

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1108

II. STRUCTURE OF MASS DOWNSTREAM DATA
Interactive downstream data, that is, interactive data in the

downstream direction, is packaged in accordance with
Euro-DOCSIS protocol. A MAC frame is the basic unit of
transfer between the cable modem (CM) and the CMTS.
Preceding each MAC frame is an MPEG-2 transmission
convergence header in the downstream direction, as shown in
Fig. 1.

Fig. 1 Downstream MAC Frame format

Carousel data is organized for transmission according to

DSM-CC data carousel protocol. The DSM-CC data carousel
defines three important sections: Download Server Initiate
(DSI), Download Info Indication (DII), and Download Data
Block (DDB).

According to the DSM-CC data carousel standard, Block
Number defines the number of blocks included in a module. As
a result of the 16-bit Block Number, the maximum number of
blocks contained in each module is 65536. When transmitted as
DDB in a DSM-CC section, a block is 4 Kbytes. Therefore, a
module has a fixed maximum capacity of 256 Mbytes
(64K*4K). However, such module usually can’t meet the
requirements of bulk-data push service. According to the
standard, a DSM-CC section contains 4096 bytes at most. In a
DSM-CC section, DSM-CC header occupies 8 bytes, and
DSM-CC CRC (Cyclic Redundancy Check) takes up 4 bytes.
Packed as a DSM-CC payload， DII header needs 34 bytes. As
a module is 13 bytes, a section can hold 311 modules at most
due to the equation: (4096-8-4-34)/13=311. Thus, we use one
or several groups to transmit bulk-data service. In practice,
transmission structure should be chosen based on the size of
multimedia data. Thus, in our implementation of bulk data such
as a movie data which contains 2 Gbytes, we use one group
structure which contains 8 modules to transmit data. It only
needs DII and DDB section. The whole structure of the data
carousel is shown in Fig. 2.

DII Transaction_id

mi mi

DDB

DDB

DDB

DDB

DDB

Group

block
Module

..

.
.
..

…

Fig. 2 Data carousel structure

III. SOFTWARE-BASED SOLUTION FOR PROCESSING MASS
DOWNSTREAM DATA IN TERMINAL

The receiving unit of the terminal is divided into two parts:
CM unit and demux unit. The framework is shown in Fig. 3.

Fig. 3 Receiving unit of the terminal

The CM unit takes the responsibility of receiving interactive
downstream data. The downstream function of the MAC
include receiving MPEG-2 frames from the downstream
receiver, extracting the Euro-DOCSIS MAC frames from the
MPEG-2 frames, processing the MAC headers, filtering
messages and data. The filtered downstream data packets will
be transferred to memory space and then be analysis by IP
stack.

The interactive downstream data is usually sent out by the
head end in response to the terminal’s request, thereby it is
burst and random. Then, the terminal analyzes the data received
by the CM unit.

The terminal demux unit receives carousel data as follows.
Firstly, the terminal receives DSM-CC sections from MPEG-2
transport stream according to user demand. Then it analyses the
received sections and re-assembles them into an integrated part.
Lastly, by computing it determines the location on hard disk
where data will be written. For users, they can conveniently
manage the downloaded content through media management
module.

The mechanism of data carousel is to divide data into
sections and to broadcast them periodically. In fact, it is
impossible for a terminal to receive all the data in the carousel
during only one cycle. Once a section is missed, the terminal
has to wait for another cycle, which is surely time-consuming.
Therefore, it is important to reduce the down latency to satisfy
viewer’s requirements.

In order to give a full play to the whole resource of the
terminal, we introduce effective software-based solution as
shown in Fig. 4.

Fig. 4 Overview of effective software-based solution

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1109

A. The Cause of Performance Deterioration
The CM unit has a powerful function of receiving the

interactive downstream data, which is burst and random as
above-mentioned, at a high speed, for example, the highest of
38Mbps. However, having undergone the analysis by MAC
layer of CM, these data is copied to the memory of the terminal
for the analysis based on higher-level protocol. Thus, in the
case that these data is not processed in time, they will take up a
large portion of memory, which leads to the severe
deterioration of the terminal’s performance.

The data transport processor is an MPEG-2 transport stream
message/PES parser and demux. [2] The module functions as
receiving sections from a transport stream. In digital
broadcasting, DDB sections make up of main data, while DII
sections have a small data volume. When DDB filter is set in
demux channels, the data transport processor can receive only
corresponding DDB sections to hardware buffer instead of all
the sections. If the buffer is full and DDB sections inside are not
taken away in time, newly-coming DDB sections can’t enter
the buffer and are automatically abandoned. In general, data
transport processors have a very rapid processing speed. For
example, in our platform, the maximum data-receiving rate can
reach 162 Mbps, and the size of hardware buffer can be set
from 1 Kbytes to 512 Kbytes. On the contrary, the ability of
CPU on embedded platform is limited and can’t match the data
transport processor. For example, the CPU on our platform can
only achieve 133 MHz. In fact, analyzing sections by the
software will take much more time than retrieving them by the
hardware. So if we receive maximum sections in the buffer and
then analyses them, there will be a high possibility to miss the
next sections during this cycle. Even though we set hardware
buffer maximum capacity as 512 Kbytes, there still exists
section loss.

In conclusion, there is a need for an effective solution to
prevent the deterioration from occurring, therefore to ensure
the satisfactory experience for a user. One of effective methods
is to make some change to software architecture.

B. Caching and Multi-Thread Mechanism
In order to avoid hardware buffer overflowed and give

demux a full play, a circular cache of 1 Mbytes is built in
memory to store DDB sections. After entering the hardware
buffer, DDB sections are immediately copied to the circular
cache in order that new DDB sections can enter hardware
buffer. At the same time, a new thread is started from thread
pool, which answers for analyzing DDB sections. The use of
two-thread mechanism also avoids data loss due to the
hardware buffer overflowing.

Here, thread group will be explained at first. As well known,
the hardware capacity of demux differs on different platforms.
In our research, there are two kinds of demux in two platforms:
one can use a plurality of channels to receive a PID data, while
the other can use only one channel for a PID data, that is, the
other channels reject the same PID data. It is obvious that the
capacity of the former is much higher than that of the latter.
Accordingly, we can take advantage of the former to utilize a

number of channels for data receiving, with each channel for a
different section of DDB data. The more detailed description is
as follows:

Fig. 5 Scheme of the DDB receiving thread group

In the DSM-CC protocol, a section number is filed in the

DDB section header. DDB sections are sorted according to this
section number and divided into corresponding threads to
receive and analyze. The sorting method is as follows: Suppose
N is the number of DDB receiving threads; it is equal to an
integer power of two. The hardware section filter employs the
section number to allocate the sections to various threads. The
sections whose section numbers when divided by N yield a
remainder of 0 are processed by Thread 0, and the sections
whose section numbers when divided by N yield a remainder of
1 are processed by Thread 1. Further, the sections whose
section numbers when divided by N yield a remainder of N – 1
are processed by Thread N – 1. Fig. 5 shows the DDB receiving
thread group. The received data is put into the buffers
corresponding to the assigned N buffers. In the same manner,
the thread group for DDB data analysis creates as many threads
as that of the thread group of DDB data reception, and carries
out the analysis in correspondence with the reception thread
group. Here, it is better not to make N too great. Since N
indicates the number of the created threads, if too many threads
are created, it will be disadvantageous that the system
performance is degraded. In addition, the N buffers lead to the
increase in memory consumption.

As to the demux with poor capacity, it is sufficient to assign
1 to the number N, and there is no need for any modification in
the package generation at the head end.

These two threads group operate on the respectively
corresponding circular cache. Receiving thread group is
write-only and writes data to cache when there is free space;
analyzing thread group is read-only and read data from cache
while clearing up corresponding space. In the following
experiment, we can find that using the caching and multi-thread
mechanism enables parallel processing of data reception and
local analysis so that to enhance data-processing efficiency,
and to reduce the down latency and section loss rate.

For the multi-thread mechanism, there is a thread for writing
hard disk besides receiving thread and analyzing thread. When
analysis of DDB sections is completed, the payload of DDB
sections needs to be written to hard disk. Because the writing
operation takes some time, it is proper to introduce a new thread
responsible for this task. Moreover, to guarantee the immediate

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1110

processing for the interactive downstream data, a specific
thread is developed, which has the function of monitoring the
burst and random interactive downstream data, that is, entering
the sleep mode when there is no data, and responding to the
data as soon as it comes. The opening and closing of these
threads are managed by an administer thread.

C. Re-Assembling Method and Resuming Mechanism for
Carousel Data

It is impossible for a terminal to take a single cycle to receive
all the DDB sections in the carousel. Therefore, it requires data
re-assembling in the terminal. By calculating the total number
of DDB sections from Module Size, Block Size and Module
Number in the DII section, an index file of receiving
information is generated locally, of which every element is
initialized as zero. A DDB section is a block. For example, if
the number of DDB block is M, an M-byte index file is built
and initialized as 0x00. When a DDB section is received as a
block, this block’s index can be computed this block index
from its Module Id and Block Number. For instance, if the
block’s index is calculated as N, the Nth byte in the index file
will be read. After that, determine whether the Nth index is
0x00. If yes, payload of the block will be written to the location
of N* Block Size in hard disk, and the Nth index will be set as
0xFF; otherwise, it indicates this block has been received and
should be abandoned.

As a result, the re-assembling process is independent of user
operation and can be resumed. Whenever a user starts his
terminal, the terminal can continue to download and store data
left from previous process.

IV. EXPERIMENTS AND RESULTS

A. Experiment System

Fig. 6 Interactive push VOD system environment

Fig. 6 shows an overview of the push service system

environment.
At front end we performed our tests with a MPEG-2

transport stream. This transport stream transmits multimedia
data through data broadcasting DSM-CC Data Carousel. It is
multiplex of 188 bytes packets consists of 75% DDB message,
25% DII message.

The application is tested on a MHP[5] compliant STB
Bi-7111 running at 133 MHz, 64 Mbytes DDR memory, 16
Mbytes flash memory, 10 Gbytes hard disc, MPEG-2 hardware
decoder, two tuners, 32 demux channels, Euro-DOCSIS 1.1
protocol stack, Linux OS 2.4.18, etc.

B. Experiments
It is difficult to carry out the experiment on the interactive

downstream data due to its burst and random characteristics.
Further, the amount of the interactive downstream data is much
smaller than that of the carousel data. So, to evaluate the system
performance of interactive push VOD system, the main factor
is DDB section lose rate, that is, the ratio between the number
of terminal-received sections and that of all the transmitted
sections in one cycle. As referred above, because the pushed
data is periodically displayed in a predetermined order, the loss
of any section means that the terminal has to wait for at least
another cycle to receive it, while the rest data within the waiting
cycle don’t need to be received again and become useless. As a
result of the waiting, at least a cycle and bandwidth are wasted.

In the early implementation of interactive push VOD system,
we use simple single-thread software-based solution without
cache to process data in the terminal. Our experiment
demonstrates that this method uses many cycles and is
inefficient. After introducing effective software-based solution
with caching mechanism, multi-thread mechanism and
resuming mechanism, the experiment reveals satisfactory
results of mass downstream data push service.

In our first experiment, we transmit 44-Mbytes file as one
module. Then, we test terminal performance of simple
software-based solution and effective software-based solution
at different speeds of transport streams: 15.48 Mbps, 22.12
Mbps, 27.64 Mbps and 33.18 Mbps, respectively. Here, a
single DDB thread and a two DDB thread schemes are
employed correspondingly to demuxes with different
capacities. DDB section lose rate and the number of cycles for
receiving integrated file are shown in Table I.

TABLE I

EXPERIMENTAL RESULTS FOR A 44MBYTES FILE
Simple Effective N=1 Effective N=2 Mbps

Lose rate% Cycles Lose rate% Cycles Lose rate% Cycles
15.48 12.9 1.4 0 1 0 1
21.12 31.6 2.2 0.4 1.0 0.4 1.0
27.64 52.4 2.9 4.3 1.2 3.9 1.2
33.18 67.1 3.4 13.3 1.3 13.1 1.2

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1111

TABLE II

EXPERIMENTAL RESULTS FOR BULK FILES: LOSS RATE
Mbytes Simple Effective

N=1
Effective
N=2

Effective
N=4

400 33 3.0 1.0 0.0
2000 70 16 2.8 0.0

 (Unit: lose rate %)
TABLE III

EXPERIMENTAL RESULTS FOR BULK FILES: CAROUSEL CYCLE
Mbytes Simple Effective

N=1
Effective
N=2

Effective
N=4

400 3.20 1.48 1.04 1.01
2000 10.6 1.99 1.28 1.00

 (Unit: 1 carousel cycle)

As shown in Table I, it is obvious that the processing
performance is remarkably enhanced with effective
software-based solution. The data analysis indicates that speed
of transport stream also influence system performance. As is
seen, given a small amount of data, the improvement in
capacity is not very significant for the demux which supports a
same PID data-receiving with several channels. The
comparison will be shown from the following experiment on a
large amount of data. Therefore, it is determined to adopt 15.48
Mbps as transport stream speed for mass data in order to
achieve minimum section lose rate. Table II and Table III
shows our experimental results on a 400-Mbytes file (2
modules) and a 2-Gbytes file (8 modules).

As seen above, effective software-based solution is more
advantageous than simple software-based solution in terms of
system performance. Also, for the platform with high-capacity
demux, it is more advantageous to adopt the strategy to use two
thread groups, other than a single thread, for DDB data
receiving and analyzing. It takes one loop to download a
2-Gbytes file, which can meet viewers’ requirements for
transmission speed.

V. CONCLUSION
It is of great importance for interactive push VOD system to

improve the performance of processing downstream data. This
paper proposes effective software-based solution for an
interactive push service. This effective software-based solution
gives a great promotion to terminals’ processing capability by
adding caching, multi-thread and resuming mechanisms. In
particular, one thread group DDB data-receiving and another
thread group DDB data-analyzing strategy are proposed for
demuxes with different capacity, in which the single DDB
data-receiving thread and the single DDB data-analyzing
thread method is supported without any change in the head end.
From the experimental results, it proves that the effective
software-based solution satisfies viewer’s requirements and
will be helpful for accelerating interactive push service.
Furthermore, the solution has been implemented in the
software architecture of the terminal in a trail system of
application of interactive services in two-way CATV networks.

ACKNOWLEDGMENT
The Author gratefully acknowledges the support of K. C.

Wong Education Foundation, Hong Kong.

REFERENCES
[1] CM-SP-RFIv1.1, Data-Over-Cable Service Interface Specifications

DOCSIS 1.1, 2005.
[2] ISO/IEC 13818-1, Information technology -- Generic coding of moving

pictures and associated audio information – part 1: Systems, 1997.
[3] ISO/IEC 13818-6, Information technology -- Generic coding of moving

pictures and associated audio information – part 6: Extension for digital
storage media command and control (DSM-CC), 1997.

[4] ETSI EN 301 192 V1.3.1 Digital Video Broadcasting (DVB), DVB
specification for data broadcasting, 2003.

[5] ETSI TS 102 812 V1.2.1 Digital Video Broadcasting (DVB), Multimedia
Home Platform (MHP) Specification 1.1.1, 2003.

