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Abstract—The linear stability of nanofluid convection in a 

horizontal porous layer is examined theoretically when the walls of 
the porous layer are subjected to time-periodic temperature 
modulation. The model used for the nanofluid incorporates the effects 
of Brownian motion and thermopherosis, while the Darcy model is 
used for the porous medium. The analysis revels that for a typical 
nanofluid (with large Lewis number) the prime effect of the 
nanofluids is via a buoyancy effect coupled with the conservation of 
nanoparticles. The contribution of nanoparticles to the thermal energy 
equation being a second-order effect. It is found that the critical 
thermal Rayleigh number can be found reduced or decreased by a 
substantial amount, depending on whether the basic nanoparticle 
distribution is top-heavy or bottom-heavy. Oscillatory instability is 
possible in the case of a bottom-heavy nanoparticle distribution, 
phase angle and frequency of modulation. 
 

Keywords—Brownian motion and thermophoresis, Porous 
medium, Nanofluid, Natural convection, Thermal modulation. 

NOMENCLATURE 
c  nanofluid specific heat at constant pressure 

pc  specific heat of the nanoparticle material 

( )m
cρ  effective heat capacity of the porous medium 

g gravitational accelaeration ( 2m s ) 

BD  Brownian diffusion coefficient ( 2m s ) 

TD  thermophoretic diffusion coefficient ( 2m s ) 
H  dimensional layer depth ( m ) 
k  thermal conductivity of the nanofluid 

mk  effective thermal conductivity of the porous medium 
Le  Lewis number 

AN  modified diffusivity ratio 

BN  modified particle-density increment 
*p  pressure 

p  dimensionless pressure, *
mp K μα  

Ra  thermal Rayleigh- Darcy number 
Rm  basic-density Rayleigh number 
Rn  concentration Rayleigh number 
*t  time ( s ) 

t  dimensionless time, * 2
mt Hα σ  

*T  nanofluid temperature 
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rT  reference temperature 

( ), ,u v w  dimensionless Darcy velocity components 

( )* * *, , mu v w H α  

v  nanofluid velocity 

Dv  Darcy velocity vε  

D

*v  dimensionless Darcy velocity ( )* * *, ,u v w  

( ), ,x y z  dimensionless Cartesian coordinate ( )* * *, ,x y z H ; z is 

the vertically upward coordinate 

( )* * *, ,x y z Cartesian coordinates 

 
Greek Symbols 

mα  thermal diffusivity of the porous medium, ( )m p f
k cρ  

ε  porosity of the medium 

tε  amplitude of the modulation 
μ  viscosity of the fluid 

μ  effective viscosity of the porous medium 
ρ  fluid density 

pρ  nanoparticle mass density 
σ  parameter defined by (20) 

*φ  nanoparticle volume fraction 
φ  relative nanoparticle volume fraction  
Ω  dimensional frequency 
ω  dimensionless frequency ( )2= ΩH k  

ψ  phase angle 

I. INTRODUCTION 

HE term “nanofluid” was first suggested by Choi [1] in 
his paper presented at the ASME Winter Annual 

Meeting. It refers to a liquid containing a dispersion of 
submicronic solid particles (nanoparticles) whose 
characteristic dimension is of the order of tens or hundreds 
of nanometers. The first SCI article on nanofluids was 
published by Choi’s group in 1999. One of the most 
interesting features of nanofluids is the enhancement of 
thermal diffusivity that according to some data may exceed 
the limits predicted by conventional macroscopic theories 
of suspensions [2]-[6]. The enhancement of effective 
thermal conductivity was confirmed by experiments 
conducted by many researchers, including Masuda [7], 
although the level of enhancement is still a subject of a 
debate [8], [9]. The unique properties of nanofluids suggest 
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the possibility of using nanofluids in a variety of 
engineering systems, from advanced nuclear systems [10]-
[12] to drug delivery [13]. Heat transfer in nanofluids has 
been surveyed recently in a book by Das et al. [5]. 

Nanofluids in porous media constitute an emerging topic; 
the review of recent literature points out to at least two 
possible applications. Porous foam and microchannel heat 
sinks (used for electronic cooling) are usually modeled and 
optimized utilizing the porous medium approach (e.g., see 
Kim et al. [14], Kim and Kuznetsov [15]). The utilization of 
nanofluids for cooling such microchannel heat sinks has been 
recently suggested by Abbassi and Aghanajafi [16], Tsai and 
Chein [17], Ghazvini et al. [18], Ghazvini and Shokouhmand 
[19]. Modeling of such heat sinks requires understanding of 
fundamentals of nanofluid convection in porous media. 

Another area relevant to nanofluid convection in porous 
media is the utilization of nanoparticles hyperthermia for 
cancer treatment [20], [21]. The objective is to induce the 
maximum damage on the tumor (this requires elevating the 
temperature of at least 90% of the tumor above 43◦C) with the 
minimum damage to the normal tissue. Since a living tissue is 
a type of fluid-saturated porous medium (in fact, many 
medical studies use agarose gels with porous structures similar 
to human tissue for in vitro experiments; (see, for example, 
Salloum et al. [22]), the development of optimal protocols for 
this type of treatment again requires fundamental 
understanding of nanofluid convection in porous media. 

A comprehensive survey of convective transport in 
nanofluids was made by Buongiorno [23] who, after 
considering alternative agencies, proposed a model 
incorporating the effects of Brownian diffusion and the 
thermophoresis. This model was applied to the Horton-
Rogers-Lapwood problem (the onset of convection in a 
horizontal layer of a porous medium uniformly heated from 
below) by Nield and Kuznetsov [24] and Kuznetsov and Nield 
[25]-[27]. Both Brownian diffusion and thermophoresis give 
rise to cross-diffusion terms that are in some ways analogous 
to the familiar Soret and Dufour cross-diffusion terms that 
arise with a binary fluid. 

There has been a growing interest in externally modulated 
hydrodynamic systems, both theoretically and experimentally. 
These systems may exhibit novel behavior in response to 
parametric forcing near a point of instability. Depending on 
the relative strength and rate of forcing, predictions exist for a 
variety of responses to the modulation. Among these are the 
upward or downward shifts of the convective threshold 
compared to the unmodulated problems. There are many 
works available in the literature, concerning how a time-
periodic boundary temperature affects the onset of Rayleigh–
Benard convection. Some of the findings related to this 
problem have been reviewed by Davis [28]. The studies 
related to the effect of thermal modulation on the onset of 
convection in a porous medium have also received equal 
importance (see, e.g. Nield and Bejan [29]). 

The effect of time-dependent wall temperature on the onset 
of convection in a fluid-saturated porous medium has been 
studied by Caltagirone [30] using the Darcy model for the 

momentum equation. Chhuon and Caltagirone [31] have 
studied the stability of a fluid-saturated porous layer where the 
imposed temperature on the boundary is time-periodic, with a 
non-zero mean value. They performed experiments and 
compared their results with those obtained from Floquet 
theory. Rudraiah and Malashetty [32] investigated the stability 
of a fluid-saturated sparsely packed porous layer subject to 
time-periodic boundary temperature using the Brinkman 
model. They recovered the viscous flow results of Venezian 
[33], as a special case when the value of the porous parameter 
tends to zero. Linear stability analysis of the onset of 
convection induced by a non-uniform time-dependent 
volumetric heating in a fluid-saturated porous medium has 
been studied by Nield [34]. Analytical expression that gives 
upper bounds on an appropriate critical Rayleigh number is 
derived. The effect of thermal modulation on the convection in 
a porous medium is studied by Malashetty and Wadi [35] 
using the Brinkman model with effective viscosity larger than 
the fluid viscosity. Further, Malashetty and Basavaraja [36]-
[38] have examined the single and double diffusive 
convections in a fluid saturated anisotropic porous layer 
subject to time-dependent wall temperature. Bhadauria [39] 
has studied the effect of thermal modulation on the onset of 
convection in a layer of sparsely packed porous medium 
bounded by rigid boundaries. Recently, Bhadauria [40] has 
included the effect of rotation, while Bhadauria and Aalam 
[41] have included the effect of magnetic field to study the 
onset of convection in a porous medium with temperature 
modulation. Recently Shivakumara et al. [42] analyzed the 
linear stability of Walters B viscoelastic fluid-saturated 
horizontal porous layer when the walls of the porous layer are 
subjected to time-periodic temperature modulation. 

In the present study, the effect of thermal modulation on the 
onset of convection in a horizontal layer of porous medium 
saturated with nanofluid is investigated. In the absence of 
thermal modulation we get back the results of Nield and 
Kuznestove [24]. 

II. MATHEMATICAL FORMULATION 
We consider a nano-fluid saturated porous layer, confined 

between two infinite horizontal plates situated at 0∗ =z  and 
∗ =z H . We select a coordinate frame in which the −z axis is 

aligned vertically upward. Further, in addition to a fixed 
temperature difference between the walls, an additional 
perturbation is applied to the wall temperatures, varying 
sinusoidally in time. Thus, the wall temperatures are 

 

( )0
1 1 cos
2

= + Δ + Ω⎡ ⎤⎣ ⎦tT T T tε  at * 0=z            (1) 

 

( )0
1 1 cos
2

= − Δ − Ω +⎡ ⎤⎣ ⎦tT T T tε φ  at * =z H            (2) 
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where tε  represents a small amplitude of the thermal 
modulation, Ω  the frequency of modulation and φ  the phase 
angle. 

The conservation equation takes the form 
 

D. 0∗ ∗∇ =v               (3) 
 
Here D

∗v  is the nanofluid Darcy velocity. We write 

( )D , ,∗ ∗ ∗ ∗=v u v w . 

In the presence of thermophoresis, the conservation 
equation for the nanoparticles, in the absence of chemical 
reactions, takes the form 

 

1 . .
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗

⎡ ⎤∂ ∇
+ ∇ = ∇ ∇ +⎢ ⎥∂ ⎣ ⎦

vD B T
TD D

t T
φ φ φ

ε
           (4) 

 
where ∗φ  is the nanoparticle volume fraction, ε  is the 

porosity, ∗T is the temperature, BD  is the Brownian diffusion 
coefficient, and TD  is the thermophoretic diffusion 
coefficient. 

If one introduces a buoyancy force and adopts the 
Boussinesq approximation, and uses the Darcy model for a 
porous medium, then the momentum equation can be written 
as 

 

*
D0 g∗ ∗= −∇ − +vp

K
μ ρ              (5) 

 
Here ρ  is the overall density of the nanofluid, which we 

now assume to be given by 
 

( ) ( )* * *
p 0 T1 1∗ ⎡ ⎤= + − − −⎣ ⎦rT Tρ φ ρ φ ρ β            (6) 

 
where pρ  is the particle density, 0ρ  is a reference density for 

the fluid, and Tβ  is the thermal volumetric expansion. The 
thermal energy equation for a nanofluid can be written as [24] 
 

( ) ( )

( )

* *
Dm f

* *
*2 * * *

m B T *p

.

..

∗
∗

∗

∗

∂
+ ∇

∂
⎡ ⎤∇ ∇

= ∇ + ∇ ∇ +⎢ ⎥
⎣ ⎦

v

r

Tc c T
t

T Tk T c D T D
T

ρ ρ

ε ρ φ
          (7) 

 
The conservation of nanoparticle mass requires that 

 
*

* * * *2 * *2 *T
D B* *

1 .∂
+ ∇ = ∇ + ∇

∂
v

r

D
D T

t T
φ φ φ

ε
           (8) 

 
Here c  is the fluid specific heat (at constant pressure), mk  

is the overall thermal conductivity of the porous medium 

saturated by the nanofluid, and pc  is the nanoparticle specific 
heat of the material constituting the nanoparticles. 
We write ( )* * * *

D , ,=v u v w  

We assume that the volumetric fraction of the nanoparticles 
is constant on the boundaries. Thus, the boundary conditions 
are 

 
* * *

00,= =w φ φ  at * 0=z              (9) 
 

* * *
10,= =w φ φ  at * =z H           (10) 

A. Basic State 
The basic state is quiescent and the temperature bT , density 

bρ , and the pressure bp  satisfy 
 

0+ ∇ =b bg pρ             (11) 
 

( )
*

2 *
m*

∂
= ∇

∂m

Tc k T
t

ρ            (12) 

 
2 *

2 0=bd
dz

φ
            (13) 

 
Following Nield and Kuznestove [24], (12) and (13) are 

considered from (5) and (6).   
The solution of (12) satisfying the thermal conditions given 

by (1) and (2) is  
 

( ) ( )1 2 ,= +b tT T z T z tε  
 
where  

( )1
21

2
Δ ⎛ ⎞= − +⎜ ⎟

⎝ ⎠
r

T zT z T
H

          (14) 

 

( ) ( ){ }2 ( , ) Re − −⎡ ⎤= + −⎣ ⎦
z H z H i tT z t b e b e eλ λ ωλ λ         (15) 

 
with  

( ) ( ) 1 22

1
2

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠

m

m

c H
i

k
ρ ω

λ           (16) 

 

( )
2

− −

−

⎛ ⎞Δ −
= ⎜ ⎟−⎝ ⎠

iT e eb
e e

φ λ

λ λλ            (17) 

 
and Re stands for real part. The expression for bp  and bρ is 
not given as they are not explicitly required in the subsequent 
analysis. 

B. Perturbation Solution 
We now superimpose perturbations on the basic solution. 

We write 
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' =v v , '= +bp p p ,    '= +bT T T ,    '= +bφ φ φ         (18) 
 
where 'v , 'p , 'T  and 'φ  represents the perturbed quantities. 

We introduce dimensionless variables as follows. We define 
 

( ) ( )* * *, , , ,=x y z x y z H , * 2= mt t Hα σ , *= mp p K μα , 

( ) ( )* * *, , , ,= mu v w u v w H α , 
* *

0
* *
1 0

−
=

−
φ φ

φ
φ φ

, 
*

=
Δ
TT

T
,  

2Ω
=

m

Hσω
α

                                       (19) 

where 
( )

= m
m

p f

k
c

α
ρ

, 
( )
( )

=
p m

p f

c

c

ρ
σ

ρ
.          (20) 

 
Substituting (19) and (20) in (3)–(8), and linearise by 

neglecting products of primed quantities. The following 
equations are obtained  

 
0 . '= ∇ v             (21) 

 
ˆ ˆ ˆ0 ' ' '= −∇ − − + −v e e ez z zp Rm RaT Rnφ          (22) 

 
2

2

' ' ' '' 1

2 '

∂ ∂∂ ∂ ∂ ∂⎛ ⎞⎛ ⎞+ = + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂∂ ⎝ ⎠⎝ ⎠
∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂⎝ ⎠

b bB

bA B

T TNT T Tw
t z Le z z zz

TN N T
Le z z

φ

        (23) 

 

( )2 21 ' 1 1'= ' '∂
+ ∇ + ∇ +

∂
A

b
N

w T T
t Le Le

φ φ
σ ε

         (24) 

 
' 0, ' 0, ' 0= = =w T φ at  0,1z =                         (25) 

 
where the parameter Le  is a Lewis number and Ra  is the 
familiar thermal Rayleigh-Darcy number. The parameter AN  
is a modified diffusivity ratio and is somewhat similar to the 
Soret parameter that arises in cross-diffusion phenomena in 
solutions, while BN  is a modified particle density increment. 
In deriving (22), Oberbeck–Boussinesq approximation is used 
(neglecting a term proportional to the product of φ  and T ). 
This assumption is likely to be valid in the case of small 
temperature gradients in a dilute suspension of nanoparticles. 
It will be noted that the parameter mR  is not involved in these 
and subsequent equations. It is just a measure of the basic state 
pressure gradient. 

For the case of regular fluid (not a nanofluid) the 
parameters nR , AN  and BN  are zero. The remaining 
equations are reduced to the familiar equations for the Horton-
Roger-Lapwood problem. 

The six unknowns ', ', ', ', ', 'u v w p T φ  can be reduced to 
three by operating on (22) with ˆ .ez curl curl  and using the 

identity 2≡ − ∇curl curl grad div  together with (3). 

The result is  
 

2 2 2' ' '∇ = − ∇ + ∇H Hw Ra T Rn φ ,          (26) 
 

Here 2∇H  is the two-dimensional Laplacian operator on the 
horizontal plane. 

The dimensionless basic temperature gradient is given by 
 

1
∂

= − +
∂

b
t

T
f

z
ε             (27) 

 
Here, f  is the modulation temperature gradient and is 

given by 
 

 ( ) ( ){ }Re −⎡ ⎤= + −⎣ ⎦
z z i tf A e A e eλ λ ωλ λ                        (28) 

 
where 

( )
2

− −

−

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

ie eA
e e

ϕ λ

λ λ

λλ                                                    (29) 

 

( )
1 2

1
2

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

i σωλ                          (30) 

 
The differential equations (26), (23), (24) and the boundary 

conditions (25) constitute a linear boundary-value problem 
that can be solved using the method of normal modes. 

We write 
 

( ) ( ) ( ) ( ) ( )', ', ' , , exp= Θ Φ + +⎡ ⎤⎣ ⎦w T W z z z st ilx imyφ ,       (31) 
 
and substitute into the differential equations to obtain 
 

( )2 2 2 2 0− + Θ − Φ =D W Ra Rnα α α          (32) 
 

( ) ( )( ) ( )

( )

2 2 2
1 1

1 0

− + + − − Θ − − Θ

− Θ − − + Φ =

A B
t t

B B
t

N N
W f s D f D

Le
N N

D f D
Le Le

ε α ε

ε
  (33) 

 

( ) ( )2 2 2 21 1 0⎛ ⎞− − Θ − − − Φ =⎜ ⎟
⎝ ⎠

AN sW D D
Le Le

α α
ε σ

        (34) 

 
0=W ,  0Θ = ,  0Φ =  at 0=z  and   at  1=z         (35) 

 
where 
 

≡
dD
dz

 and ( )1 / 22 2= +l mα           (36) 

 
Thus α  is a dimensionless horizontal wave number. 

The vanishing the determinant of coefficients produces the 
eigenvalue equation for the system. One can regard Ra  as the 
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eigenvalue. This enables us to find Ra  in terms of the other 
parameters.  

III. RESULTS AND DISCUSSION 
The eigenequation is 
 

det 0=M  

where 
11 12 13

21 22 23

31 32 33

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M M M
M M M M

M M M
          (37) 

 
 and for , 1, 2, 3.............=i j N . 
 

( ) 2 2
11 = −j i j iij

M W D W W Wα ,          (38) 

 

( ) 2
12 = Θj iij

M Ra Wα ,           (39) 

 

( ) 2
13 = − Φj iij

M Rn Wα           (40) 

 

( ) ( )21 1= − + Θt j iij
M f Wε           (41) 

 

( )
( )

2 2
22

2 1

= −Θ Θ + Θ Θ + Θ Θ

⎛ ⎞− +
− + Θ Θ⎜ ⎟⎜ ⎟

⎝ ⎠

j i j i j iij

A B t B
j i

M D s

N N f N
D

Le Le

α

ε                (42) 

 

( ) ( )
23

1− +
= − Θ ΦB t

j iij

N f
M D

Le
ε

         (43) 

 

( )31
1

= Φ j iij
M W

ε
           (44) 

 

( ) 2 2
32

⎡ ⎤= −Φ Θ + Φ Θ⎣ ⎦
A

j i j iij

N
M D

Le
α          (45) 

 

( ) 2 2
33

1 ⎡ ⎤= −Φ Φ + Φ Φ + Φ Φ⎢ ⎥⎣ ⎦
j i j i j iij

sM D
Le

α
σ

    (46) 

 

Here ( ) ( )
1

0

f z f z dz= ∫           (47) 

A. Non-Oscillatory Stability 
We consider the case of non-oscillatory instability, when 

0=ω . For a first approximation we take 1=N , this produces 
the result  

 

( ) ( ) 21 1 4⎛ ⎞− + − + =⎜ ⎟
⎝ ⎠

t A t
LeRa f Rn N fε ε π
ε

 .        (48) 

 
If 0tε =  then (48) become 

24⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

A
LeRa Rn N π
ε

           (49) 

 
It is clear from (49) that the critical Rayleigh number for the 

onset of convection for an unmodulation case is the similar 
result obtained by Nield and Kuznestove [24].  

B. Oscillatory Convection 

( ) ( )

( )

2 21 1⎛ ⎞ +⎛ ⎞⎛ ⎞− + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠

A
t t

N JJ i J iRa f Rn f
Le Le

J iJ J i
Le

ω ωα ε α ε
σ ε

ωω
σ

                               (50) 
The real and imaginary parts of (50) yield 

 

( ) ( )
2 2 2

2 11 1⎛ ⎞
− + − + = −⎜ ⎟

⎝ ⎠
A

t t

NRa Jf Rn f
Le Le Le
α ωε α ε

ε σ
     (51) 

 

( )
22

2 1 11 0
⎡ ⎤⎛ ⎞− + − + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
t

RnRa f J
Le

ααω ε
σ ε σ

        (52) 

 
Again the critical value of α  is found to be π . Hence one 

obtains the results 
 

( ) 2 1 11 4 ⎛ ⎞− + = +⎜ ⎟
⎝ ⎠

t
RnRa f

Le
ε π

σ ε σ
         (53) 

 
where the frequency is found  
 

( ) ( )( )
2

2
2

4 1 1⎡ ⎤= − − + − +⎢ ⎥⎣ ⎦
t A t

Le LeRa f Rn N fω π ε ε
επ σ

      (54) 

 
In order for ω  to be real it is necessary that  

 

( ) ( ) 21 1 4⎛ ⎞− + − + ≤⎜ ⎟
⎝ ⎠

t A t
LeRa f Rn N fε ε π
ε

          (55) 

 
In the absence amplitude of modulations ( )0=tε  (50)-(54) 

reduces to Nield and Kuznestove [24]. 

IV. CONCLUSION 
The linear stability analysis of Nield and Kuznestove [24], 

for the onset of convection in a horizontal layer of a porous 
medium saturated by a nonofluid has been modified when the 
walls of the porous layer are subjected to time-periodic 
temperature modulation. The new effects such as frequency 
and phase angle enter the expressions for both non-oscillatory 
and oscillatory convection. The consequence of these factors 
is to advance or delay the onset of convection by controlling 
the frequency of modulation. 
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