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Abstract—The response surface methodology (RSM) is a 

collection of mathematical and statistical techniques useful in the 
modeling and analysis of problems in which the dependent variable 
receives the influence of several independent variables, in order to 
determine which are the conditions under which should operate these 
variables to optimize a production process. The RSM estimated a 
regression model of first order, and sets the search direction using the 
method of maximum / minimum slope up / down MMS U/D. 
However, this method selects the step size intuitively, which can 
affect the efficiency of the RSM. This paper assesses how the step 
size affects the efficiency of this methodology. The numerical 
examples are carried out through Monte Carlo experiments, 
evaluating three response variables: efficiency gain function, the 
optimum distance and the number of iterations. The results in the 
simulation experiments showed that in response variables efficiency 
and gain function at the optimum distance were not affected by the 
step size, while the number of iterations is found that the efficiency if 
it is affected by the size of the step and function type of test used. 
 

Keywords—RSM, dependent variable, independent variables, 
efficiency, simulation 

I. INTRODUCTION 

HE RSM is a collection of mathematical and statistical 
techniques used to determine the optimal levels of the 

independent variables of a production process, which involves 
estimating a regression model of first order by the method of 
least squares, with the coefficients of this model is set search 
direction by MMSD, subsequently, the step size on the ascent 
route is chosen until there is no further increase in the 
response, this method stops [1]-[2].  
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Then we fit a new linear regression model, a new path of 

upward slope is determined and the procedure continues until 
it fits the regression model of first order. Finally, we start in 
the region where it was not possible to adjust the regression 
model of first order, a more detailed design is posed, as the 
central composite design (CCD), which is the kind of classic 
design to fit models of second order and find the optimal 
values of the independent variables analyzed, using methods 
of differential calculus. [3]-[7] 

This paper will focus on the early stages of the RSM, 
specifically in the MMSD, which is an iterative method that 
determines the optimum search direction, with the estimated 
regression coefficients of first-order model. Generally, a 
simple procedure to determine the coordinates of a point on 
the trajectory of MMSD, assuming that the point 

x1 = x2 = ... = xk = 0 is the base or point of origin. Then, we 

choose the step size in one of the independent variables of the 

process called∆xi . Usually, you would select the independent 

variable which has more information or would select the 
variable that has the largest absolute regression coefficient 

β̂i . The step size of the other variables is shown as (1): 

 

∆x j = β̂ j / (β̂i / ∆xi ),  j=1,2,...,k, i ≠ j                                    (1) 

 

Subsequently, the ∆x j  are converted from encoded 

variables into natural variables. [2],[7]-[8]. The contribution of 
this research is to determine if the efficiency of the RSM 
depends on the size of the step, where step sizes to be 

evaluated are: ∆xi = 0.01,0.02,0.03 . The efficiency of the 

RSM is defined by three variables of response, efficiency in 
the gain function, represents the percentage of improvement is 
achieved in the process yield from the starting conditions until 
the actual optimum conditions, the optimum distance 
represents the optimum distance between the optimal 
conditions generated by the RSM and the optimal actual 
conditions of a process; [9] and the number of iterations 
obtained by the MMSD  within the RSM [10]; the functions 
that are used to build the simulation model (test function) are 
the functions of two variables used for numerical comparison 
of experimental techniques [11]. These functions are designed 
to hinder the determination of their minimum values with the 
implementation of experimental techniques. Furthermore, the 
use of these functions allows us to estimate the usefulness of 
experimental techniques in the optimization of production 
processes [12]. Therefore, the test functions that are used in 
this work represent the functional relationship between the 
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controllable factors x1, x2,...,xk  and the performance of a yi  

process. The following is an algebraic description of the test 
functions that are used in this simulation to calculate the 
response variable yi . The Rosenbrock´s parabolic valley 

function (RPVF), The Rosenbrock´s cubic function (RCF), 
and The Beale Function (BF) are given by (2), (3) and (4) 
respectively:  

 

                                     (2) 

 

f (x1, x2 ) = 100(x2 − x1
3)2 + (1− x1)2

                                     (3) 

 

f (x1, x2 ) = [1.5− x1(1− x2 )]2 + [2.25− x1(1− x2
2 )]2 +

[2.625− x1(1− x2
3)]2         (4) 

 
This paper is organized as follows. Section 2 summarizes 

the materials and method used for the development of this 
research. Section 3 presents the results to determine if the 
efficiency of the RSM depends on the step size and type of 
test function used. Section 4 presents the conclusions and 
future research. 

II.  METHODOLOGICAL FORMULATION 

A. Materials 

The materials used for the development and validation of 
this research project are: a Laptop Computer Intel Core i5, 
processor, 2.4 GHz and 4.00 GB of RAM. The software for 
statistical analysis of data is: MINITAB®15, STATISTICA, 
MATLAB ® and Microsoft® Office Excel 2007. 

B. Methods 

Next, it is described the method used to obtain the required 
information in assessing the effect of the step size in the 
efficiency of the RSM [2]. How was carried out to generate 
the samples, the experimental errors ε, the 2k factorial designs, 
construction designs of response surfaces, estimating the 
coefficients of the first order model set, the search for a new 
design region of the first order and obtaining the stationary 
point. 

First, are determined randomly thirty-three pairs of focal 

points for the independent variablesx1, x2,...,xk , so that xk  

continue independent uniform distributions in the range from 
0 to 5 units, which will be used as representative of current 
operating conditions of a process. These pairs of focal points 
generated with the software MINITAB ® 15. 
Second, in each of these points is carried out a run of the 
methodology comprising: a) Each pair of points (x1, x2 )  is 

used as the central design point repeated five times. These 
central values are encoded in (0.0). b) Building the design 22 
whose levels are equidistant in a value ∆  natural units from 
the central point encoded as (± 1, ± 1). 

Third, once the design surface of the first order is posed, are 

calculated the values of the response variable yi = f (xk ) + εi . 

Where: f (xk )
 
represents the test function of the response 

variable, and the 
 
represents the experimental error of each 

run i  of the design 2k, where i = 1, 2,..., 9; the error is 

generated at random with a normal distribution (µ = 0,σ = 5)
[13], using the random number generator software MINITAB® 
15. 

Fourth, the response variables calculated with the test 

function , serve to estimate the coefficients 

corresponding to the adjusted first-order model with the form: 

ŷi = β̂0 + β̂ j
j=1

k
∑ x j                                                                    (5) 

The surface design outlined above, is estimated by the least 
squares method, therefore, to estimate the model coefficients, 
(6) and (7), are usually used: 

β̂k = xki ŷi
i=1

9
∑

k=1

2
∑

                                                               (6) 

 

β̂0 = ŷi
i=1

9
∑ / 9                                                                          (7) 

Where:
 
xki  represents the encoded value of the variable k  in 

the column i  
the surface design of the First Order.

 
ŷi

represents the value of the response i . 
Fifth, it is verified the suitability of first-order model set, it 

is important to know if the order of the fitted model is correct. 
The lack of fit test establishes the following hypothesis: H0: 
The model adequately fit the data. H1: The model does not fit 
the data. The lack of fit test can be introduced in the analysis 
of variance (ANOVA) addressed the significance of the 
regression. For this study the significance level was 5% 
(α = 0.05). If the null hypothesis of the adequacy of the 
model is rejected, the model does not adequately represent the 
behavior of the system and one that is appropriate must be 
found. 

Sixth, once the adjusted first-order model is not rejected, 
begins with the MMSD, to accept the model occurs when the 
regression is significant and the interaction and the quadratic 
term are not significant according to ANOVA done on the 
fifth step. The vector formed by the regression coefficients 

β ' = (β̂1,...,β̂k ) 'of the fitted model, determines the direction 

of maximum decrease in the response variable, we choose the 

step size (∆xi = 0.01, 0.02, 0.03) in any of the variables of the 

process. The MMSD is stopped when; in the path there is a 
change in the response variable, that point is the center of a 
new surface design of the first order. The new values obtained 
in this new couple (x1, x2 )  apply again from the second step. 

Obtain measurements of the response variable with the test 

function f (xk )
 
to set a new first-order model, repeating this 

process until the model does not fit, the regression was not 

f (x1, x2 ) = 100(x2 − x1
2 )2 + (1− x1)2

εi

f (xk )
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significant or the interaction or the quadratic term are 
meaningful. 

Seventh at the time that the first-order model shows a lack 
of adjustment, the MMSD ends and we proceed to make the 
design of surfaces of second order. The Central Composite 
Design (CCD), this is the most popular class of designs used 
to fit these models. Overall, the CCD has a 2k factorial design 
(or a fractional factorial design of resolution V) with nf runs, 
2k axial or star runs and runs central nc. Where nf is the 
number of points in the 2k design and nc is the number of 
repetitions of the central or initial focus of the design 2k. That 
is, to the points (x1, x2 )  of the surface design of the first order 

model point the last region of interest found in the MMSD of 
the sixth step that did not adjust, add four axial points which 

encoded as (± 2, 0) and (0,± 2), once posed the CCD, are 
obtained the values of the response variable of the test 

function f (xk )
 
at each point of the design, to which result we 

add the experimental error εi where i = 1, 2,...,13. 

Eighth, once the CCD is posed, are obtained the regression 
coefficients of the model of second order, with the method of 
least squares regression using the software module 
STATISTICA. To find the stationary point of the second order 
model adjusted, [7] we use (8): 

 

ŷi = β̂0 + β̂i
i=1

k
∑ xi + β̂ii

i=1

k
∑ xi

2 + β̂ij xi
i< j=2

k
∑∑ x j + ε                       (8) 

 
Where: i = 1, 2, and j = 1, 2. 

The general mathematical solution to locate the optimal 
point for a second order model with two independent variables 
arises in matrix form as shown in (9): 

 

ŷi = β̂0 + (β̂1, β̂2 ) *
x1

x2









+ (x1, x2 ) +

β̂11 β̂12 / 2

β̂21 / 2 β̂22









*

x1

x2









    (9) 

 
Find the stationary point by solving (10): 
 

x0 = −1 / 2
β̂11 β̂12 / 2

β̂21 / 2 β̂22











−1

*
β1

β2
























                   (10) 

 
Ninth, after obtaining the optimum operating conditions 

(x1
* , x2

* )by analyzing the stationary point using the RSM using 

MATLAB ® simulation, are carried out the calculations for the 
thirty-three pairs of central point, considering the three step 
sizes(∆ = 0.01, 0.02, 0.03), and the three test functions used in 
this study. 

Tenth, once obtained the values of the runs consistent in the 
experiments performed to obtain the stationary point using the 
RSM through simulation, for the thirty-three replicas or 
central points (blocks) are performed considering the step 

sizes as a factor of fixed effects. This factor determines the 
value of the response variable of the process and the effect on 
the resulting number of steps to arrive to the stationary point. 
In each replica (block) are tested the three step sizes randomly 
one at a time, leaving the observations of each replica [1] as 
shown in Table I: 
 

TABLE I 
FORMAT USED IN THE ANALYSIS OF VARIANCE FOR MMSD EFFICIENCY IN 

THE RSM 

Delta Normal Distribution   

0.01 ŷ0.01j  

0.02  ŷ0.02j  

0.03 ŷ0.03j  

 

Where: 

 ŷij : represents the response variable when the step size is i  

(i = 0.01, 0.02, 0.03), corresponding to the replica j . 
It is desired that the experimental error be as small as 

possible by subtracting from the experimental error the 
variability caused by the blocks. The design to be considered 
for the analysis of variance is the randomized design by 
complete blocks. The statistical model for this design is (11): 

 

ŷij = µ + τ i + β j + εij                          (11) 

 
Where: 

ŷij : Represents the corresponding observation to the replica j  

with step sizes i . 
µ : Represents the overall mean of the data. 

τ i : Represents the effect of the i-th step size i = 1, 2,3 

β j : Represents the effect of the j-th replica (block). 

( j = 1,2,...,33)  

εij : Represents the random error. 

The effects of treatment and block are considered as 
deviations from the overall average, so you want to test the 
equality of the means of treatment. The null hypothesis is: 

 
  

H0 :  τ1 = τ 2 = τ3 = 0  
 

H1 :  τ i ≠ 0 at least for an i 

III.  RESULTS 

The results obtained during the development of this 
research are presented in four stages. The first involves the 
analysis performed in approach on the design of the first order 
response surface. The second stage is the search for optimal 
region by the MMSD. Part three covers the approach of the 
second model of the first order response surface, based on that 
optimal result obtained by the MMSD. Finally, the fourth 
stage shows the analysis of models of second order response 
surface, as well as stationary points and response surface 
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graphs for each test function. Example is shown of a run on 
simulation, which was conducted with the test function RCF, 
which has its minimum value at the (1,1) f (xk ) min = 0. We 

set a 2k factorial design with 5 central repetitions as the design 
response surface of first-order, where the point 

(x1 = 3.7915,x2 = 3.7128) is the focal point of design and the 

design points separated by a distance 2k of ± 0.03 units. The 
values of the response variable are obtained by evaluating the 
test function in the natural variables and adding this result to 
the experimental error randomly generated by software 
MINITAB ®15. By the method of least squares, we obtain the 

following values (β̂1 = 22023,β̂2 = −9182)' , is the vector of 

the regression coefficients of the first order model set, where 
the analysis of variance showed that the data fit well with a 
significance level of 5%(α = 0.05). The direction provided by 
this vector is in Fig. 1 using the step size of 0.03 natural units 
onx2 , since this variable has the lowest coefficient, indicating 

the search line to where should be moved the levels of the 
factors to select the new center point of the next design surface 
of the first order. 

To make the process of decline, we choose the step size of 
0.03, (1 code), then there are the points obtained in the path 
indicated by the vector, which are equidistant a unit from the 
axis and a distance of (22,023 / - 9182) relative to the axis, get 
the values of the response variable to evaluate the test function 
on the points of minimum slope, obtaining the minimum value 
of the response variable at (1.6329, 4.6128). This point is 
considered the centerpiece of a new surface design of the first 
order and that point is taken as the current operating status of 
the process, from which is repeated from step 2 explained in 
the previous section of methods. According to MMSD search 
in the new region found with the couple of the center point 
(1.6329, 4.6128), a new search direction with the vector of 
regression coefficients (-10.4, -2.9). The new design shows a 
first order analysis of variance that the second regression 
model obtained does not fit the data with a significance level 
of 5% (α = 0.05). Once it is observed that the first order 
model does not fit in some new region given, the next step of 
the methodology is to fit a model of second order in the region 
indicated by the MMSD. Applying the least squares method, 
we obtain the regression coefficients of the second order 
model, as shown in Fig. 2 of the surface of response obtained 
for this point: 

 
(β̂1 = 9527.2487,  ̂β2 = 25.7884,  β11 = 10882.9986,

β12 = 1.6244,  β22 = −3559.0475)'  

using Matlab® was reached the optimal points of the natural 
variables in the region of the second order design, resulting in 

the following values: (x1
* = 1.6259,x2

* = 4.6190) . It is 

calculated the efficiency of the gain function of the value of 
the first pair of randomly generated central points 
(x1 = 3.7915,x2 = 3.7128) regarding the result obtained of the 

optimum point (x1
* = 1.6259,x2

* = 4.6190) with the result 

that the efficiency gain function for this pair of center points 
and optimal points obtained would be of 99.9959% which is 
the percentage of improvement which is achieved in the 

process yield. With regard to the optimum distance (D* ) for 
the first couple of optimal points obtained 

(x1
* = 1.6259,x2

* = 4.6190) is calculated using the Euclidean 

distance replacing the initial values of the pair of center points 
and the results of the pair of optimal points, thus obtaining the 
optimal distance generated RSM to the true optimum test 
function resulting in 3.6727 units. Finally, we obtain the 
number of iterations performed in the first phase of the 
methodology within the MMSD, resulting for the first couple 
of central points 30 iterations to the optimum of the 
independent variables. 

The process described in this example was performed to the 
replica two, with delta 0.03 for the test function RCF. Was 
subsequently carried out the method described in the previous 
section for the 33 pairs of randomly generated central points 
and with the three step sizes (0.01, 0.02, and 0.03) and the 
three test functions. 

For example, Table II shows the average values of the 
response variables for The Rosenbrock´s parabolic valley 
function (RPVF) test function, where the response variable 
efficiency in the gain function the highest percentage of 
improvement that gets this function is 99.91% with a size of 
step of 0.02, whereas the lowest value is 99.24% with a step 
size of 0.03. It is also shown that the maximum distance of 
separation between the optimal generated by the methodology 
and the true optimum function test is 2.26, which belongs to 
the step size of 0.01 and the minimum distance is 1.56 with a 
step size 0.02. Finally, for the variable number of iterations, 
the smallest amount was obtained with the step size of 0.03 to 
27.5 and the highest was with the step size of 0.02. The same 
interpretation held for the test functions RCF and BF, which 
are shown in Table III and IV respectively. 

 
TABLE II 

AVERAGE VALUES OF THE RESPONSE VARIABLES FOR RPVF 
 Step sizes  

Dependent Variable  0.01 0.02 0.03 
Efficiency (%) 99.29 99.91 99.24 

Distance to optimum 2.26 1.56 1.69 
Number of iterations  49.18 49.42 27.5 

 
TABLE III 

AVERAGE VALUES OF THE RESPONSE VARIABLES FOR RCF 
 Step sizes  

Dependent Variable  0.01 0.02 0.03 
Efficiency (%) 99.01 99.09 99.70 

Distance to optimum 1.95 2.27 2.31 
Number of iterations  4.3 6.05 11.07 

 
TABLE IV 

AVERAGE VALUES OF THE RESPONSE VARIABLES FOR BF

 

 Step sizes  
Dependent Variable  0.01 0.02 0.03 

Efficiency (%) 75.89 80.86 84.69 
Distance to optimum 2.98 2.97 2.95 
Number of iterations  66.33 29.06 18.96 
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Fig. 1 Path of the MMSD of the first pair of central points
 (x1 = 3.7915,x2 = 3.7128) 

 

 

Fig. 2 Response surface of the second order model. 
 

IV.  CONCLUSION 

In this article has been posed the problem of assessing the 
effect of the step size in the efficiency of the RSM. This 
methodology was evaluated at different steps outlined in 
section 2 of this article, with the initial test conditions, such as: 
the 3 step sizes, the 33 pairs of focal points and the 3 types of 
test function. Based on this, the results obtained in the analysis 
of variance of the randomized complete block designs for each 
of the variables evaluated, it is concluded that: the efficiency 

of the RSM is not affected by the step size, with a significance 
level of 5% (α = 0.05) since the improvement achieved in the 
response variable efficiency in the gain function, showed 
approximately equal values, therefore, we conclude that the 
methodology is robust to the step size used in the MMSD for 
the test functions used for this response variable. The response 
variable to the optimum distance indicates that the efficiency 
of the RSM is neither affected by the step size, with a 
significance level of 5% (α = 0.05). Finally, in the response 
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variable number of iterations indicates that the efficiency of 
the RSM is affected by the step size and the type of test 
function used, with a significance level of 5% (α = 0.05)since 
in each function test values were obtained that on average 
differed from the type of test function and the step size, as 
shown in Tables 1, 2 and 3 of Section 3. Therefore, these 
results assert that comparing the performance of the RSM with 
three step sizes and the 3 test functions, the methodology is a 
useful tool in the continuous improvement of processes. 

In future research, a) is recommended that to the regression 
coefficients of first-order models were not significant within 
the RSM, a transformation is applied to that model and 

evaluate if must be continued the next phase of the RSM. b) 
Compare the performance of the study system before various 
improvement techniques such as design and analysis of 
classical experiments, methods of operational evolution, 
Taguchi method, simplex method of Nelder and Mead, genetic 
algorithms, among others, and to determine which of these is 
more efficient in the response variables outlined in this article. 
c) Experiment with different step sizes and test function from 
those used in this investigation to see if there is an 
improvement or effect within the RSM with the independent 
variables analyzed. d) Determine the optimum step size in the 
RSM for the optimization of resources in production systems. 
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