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Abstract—This paper discusses the effects of using progressive 

Type-I right censoring on the design of the Simple Step Accelerated 

Life testing using Bayesian approach for Weibull life products under 

the assumption of cumulative exposure model. The optimization 

criterion used in this paper is to minimize the expected pre-posterior 

variance of the Pth percentile time of failures. The model variables are 

the stress changing time and the stress value for the first step. A 

comparison between the conventional and the progressive Type-I 

right censoring is provided. The results have shown that the 

progressive Type-I right censoring reduces the cost of testing on the 

expense of the test precision when the sample size is small. 

Moreover, the results have shown that using strong priors or large 

sample size reduces the sensitivity of the test precision to the 

censoring proportion. Hence, the progressive Type-I right censoring 

is recommended in these cases as progressive Type-I right censoring 

reduces the cost of the test and doesn't affect the precision of the test 

a lot. Moreover, the results have shown that using direct or indirect 

priors affects the precision of the test. 

 

Keywords—Reliability, Accelerated life testing, Cumulative 

exposure model, Bayesian estimation, Progressive Type-I censoring, 

Weibull distribution.  

I. INTRODUCTION 

ELIABILITY in engineering can be defined as: the 

probability that the system or the component will conduct 

its intended functions satisfactorily at least for a given period 

of time when used under normal operating conditions. Life 

tests (LT) are used to predict this probability. As the products 

become more reliable, Simple Life Tests (SLT), become less 

useful as the testing time increases exponentially, the matter 

that renders such tests unpractical in terms of time and cost. 

Accelerated Life Testing (ALT) comes as a remedy for this 

problem as it can be used to stimulate the failures in the test by 

testing the samples under harsh conditions: conditions more 

severe than normal operating conditions. To reduce the cost of 

the test and further reduces the testing time, Step-Stress 

Accelerated Life Testing (SSALT) can be used. Typically, two 

steps are used in this test. In a typical SSALT a certain number 

of samples is placed in the test under certain stress level 
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(usually a little bit above the normal operating conditions) for 

a certain period of time, after which the stress level increases 

on the surviving samples tell the end of the test. 

Two main stopping criteria for ALT are usually adopted: 

Type-I and Type-II censoring. Under the first stopping 

criterion, the test stops when a certain amount of time is 

elapsed, during which the failure times of the samples are 

recorded. Under the second stopping criterion, the test stops 

when a certain number of failures are observed, during which 

the failure times of the samples are recorded. Moreover, a 

hybrid stopping criterion is also used for SSALT. Progressive 

Type-I right censoring is an example of such a hybrid criterion 

used to reduce the cost of the test. Under this stopping 

criterion, certain proportion of the sample size is removed 

while it is still working at each test step. Gouno and 

Balakrishnan [1] discuss this matter extensively. 

After the early work of Cohen [2], many efforts are done to 

design the SSALT based on progressively censored data. 

Miller and Nelson [3] used exponential lifetimes and complete 

failure data for SSALT using cumulative exposure model. Bai 

et al. [4] used the work of Miller and Nelson [3] with time-

censored data. The case of general K-level and M-variable 

case were discussed by Khamis [5]. Ng et al. [6], Wu et al. [7], 

and Balakrishnan [8] directed their efforts to the point and 

interval estimation of the test parameters and optimization of 

the test plans including SSALT. 

The vast majority estimation method for life testing in 

literature is the Maximum Likelihood Estimation method 

(MLE). Nelson and Kielpinski [9], Bai and Kim [10], Escobar 

and Meeker [11], Khamis [5] have used MLE to design their 

tests. Bayesian method also has found its application in this 

area. The Bayesian method allows the experimenter to reflect 

his/her expert opinion into the design problem. This other 

source of information allows for test planning when the MLE 

performance is under question because of the low number of 

failures (low information available). Some of the references 

that have used this method include Van Dorp et al. [12] where 

the authors developed a Baye’s approach to Step-stress 

accelerated test plans including ramping phenomenon and 

Ramadan and Ramadan [13] where exponential SSALT under 

progressive Type-I right censoring was considered.  

This paper presents a Bayesian approach for designing an 

optimal SSALT for Weibull life products and Progressive 

Type-I right censoring under the assumptions of cumulative 
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exposure model and small censoring proportion. The 

optimization criterion that will be used in this paper is to 

minimize the expected pre-posterior variance of the P
th

 

percentile time of failures. The model variables are the stress 

changing time and the stress value for the first step. The 

durations of the steps are not considered equal and the 

uncertainty in the model parameters will be considered 

through Bayesian statistics. A comparison between the 

conventional and progressive Type-I right censoring will be 

provided.  

II. MODEL DESCRIPTION AND ASSUMPTIONS 

The removal of some sample units before their failure in the 

test reduces the cost of the test as these removed samples can 

be used somewhere else or in other tests. Hence, the 

progressive Type-I censoring tests are considered cheaper than 

traditional Type-I censoring tests.  

The SSALT under progressive Type I censoring can be 

described as follows: n samples are stressed under x1 stress 

level for τ time during which n1 samples fail. At the end of the 

first step, certain proportion, π, of the samples will be removed 

from the test and a higher stress, x2, will be applied until the 

end of the test time tc. Hence the amount of samples removed 

can be calculated as c = n × π.  

In this model, the format of the Weibull probability 

distribution will be written such that the scale parameter of the 

distribution is exp ����. The log-linear relation between ��and 

the stress level xi is assumed as in (1):  
 ln���� � � 
 �x�,                          (1) 
 

where a and b are the model parameters such that their values 

depend on the product under test and the test method used. 

Moreover, cumulative exposure model and small censoring 

proportion is also assumed. 

III. THE PROPOSED MODEL FOR SSALT 

Fig. 1 shows a schematic diagram for the SSALT under 

progressive Type-I right censoring. 
 

 

Fig. 1 Schematic diagram for progressive Type-I right censoring for 

SSALT 

 

The cumulative distribution function considering the 

cumulative exposure model and the Weibull life distribution is 

expressed as in (2):  
 

F�t|σ, µ�, µ�� �
���
��1 � exp ���t  exp ��µ��!"#$             0 & t & τ

1 � exp (� )*+,-�+./0 �µ"�./0 �µ1�2345 �µ1� 6"#7   τ 8 t 8 t9   ,                               
:   (2) 

 

and the probability density function is: 

 f�t|σ, µ� , µ�� �

���
��345 �+µ"�< �t  exp ��µ���"#+�exp -��t  exp ��µ��"#2             0 & t & τ

345 �+µ1�< )*+,-�+./0 �µ"�./0 �µ1�2
345 �µ1� 6"#+� exp (� )*+,-�+./0 �µ"�./0 �µ1�2

345 �µ1� 6"#7   τ 8 t 8 t9   ,                               
:               

(3) 

 

where = is the reciprocal of the shape parameter of Weibull 

distribution. Moreover, the reliability function for the survived 

units is as follows: 
 

>�?@|=, ��, ��� � exp (� )AB+C-�+DEF�G"�DEF�G1�2HIJ�K1� 6"L7 ,       ? M ?@          (4) 

 

and the reliability function for the removed units is as follows: 
 >�N� � exp -��N  exp �����"L2                       (5)  

IV. BAYESIAN PLAN 

Let �� be the � at stress level x�, which can be given by  
     �� � exp�� 
 �x�� ,                                   (6) 

  

and let �� be the � at stress level x�, which can be given by  

 �� � exp�� 
 �x�� .                                   (7) 

  

According to Baye’s theorem, the posterior distribution of a 

and b given the data t is as follows: 
 Q��, �|?� � R�A|S,T�R�S,T�R�A�  ,                             (8) 

 

such that Q�U|�, �� is the likelihood of the data and Q�U� �V V Q�U|�, ��Q��, ��W�W� is the pre-posterior marginal 

distribution of t. Applying bivariate random variables 

transformation and the log-linear model , the prior joint 

distribution of the model parameters a and b can be derived 

from the priors distributions of �� and ��as follows: 
  Q��, �� �  Q�����, ���, ����, ���!  ��Z|[|,                 (9) 

 

where  
 

 ����, ��� � \]���� � �^�,                           (10) 
 

 ����, ��� � _`�K1�+_`�K"��I1+I"�  ,                            (11) 

 

and [ is the Jacoubian matrix given by: 
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[ � abK1bS bK1bTbK"bS bK"bT
c � de^f�� 
 �^�� ^�e^f�� 
 �^��e^f�� 
 �^�� ^�e^f�� 
 �^��g.         (12) 

 

Substituting (10)-(12) into (9), Q��, �� can be written as:  
 

Q��, �� �  Q -\]���� � �^�, _`�K1�+_`�K"��I1+I"� 2  ��Z hde^f�� 
 �^�� ^�e^f�� 
 �^��e^f�� 
 �^�� ^�e^f�� 
 �^��gh.   
(13) 

 

The mean and variance of ?J�^i� at certain set of data t are 

 j�?J�^i�k?! � l ?J�^i�Q��, �|?� W�W�,                      (14) 

 

and 
 m�no?J�^i�|?p � l -?J�^i� � j�?J�^i�k?!2� Q��, �|?�W�W�,     (15) 

 

respectively. Therefore, the expected pre-posterior variance of  ?J�^i� is  

 jA qm�no?J�^i�|?pr � V m�no?J�^i�|?pQ�?�W?si .               (16) 

 

Gibbs sampling will be used in the optimization process. In 

each iteration, the values of the model parameters a and b will 

be calculated using (10) and (11) based on the values of �� 

and ��  drawn from their joint prior distribution. Utilizing the 

calculated values of a and b in each iteration, a value for ?Ju �^v� is calculated using the following equation: 

 \]�?Ju ! � ��\]�\]�1 � f�! 
 � 
 �^i!.               (17) 

 

If a large number of iterations used, the distribution of the 

calculated points of ?Ju �^v� approximate the actual distribution 

of ?J�^v� and the mean and variance of those points can be 

used as an approximation for the mean and variance of the 

actual distribution of ?J�^v�, e.g. jo?J�^v�|Up and Varo?J�^i�|Up respectively. Moreover, if the whole process 

repeated many times, the average of the Varo?Ju �^i�|Up, which 

is Ez qVaro?Ju �^i�|zpr,  can be seen as an approximation for the 

expected variance of ?J�^v�, shown in (16).  

Under progressive Type-I right censoring, the likelihood 

function has four parts to account for the two censoring times 

and the two steps. The likelihood function for n samples is: 

 { �
∏ )}345 �+K"�~ - A�345 �K"�2"L+� exp )� - A�345 �K"�2"L6�6`"���  
∏ ( a345 �+K1�~ )A�+C-�+./0 �G"�./0 �G1�2

345 �K1� 6"L+� exp (� )A�+C-�+DEF�G1�DEF�G"�2
HIJ�K1� 6"L7c7`1���  

 �]�� exp )� - CHIJ�K"�2"L6  �n�1 � π� � n� � n�� aexp (� )AB+C-�+DEF�G1�DEF�G"�2
HIJ�K1� 6"L7c ,        

(18) 

 

and the log likelihood function that will be used in the Gibbs 

sampling is: 

 � �
]��� � ]�\���=� 
 -+`"~ 
 ]�2 �� 
 -�~ � 1 2  �∑ \���?��`"��� !� ∑ - A�HIJ�K"�2"L`"��� 

]��� � ]�\���=� 
 -+`1~ 
 ]�2 �� 
 -�~ � 1 2  )∑ \�� )?� � N -1 �`1���
345 �K"�345 �K1�2$6 � ∑ )A�+C-�+DEF�G1�DEF�G"�2

HIJ�K1� 6"L`1��� � �]�� )C+C-�+DEF�G1�DEF�G"�2
HIJ�K1� 6"L � �n�1 � π� � n� �

n�� )AB+C-�+DEF�G1�DEF�G"�2
HIJ�K1� 6"L

 . 

 

The complete model that will be used to optimize the 

SSALT is as follows: 
 ��] jA qm�no?J�^i�|?pr 
 

s.t. 

 ?�� & N & ?@ ,^v & ^� & ^�,j�]�� � ]�1 � ��^�, N � 0,                                        (19) 

 

where  

 j�]�� � ]  l ���N|�, �� Q��, ��W�W�.                        (20) 

V. NUMERICAL EXAMPLE AND ANALYSIS 

The following assumptions and values are used in this 

example: 

1. N = [1000 1500 2000 2500 3000 3500 4000 4500 5000 

5500] 

2. Total testing time ?@ = 6000 

3. Normal stress level xi � 1 volts 

4. High stress level x� � 4 volts 

5. Low stress level x�=[1.50 1.67 1.83 2.00 2.17 2.33 2.50 

2.67 2.83 3.00] 

6. Sample size = 20 samples 

7. P = 0.1 

8. �� and �� are considered independent with normal prior 

distributions as follows: 
 �� � ��22026,100�@ x� � 3 Volts �� � ��2980,10�@ x� � 4 Volts 

 

The data for this example is generated as follows: a full 

enumeration for the combinations between N and x� is found. 

For each combination, the expected pre-posterior variance of 

the 10
th

 percentile time of failures is evaluated. The 

combination with the lowest expected pre-posterior variance 

of the 10
th

 percentile time of failures is considered as the 

optimal design of the SSALT.  

Table I, shows the values of the censoring proportion along 

with the corresponding values of the jA qm�no?J�^i�|?, ��pr 
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and the corresponding values of the optimal design parameters N and x�. 

The table shows the optimal solution under the different 

values of π. The zero value for the censoring proportion π 

refers to the case where there is no progressive censoring. 

From the table, it is clear that as the value of π increases, the 

value of the expected variance for the 10
th

 percentile time of 

failures also increases and thus the test precision decreases. 

This makes sense because as we increase π, the number of 

samples progressively censored in the first step will increase; 

consequently, the number of failures on the second step will 

decrease. The net result will be a deterioration on the test 

precision. Also the table shows that the optimal stress 

changing time N did not change (5500 seconds) with changing 

the censoring proportion while the optimal stress changed.  

 
TABLE I 

THE CENSORING PROPORTION ALONG WITH THE OPTIMAL VALUES OF E�oVA R �T��Xi�|T, Π¢�p, Τ, AND X1 AT SAMPLE SIZE OF 20 

Censoring Proportion (π) jUom�n�?i.��^i�|U, ���p N x� Volts 

0 2483018 5500 2.67 

0.1 2529339 5500 1.50 

0.2 2612043 5500 1.50 

0.3 2813307 5500 1.67 

 

To see the effect of the sample size on the optimal solution, 

the sample size was increased to 40 and the example was 

solved again. Table II contains the results. It is apparent that 

there is no clear trend between the values of jUom�n�?i.��^i�|U, ���p and the values of π. The value of jUom�n�?i.��^i�|U, ���p at no progressive censoring is higher 

than its corresponding value at π = 0.1. This result was 

unexpected and may be related to the sample size as follows: 

as the sample size increases, the amount of information 

contained in the likelihood function increases and thus 

progressively removing some units from the test has little 

effect on the test's precision. Moreover, the information 

contained in the likelihood comes from two sources, the failed 

units and the censored units. Increasing the sample size under 

progressive censoring provides the likelihood function with 

additional information (censored times) due to the increase in 

the number of the progressively censoring sample units. This 

may enhance the quality of information contained in the 

likelihood function the matter that will reduce jUom�n�?i.��^i�|U, ���p.  
In addition, it is worth to mention here that the overall 

precision of the SSALT under higher sample size is always 

better than the corresponding precision for the test at the same 

censoring proportion π. This result can also be related to the 

increase in the sample size.  

 

 

 

 

 

 

 

TABLE II 

THE CENSORING PROPORTION ALONG WITH THE OPTIMAL VALUES OF E�oVA R �T��Xi�|T, Π¢�p, Τ, AND X1 AT SAMPLE SIZE OF 40 

Censoring Proportion (π) jUom�n�?i.��^i�|U, ���p N x�Volts 

0 1743094 5000 1.50 

0.1 1735913 5500 2.17 

0.2 1746419 5500 2.17 

0.3 1923549 5500 2.00 

 

To assess the effect of prior's strength, the strength of the 

priors were increased to the following values 

 �� � ��22026,10�@ x� � 3 Volts, 
 

and  
 �� � ��2980,1�@ x� � 4 Volts. 

 

The example was solved again and the results were 

recorded in Table III. Comparing the results contained in 

Tables I and III, one can see that the trend found in Table I 

was not repeated in Table III. One can also see that the values 

of the jUom�n�?i.��^i�|U, ���p are much lower in Table III 

(stronger priors) comparing to the values in Table I (weaker 

priors). These results show the importance of the prior's 

strength. As the priors become more informative the precision 

of the test enhances. Also one can see that as the priors 

become more informative, the importance of the effect of the 

progressive censoring on the test precision decreases as the 

difference between the values of jUom�n�?i.��^i�|U, ���p at 

different censoring proportions decreases. This result may be 

understood if one remembers that under Bayesian statistics the 

information about the model parameters a and b comes from 

two sources: the likelihood and the model parameters' priors, 

as the strength of the prior increases, the importance of the 

information contained in the likelihood decreases and thus 

most of the information about the model parameters comes 

from the priors the matter that will reduce the effect of the 

progressive censoring on the test precision.  

To assess the effect of changing the priors from being 

indirect priors to the model parameters a and b (through �� 

and ��) to direct priors directly on the model parameters a and 

b, the example was solved again with the following priors: 

 � � ��16,0.1�, 
 

and  
 � � ���2,0.5�. 

 

TABLE III 
THE CENSORING PROPORTION ALONG WITH THE OPTIMAL VALUES OF E�oVA R �T��Xi�|T, Π¢�p, Τ, TC, AND X1 AT MORE INFORMATIVE PRIORS AND 

SAMPLE SIZE 20 

Censoring Proportion (π) jUom�n�?i.��^i�|U, ���p N x� Volts 

0 131570 2000 2.33 

0.1 131325 1000 1.83 

0.2 131436 1500 2.83 

0.3 131203 1500 2.67 
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The results showed that the values of jUom�n�?i.��^i�|U, ���p under the new priors setup increased a 

lot compared to the previous setup (even though the priors 

used were informative), hence, the precision of the test 

reduced. Also the table showed that the value of jUom�n�?i.��^i�|U, ���p increased as the censoring proportion π 

increased, which is the same trend found in Table I under 

small sample size and indirect priors. This result emphasizes 

that changing the way of assigning the priors can affect the 

test precision.  

 
TABLE IV 

THE CENSORING PROPORTION ALONG WITH THE OPTIMAL VALUES OF E�oVA R �T��Xi�|T, Π¢�p, Τ, AND X1 AT SAMPLE SIZE OF 20 WITH DIRECT PRIORS 

FOR MODEL PARAMETERS 

Censoring Proportion (π) jUom�n�?i.��^i�|U, ���p N x� Volts 

0 1191102081 1000 2.83 

0.1 1216429662 1000 1.67 

0.2 1238939060 1000 3.00 

0.3 1263419716 1000 1.50 

VI. CONCLUSION 

This paper discusses the effects of using progressive Type-I 

right censoring on the design of the Simple Step Accelerated 

Life testing using Bayesian approach for Weibull life products 

under the assumption of cumulative exposure model. The 

optimization criterion used in this paper is to minimize the 

expected pre-posterior variance of the Pth percentile time of 

failures. The model variables are the stress changing time and 

the stress value for the first step. A comparison between the 

conventional and the progressive Type-I right censoring is 

provided. The results have shown that the progressive Type-I 

right censoring reduces the cost of testing on the expense of 

the test precision when the sample size is small. Moreover, the 

results have shown that using strong priors or large sample 

size reduces the sensitivity of the test precision to the 

censoring proportion. Hence, the progressive Type-I right 

censoring is recommended in these cases as progressive Type-

I right censoring reduces the cost of the test and doesn't affect 

the precision of the test a lot. Moreover, the results have 

shown that whether using direct or indirect priors affects the 

precision of the test. 
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