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Effect of Non-Newtonian Behaviour of Blood on
Pulsatile Flows in Stenotic Arteries
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Abstract— In this paper, we study the pulsatile flow of blood
through stenotic arteries. The inner layer of arterial walls is modeled
as a porous medium and human blood is assumed as an incompress-
ible fluid. A numerical algorithm based on the finite element method
is developed to simulate the blood flow through both the lumen region
and the porous wall. The algorithm is then applied to study the flow
behaviour and to investigate the significance of the non-Newtonian
effect.
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non-Newtonian model.

I. INTRODUCTION

FOR many decades, cardiovascular disease has been one of
the most severe diseases causing a large number of deaths

worldwide each year, especially in developed countries. Most
of the cases are associated with some form of abnormal flow
of blood in stenotic arteries. In the presence of a stenosis, the
normal blood flow through the artery is disturbed resulting
in blood recirculation and wall shear stress oscillation near
the stenosis. The heart has to increase the blood pressure to
impel the blood passing through the narrowing region so as to
enforce the blood circulation. If the heart works too hard and
the blood cannot flow well, heart attack may occur.

In order to understand the blood flow behaviour in arteries
so as to provide sufficient information for clinical purposes,
intensive research has been carried out worldwide for both
normal and stenotic arteries [1], [2], [3], [4], [5], [6]. Most
analyses assumed the human blood to be Newtonian and
the stenoses to be symmetric to make the problem more
traceable [7], [8]. Various mathematical models and finite
element based numerical methods have been developed to
simulate blood flow through the stenotic arteries, including
two-dimensional and three dimensional Newtonian models and
non-Newtonian models [9], [10], [11], [12].

Althrough a large number of studies have led to better
understanding of the flow behaviour induced by a stenosis,
further analysis and development are still needed to accurately
simulate blood flow under different conditions. One of the
important aspects, in simulating blood flow, is to accurately
describe the nature of blood as a fluid. It has been generally
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Fig. 1. A cross section of the arterial vessel.

accepted that blood behaves as a Newtonian fluid when the
shear rate is greater than 100s−1 [13], [14], [15]. However,
when the shear rate is lower than 100s−1, blood behaves as
a non-Newtonian fluid and the stresses depend nonlinearly
on the deformation rate. Many models assume blood flow to
be Newtonian, however, the instantaneous shear rate over a
cardiac cycle may vary from zero to over 1000s−1 depending
on the circumstance. Therefore, it is useful to study the
significance of non-Newtonian effect on pulsatile blood flows.
Hence, the aims of this study are two fold : to develop a
finite element model to study the behaviour of blood flow
through stenotic arteries taking into account of blood transport
through the porous arterial wall, and to investigate the effect
of non-Newtonian viscosity of blood on pulsatile flow through
an artery with an asymmetric or a symmetric stenosis over a
cardiac cycle.

II. MATHEMATICAL MODEL

A blood vessel consists of several layers as shown in Fig. 1.
Blood is transported mainly through the lumen but some could
be transported through the porous layers including the lunica
intima and lunica medium layers. In the lumen region, the
equations governing the flow of blood include the continuity
equation and the Navier-Stokes equations :

∇ · u = 0, (1)
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TABLE I
VALUES OF PARAMETERS USED IN COMPUTATIONAL REGION

n αQ
n θQ

n αp
n θp

n

1 17.28 2.256 -21.740 -0.406
2 -34.91 -0.226 -9.088 0.202
3 -16.11 1.228 4.771 -0.633
4 11.70 4.882 2.035 -4.315
5 6.64 -0.074 0.768 3.932

ρ
(

∂u
∂t + u · ∇u

)
= −∇p1 + ∇ · (µn

(∇u + (∇u)T
))

+ f ,
(2)

where ρ denotes the blood density, u = (u1, u2, u3) is the
velocity vector, f = (f1, f2, f3) is the volume force acting on
the fluid, p1 denotes pressure in the luminal channel, and µn

is the viscosity of blood. For Newtonian fluid, µn is taken to
be a constant. For non-Newtonian fluid, µn is a function of
shear rate γ̇ =

√
2D : D where

D =
1
2
(∇u + (∇u)T )

denotes the rate of deformation tensor. In this study we use
the Carreau model for blood, namely

µn = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2](n−1)/2,

where µ0, µ∞, λ, and n are constants.
In the porous layer of the arterial wall, the flow of blood

is described by the continuity equation and the Brinkman
equations :

∇ · v = 0, (3)

ρ
∂v
∂t

+
µ

κ
v = −∇p2 + ∇ · (µ (∇v + (∇v)T

))
+ g, (4)

where µ denotes the viscosity of blood in the porous layer,
κ is the permeability of the porous media, v represents the
velocity vector, p2 denotes pressure in the wall, and g is the
volume force acting on the fluid in the wall.

To precisely describe the cyclic nature of the heart pump
and the pulsatile flow condition in the arteries, we use Fourier
series to represent the pulsatile pressure and flow rate in the
arteries. Therefore, we impose a pulsatile flow rate condition
on the inlet boundary and a corresponding pulsatile pressure
condition on the outlet boundary of the computational region,
namely, for i, j = 1, 2, 3

u1 = ū0(t) = 1
A [Q̄ +

∑5
n=1 αQ

n cos(2nπt
T − θQ

n )],

u2 = u3 = 0 on ∂Ωin

p = p̄ +
∑5

n=1 αp
ncos( 2nπt

T − θp
n),

(
µn

(∇u + (∇u)T
)) · n = 0 on ∂Ωout,

(5)

Fig. 2. The 3-D geometry of the 50% stenotic tubes and its finite element
mesh.

where A denotes the inlet cross section area of an artery, Q̄ =
59.09 cm3/min, p̄ = 122.5 mmHg are respectively the mean
flow rate and mean pressure, T is the cardiac period, and the
values of αQ

n , αp
n, θQ

n , and θp
n are listed in table I.

On the interface between the lumen and the porous wall,
the pressure and velocity are assumed to be continuous across
the interface. On other wall surface, the no-slip condition is
applied. Thus to this end, the boundary value problem for the
investigated problem is

BVP : Find u, p1, v, p2 such that (1)–(4) are satisfied
in the computation domain Ω = ΩL ∪ ΩW and all
boundary conditions are satisfied.

III. METHOD OF SOLUTION

To develop the variational statement for the boundary value
problem (BVP), we consider the following integral represen-
tation of the problem.

Find p1, u1, u2, u3 and p2, v1, v2, v3 ε H1
Ω such

that for all test functions ûi ε H1
0ui

(Ω), v̂i ε H1
0vi

(Ω), and
p̂1, p̂2 ε H1(Ω), all the Dirichlet boundary conditions for the
unknown functions are satisfied and

(∇ · u, p̂1) = 0, (6)

ρ
(

∂u
∂t + u · ∇u, û

) − (∇ · µn(∇u + (∇u)T ), û
)

+(∇p1, û) = (f , û),
(7)

(∇ · v, p̂2) = 0, (8)(
ρ ∂v

∂t −∇ · µ(∇v + (∇v)T ), v̂
)

+ µ
κ (v, v̂)

+(∇p2, v̂) = (g, v̂), (9)

where (·, ·) denotes the inner product on the square integrable
function space L2(Ω), H1(Ω) is the Sobolev space W 1,2(Ω)
with norm ‖ · ‖1,2,Ω,H1

0ui
(Ω) = {vεH1(Ω)|v = 0 on the

boundary where ui is specified}. A standard procedure is then
carried out to reduce the second-order derivatives involved in
the above problem into the first-order ones using integration
by parts to ensure that all integrals involved are well defined.

Through a Galerkin finite element formulation, we obtain
the following system

MU̇ + KU = F, (10)

where U = (vf , vB , vw)T in which vf and vw denote
quantities in the lumen region and the porous wall region, and
vB represents quantities on the interface between the lumen
region and the porous wall region.

A standard backward Euler scheme can then be used to
solve the above system of ordinary differential equations to
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Fig. 3. Vector plots of the velocity fields in the luminal channel at the peak
of systole of the non-Newtonian model (a) with 25% stenotic tube, (b) with
50% stenotic tube, (c) with 65% stenotic tube, (d) with symmetric type 50%
stenotic tube, and (e) with symmetric type 80% stenotic tube.

determine the velocity and pressure fields at any instant of
time.

IV. RESULTS AND DISCUSSION

Using the numerical technique developed, a series of nu-
merical experiments have been carried out to study the flow
behaviour of blood through a porous medium stenosed artery
and to investigate the significance of the non-Newtonian effect
on blood flow for various cases of stenosis severity. Here, in
this section, we present results for some of the investigated
cases to demonstrate the essential features of the blood flow
through the porous medium stenotic arteries and to show the
significance of non-Newtonian effect on blood flow for the ex-
amined cases. Two different models, the Newtonian model and
the non-Newtonian Carreau model, are used in the modelling.
Various cases of stenosis severity, ranging from 25% to 80%,
are considered. The computation domain is a straight tube of
length of 5cm and the diameter of the lumen is 0.210cm.
The thickness of the wall is 0.05cm. Two different types of
stenoses, asymmetric and symmetric as shown in Fig. 3, are
considered in this work. The blood density is ρ = 1.06g/cm3,
the Newtonian viscosity of blood is 0.0345g/(cm · s), the
parameters in the non-Newtonian Carreau model have values
µ0 = 0.56g/(cm · s), µ∞ = 0.0345g/(cm · s), λ = 3.313s,
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Fig. 4. Surface plot of wall shear stresses (WSS) on the 50% stenotic tube
using the non-Newtonian model.

and n = 0.3568, the parameters in the Brinkman equation
have values µ = 0.0345g/(cm · s), and κ = 1.0e−14cm2.

Fig. 3 shows the three-dimensional vector plots of the
velocity field in the lumen region at the peak of systole
obtained by using the Carreau model. The diagrams describe
the general feature of blood flow through stenotic arteries with
different degree of stenosis area-severity. It is noted that for
the asymmetric case, when the stenosis area severity reaches
50%, a small flow recirculation zone occurs near the back toe
of the stenosis where altherosclerotic diseases may develop.

To demonstrate the feature of wall shear stress distribution,
we plot the wall shear stress on the plane representing the wall
surface where the stenosis is located at the centre as shown in
Fig. 4. It is noted that large magnitudes of wall shear stresses
occur near the throat of the stenosis.

Fig. 5 shows the distributions of the axial velocity compo-
nent ux on three different cross sections of the 50% stenosed
artery at the peak of systole t = 3.15s, obtained by both the
Newtonian model and the non-Newtonian Carreau model. On
the upstream cross section x = 2cm, the velocity profile is
symmetric. On the downstream cross section x = 2.7cm, the
velocity profile is no longer symmetric and there exists a small
region with low velocity. The results also clearly show that, for
the problem examined, the non-Newtonian property of blood
has very significant effect on the velocity profiles particularly
on the downstream cross section.

Fig. 6 shows the pressure distributions along the axial line
(x-axis) at the peak of systole t = 3.15s, obtained by both
the Newtonian model and the Carreau model. It is noted that
the non-Newtonian behaviour only slightly affects the pressure
distribution. The results also indicate that as the degree of the
stenosis area severity increases, the pressure gradient required
to impel the blood passing through the narrowing channel
increases significantly. This results in a higher pressure to
occur in the up-stream region.

Fig. 7 shows the effect of stenosis severity on blood pressure
for the asymmetric case, obtained by using the non-Newtonian
model. The results clearly show how blood pressure increases
as the degree of the stenosis severity increases.

Fig. 8 shows the distributions of wall shear stresses (WSS)
on three cross-sections of the 50% stenotic artery at the peak
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Fig. 5. The velocity field ux in the lumen region of the 50% stenotic tube at
the peak of systole t = 3.15s : (a) at an upstream cross section x = 2.0 cm,
(b) at the throat cross section x = 2.5 cm, and (c) at a downstream cross
section x = 2.7 cm.
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Fig. 6. Pressure along the axial line (x,−0.05, 0) in the tube with different
stenosis area severity at the peak of systole t = 3.15s: (a) 25%, and (b) 50%.
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Fig. 7. Pressure along the axial line (x,−0.05, 0) in the artery with different
stenosis area severity at the peak of systole t = 3.15s, obtained by the non-
Newtonian model.
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of systole t = 3.15s, obtained by using the Newtonian model
and the non-Newtonian Carreau model. It is clear that the
non-Newtonian behaviour has very significant effect on the
magnitude of wall shear stresses.

V. CONCLUSIONS

A numerical technique has been developed to simulate the
three dimensional pulsatile blood flow in stenotic arteries and
to study the effect of the non-Newtonian viscosity of blood
on the flow behaviour. The results show that blood pressure
increases very significantly in the upstream zone of the stenotic
artery as the degree of the stenosis area severity increases. It
is also shown that the non-Newtonian behaviour of blood has
significant effects on the velocity profile of the blood flow and
the magnitude of the wall shear stresses.
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Fig. 8. Distribution of wall shear stresses(WSS) on three different cross
sections of the 50% stenotic artery at the peak of systole t = 3.15s : (a) at
x = 2.0cm, (b) at x = 2.5cm, and (c) at x = 2.7cm (The stenosis is at the
centre).


