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Abstract—We present a general comparison of punctual kriging 

based image restoration for different neighbourhood sizes. The 
formulation of the technique under consideration is based on 
punctual kriging and fuzzy concepts for image restoration in spatial 
domain. Three different neighbourhood windows are considered to 
estimate the semivariance at different lags for studying its effect in 
reduction of negative weights resulted in punctual kriging, 
consequently restoration of degraded images. Our results show that 
effect of neighbourhood size higher than 5x5 on reduction in 
negative weights is insignificant. In addition, image quality 
measures, such as structure similarity indices, peak signal to noise 
ratios and the new variogram based quality measures; show that 3x3 
window size gives better performance as compared with larger 
window sizes. 
 

Keywords—Image restoration, punctual kriging, semivariance, 
structure similarity index, Negative weights in punctual kriging.  

I. INTRODUCTION 
MAGE restoration is an important branch of image 
processing, dealing with the reconstruction of images by 

removing noise and blur from degraded images and making 
them suitable for human perception. Images are often 
degraded by noise due to channel transmission error, faulty 
acquisition device, and atmospheric electrical emissions. Due 
to strong amplitude of noise, human visual perception is very 
sensitive to it, and the removal of such noise is an important 
issue in image processing [1]. One of the primary tasks in 
developing such image restoration techniques is noise removal 
without destroying edge information. In the sequel, we present 
a brief review of spatial filtering technique, based on punctual 
kriging and fuzzy logic control, to remove noise while 
efficiently preserving the image details and edge information. 
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Punctual kriging is a well-established estimation technique 
in the fields of mining and Geostatistics [2]. Kriging has been 
applied successfully in many other fields. It has proven to be a 
nonlinear predictor in signal processing. Costa et al [3] 
suggest kriging as an efficient tool for nonlinear filtering.  

In the field of image processing, Pham and Wagner [4], [5] 
reported the first use of kriging along with fuzzy sets to 
enhance images corrupted by Gaussian noise. They modeled 
soft-thresholding by fuzzy sets. In their method, the pixel 
value in the processed image is a weighted sum of two values: 
the original (noisy) and the estimated (by kriging).  Mirza et al 
[6] have applied fuzzy logic with punctual kriging to estimate 
the degraded images. In case of matrix inversion failure or 
negative weights, they have replaced the pixel to be estimated 
with the average of neighbouring pixels.  Further, they have 
used averaging filter of size 3x3 to smooth out the resultant 
image and claim that their technique offers better results than 
Pham and Wagner [4], and adaptive Wiener filter. In our 
previous paper [7], we have presented spatially adaptive 
image restoration technique based on fuzzy punctual kriging. 
Based on the pixel local neighbourhood, fuzzy logic has been 
employed intelligently to avoid unnecessary estimation of a 
pixel. The intensity estimation of the selected pixels is carried 
out by employing punctual kriging. The problem of negative 
weights in punctual kriging is solved by using approximation; 
assigning zero to negative weights and renormalization of 
positive weights.  Further, instead of employing smoothing 
filter to the resultant image, fuzzy weighted filter is used to 
estimate the inversion failure, and not selected pixels only. 

Journel and Huijbregts (1978) [8] suggest that each lag 
interval ‘d’ should have at least 30 pairs for refining the 
semivariogram. The American Society for Testing and 
Materials (Standard D5922-96) [8] have suggested 20 pairs of 
each lag interval for better estimation of semivariance and to 
reduce negative weights occurring in punctual kriging. For a 
typical 33 ×  neighbourhood, a kriging matrix of size 99 ×  
has to be inverted, which can make the overall filtering 
process computationally expensive. Also, due to a zero 
diagonal, the kriging matrix may not always be inverted. The 
filter weights also suffer from the problem of negative values, 
which may lead to overall poor performance of the filter. This 
paper is aimed to compare the results considering different 
neighbourhood sizes by utilizing the technique based on fuzzy 
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inference system, punctual kriging and fuzzy smoothing [7]. 
This paper makes the following contributions: 

• Comparative analysis of the effect of neighbourhood 
size on reduction of negative weights and the 
consequent improvement in image restoration. 

The remaining paper is organized as follows. Section II 
presents a brief review of punctual kriging. Some of the most 
commonly used image quality measures are briefly discussed 
in section III. Experimental results along with their discussion 
are presented in section IV. A summary of our findings and 
directions for future work is given in section V.  

II. PUNCTUAL KRIGING 
Punctual kriging offers the best linear unbiased estimate of 

an unknown point on a surface [9]. The estimate is the 
weighted sum of the known neighbouring values around the 
unknown point. The weights are calculated to minimize the 
variance of the estimation-error. To achieve this kriging uses a 
variogram model (a concept from geostatistics). Based on the 
variogram model chosen, known values are assigned optimal 
weights to calculate the unknown value where as in the 
present case, image data is known at each location. Due to this 
characteristic of the image data, optimal weights are directly 
find out by solving the system of punctual kriging equations to 
estimate the degraded pixel. 

A. Punctual Kriging Procedure 
To formulate the punctual kriging procedure 

mathematically, let us define z  to be the actual sample value 
at a point and ẑ  be an estimate for this value. It can be 
represented as a linear combination of the neighbouring 
sample values, as given by eqn. (1). 

 

∑=
i

ii zwẑ                                      (1) 

where iw  are the weights and the iz  are the neighbouring 
values of z . This is an unbiased estimator if the weights add 
up to 1.  

The semivariance of the samples at lag ‘d’ is defined as: 
 

)(
2
1)( idi zzVard −= +γ                          (2) 

 
Statistical variance is measure of how different the 

estimated value is different from its neighbouring sample 
values. It can be found using the eqn. (3). 

A number of such linear unbiased estimators are available, 
but we find the best one in the sense that it has the smallest 
estimation variance. 

 
( ) ( )zzVareVar ˆ−=                             (3) 

 
Variance is a measure, which depends upon the changes in 

the sample value in the overall neighbourhood. Information 

about the local morphological structure detail is hidden inside 
the variance parameter. This structural detail can explicitly be 
written by expanding the variance into semivariances. Using 
eqn. (2) and the definition of variance [10], this can be worked 
out as 
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Here jd  is the distance between the location of current value 

and its neighbor ‘j’. Also jkd  is the distance between 

neighbors ‘j’ and ‘k’. The expression for estimation variance 
depends upon the basic geometry of the samples and unknown 
sample point, behavior of the semivariogram and the weights 
assigned to each sample [11].  To minimize the estimation 
variance, we differentiate it with respect to the weights and set 
it equal to zero. 
 

0)(
=

∂
∂

iw
eVar   where i = 1, 2,…, n                   (5) 

 
The weights obtained from eqn. (5) provide an estimator 

that has minimum estimation variance, but the weights may 
not necessarily add up to 1. This is because there is no 
constraint on weights in the above system of linear equations. 
This additional constraint on weights is given by: 

 

∑ =
i

iw 1                                            (6) 

 
To obtain the Best Linear Unbiased Estimator, a Lagrange 

Multiplier parameter λ  is also included and the cost function 
is redefined as ),( λϕ iw  in eqn. (7) and minimizes it instead of 
minimizing the estimation variance of error. 
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By differentiating the cost function ),( λϕ iw  with respect 

to iw  and λ , and after rearranging the system of equations, 
these can be written in matrix form as: 
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or in matrix-vector notations 
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bAw =                                          (9) 

The A  matrix is symmetric and has zero diagonal 
elements. The elements of the matrix are taken from the 
semivariogram (defined in eqn. (2) for the current point. 
Solving eqn. (9) gives us the optimal kriging weights 
{ }nwww ,,, 21 for estimating the unknown value z  using 
its neighbors. 

III. IMAGE QUALITY MEASURES 
The most widely used qualitative measures in image 

processing applications are mean squared error (MSE) and 
signal-to-noise ratio (SNR). During computation, these 
qualitative measures require the original image as well as the 
degraded image. However, still no single measure is accepted 
as representing the true measure of image quality. For a 
detailed discussion on image quality, one should refer to [12]. 
Structural similarity index measure (SSIM), recently proposed 
by Wang et al. [13] is based on the hypotheses that human 
visual system is highly adopted for extracting structural 
information. A new image quality measure in terms of the 
experimental variograms of the original and degraded images 
is proposed in [7], [14]. 

IV. RESULTS AND DISCUSSION 
We have compared the performance of Adaptive Fuzzy 

Punctual Kriging (AFPK) [7] method for different 
neighbourhood sizes by considering two scenarios. For details 
of the AFPK method, one should refer to [7].  Firstly, the 
performance comparison has been made for additive Gaussian 
white noise of different variances. Lena image is taken as a 
test image. Secondly, the performance of AFPK with different 
neighbourhood sizes is compared for different images 
corrupted with Gaussian white noise of the same variance. 
Typical results from the Fuzzy Decider are shown in Fig. 1. 
The Fuzzy Decider used is a Mamdani type FIS for making 
the decision of whether a pixel needs to be kriged or not 
kriged, depending upon the local properties of the 
neighbourhood. The white pixels are the ones that need to be 
kriged. 

A.  Scenario 1 
In this scenario, we have considered lena image as a test 

image. The image is degraded with Gaussian white noise of 
variances ranging from 0.01 to 0.1. The results obtained using 
AFPK with different neighbourhood sizes have been 
compared. 
 

 
Fig 1 Decision map of Fuzzy-Decider for Lena image degraded at 

0.01 variance 
 

The effect of the additive Gaussian white noise and its 
removal by AFPK with different neighbourhood sizes is 
shown in Fig. 2. Table I gives a quantitative comparison of 
AFPK with different neighbourhood sizes in terms of MSE, 
PSNR, SSIM, VMSE, VPSNR and Negative Weights. From 
table I, it can be observed that by increasing the number of 
pairs at different lag intervals ‘d’ i.e. 85,2,2,1 and , 
the number of negative weights reduces. However, its effect 
on punctual kriging based image restoration is not so fruitful 
as shown in table I and Fig. 2. Further, it can be observed that 
AFPK with 3x3 neighbourhood size offers superior 
performance against the Gaussian white noise for different 
noise variances as compared to other neighbourhood sizes. 
This may be due to the fact that as neighbourhood size is 
increased to fulfill the condition of at least 20 pairs for each 
lag ‘d’ to estimate semivariance [8], moves toward global 
estimation of semivariance at different lags. Further, this 
estimated semivariance is used in punctual kriging to estimate 
noisy pixel. 

The experimental variograms of the original, AFPK 
restored images with different neighbourhood sizes are plotted 
in Fig. 3. The Blood cells image is degraded with Gaussian 
noise of variance 0.05. Comparing the variograms produced 
by AFPK with different neighbourhood sizes, the AFPK 3x3 
produces a variogram that overlaps with the variogram of the 
original image. This is also clear from Table I, where the 
VMSE for 3x3 windows is less as compared with the other 
two neighbourhood sizes. 

B. Scenario 2 
In this case, performance comparison has been made on 

450 different images. These images have been corrupted with 
Gaussian white noise of variance 0.05. Performance analysis 
of the AFPK method with different neighbourhood sizes is 
carried out in terms of MSE, PSNR, SSIM, VMSE, VPSNR 
and Negative Weights as shown in Table II. Graphical 
representation of results presented in table II is shown in Fig. 
4. It can be observed that the performance of AFPK with 
neighbourhood 3x3 is better as compared with other 
neighbourhood sizes across all of the image quality measures. 
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This is due to the fact that by estimation of semivariance at lag 
‘d’ using larger neighbourhood size means moving towards 
global estimation, and thus may not capture the local 
knowledge. Further, making comparison in terms of number 
of negative weights, Table II shows that AFPK with 
neighbourhood sizes 5x5 and 7x7 results negative weights for 
nearly same number of times. It also shows that AFPK with 

higher neighbourhood size reduces in negative weights as 
compared with 3x3 neighbourhood. This may be due to the 
fact that estimation of semivariance at lag ‘d’ by considering 
large number of pairs further refine the experimental 
semivariogram.  
 

 
 

 

 

TABLE I 
COMPARISON OF DE-NOISING METHOD AFPK WITH DIFFERENT NEIGHBOURHOOD SIZES FOR LENA IMAGE DEGRADED WITH GAUSSIAN WHITE NOISE OF 

DIFFERENT VARIANCES/PSNR 

White Gaussian Noise  of different variance De-noising 
Methods 

Quality 
Measures 0.1 0.075 0.05 0.025 0.01 

MSE 4584 3681.8 2681.7 1455.7 615.55 
PSNR 11.518 12.47 13.847 16.5 20.238 
SSIM 0.0744 0.091215 0.11811 0.18138 0.30061 
VMSE 13600000 9220000 4940000 1490000 322000 

Noisy Image 

VPSNR 0.0000088 0.000013 0.000024 0.00008 0.000372 
MSE 895.68 688.23 479.01 244.19 119.72 
PSNR 18.609 19.753 21.327 24.064 26.906 
SSIM 0.228 0.269 0.331 0.465 0.625 
VMSE 29849 16019 7144 11759 4963 
VPSNR 0.004003 0.00746 0.016726 0.010162 0.024076 

AFPK 3x3 

Negative 
Weights 

173000 155000 126000 64375 9992 

MSE 946.53 723.93 498.43 248.85 121.11 
PSNR 18.369 19.534 21.155 23.982 26.856 
SSIM 0.219 0.259 0.323 0.461 0.624 
VMSE 50124 24183 7333 11425 5069 
VPSNR 0.002384 0.004942 0.016295 0.010460 0.023573 

AFPK 5x5 

Negative 
Weights 

150990 136460 110650 57546 9319 

MSE 947.32 725.18 499.89 251.52 124.70 
PSNR 18.366 19.526 21.142 23.970 26.730 
SSIM 0.219 0.259 0.323 0.460 0.623 
VMSE 50465 24341 7459 11788 5470 
VPSNR 0.002368 0.004909 0.016020 0.010138 0.021847 

AFPK 7x7 

Negative 
Weights 

150840 136600 111180 58060 9319 

 

 
Fig. 2 The original image, noisy image of Lena and the estimated images obtained through AFPK method with different neighbourhood 

sizes 

Original Image Noisy Image 

AFPK 5x5 AFPK 7x7 AFPK 3x3
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Fig. 3 Comparison of the variograms of the original, degraded and 

processed Blood cells image 
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Fig 4 plot of average values of different measures for Noise variance 

0.05. The values have been rescaled for elaboration purpose 

V. CONCLUSION 
In this work, we have analyzed the effect of different 

window sizes on negative weights in punctual kriging based 
image restoration. To increase number of pairs at each lag to 
estimate semivariance by increasing the size of 
neighbourhood, methodology changes from local to global 

estimation. Although by increasing the neighbourhood size, 
number of negative weights in punctual kriging reduces. 
However, reduction in number of negative weights does not 
play significant role in punctual kriging based image 
restoration to estimate the noisy pixel. Furthermore, 
approximation of initializing zero value to negative weights 
and renormalization of positive weights in punctual kriging 
based image restoration with 3x3 neighbourhood performs 
better than 5x5 and 7x7. 

ACKNOWLEDGMENT 

The authors are highly thankful to GIK institute for 
providing very productive research environment.  

REFERENCES   
[1] Gonzalez R. C. and Woods R. E., “Digital Image Processing”, 2nd Ed., 

Pearson Education Inc., 2002. 
[2] Krige D., “A statistical approach to some mine valuation and allied 

problems on the Witwatersrand”, Master Thesis, University of 
Witwatersrand, South Africa, 1951. 

[3] Costa J. P., Pronzato L., and Thierry E., “Nonlinear prediction by 
kriging, with application to noise cancellation”, Signal Processing, 
2000, 80: 553–566. 

[4] Pham T. D. and Wagner M., “Image enhancement by kriging and fuzzy 
sets”, Int. J. Pattern Recognition and Artificial Intelligence, 2000, 14(8): 
1025–1038. 

[5] Pham T. D. and Wagner M., “Filtering noisy images using kriging”, 5th 
Int. Symposium on Signal Processing & its Applications (ISSPA’99), 
Brisbane, Australia, August 1999. 

[6] Mirza, Anwar M. and Munir, B., “Combining fuzzy logic and kriging for 
image enhancement”, in Proceedings of 8th International Conference on 
Computational Intelligence, Theory and Applications, (FUZZY DAYS 
2004), Advances in Soft Computing 2, Springer-Verlag Berlin 
Heidelberg, 2005, pp. 435-448. 

[7] Anwar M. Mirza, Asmatullah Chaudhry, and Badre Munir, “Spatially 
adaptive image restoration using fuzzy punctual kriging”, Journal of 
Computer Science & Technology, Springer, 2006 (Accepted). 

[8] Engineering and Design- Practical Aspects of Applying Geostatistics at 
Hazardous, Toxic, and Radioactive Waste Sites (ETL 1110-1-175), 
Dept. of the Army, U.S. Army Corps of Engineers, Washington, DC 
20314-1000, 1997. 

[9] Naser El-Sheimy, “Digital Terrain Modeling (ENGO 573)”, University 
of Calgary, Canada, 1999. 

[10] Walpole R. E., Myers R. H. and Myers S. L., “Probability and Statistics 
for Engineers and Scientists”, 6th Ed., Prentice Hall International Inc., 
1998. 

[11] Clark, I. and Harper, W. V., “Practical Geostatistics 2000”, Ecosse North 
America, OH, USA, 2000. 

[12] M. Kutter and F. A. P. Petitcolas, "A fair benchmark for image 
watermarking systems", Electronic Imaging '99, Security and 
Watermarking of Multimedia Contents, Vol. 3657 Sans Jose, CA, USA, 
the International Society for Optical Engineering, Jan. 1999, pp.25-27. 

TABLE II 
AVERAGE VALUES OF DIFFERENT QUALITATIVE MEASURES FOR 450 TEST IMAGES CORRUPTED WITH GAUSSIAN WHITE NOISE OF VARIANCE 0.05 

Qualitative 
Measures AFPK 3x3  AFPK 5x5 AFPK 7x7 

MSE 542.76 564.80 567.43 
PSNR 20.77 20.62 20.60 
SSIM 0.40 0.39 0.39 
VMSE 129962.71 124403.48 125563.27 
VPSNR 0.00284 0.00275 0.00274 
Negative 
Weights 19446 17161 17145 

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:2, 2007

333

 

 

[13] Wang Z., Bovik A.C., Sheikh H. R.  and Simoncelli E. P., “Image 
quality assessment: From error visibility to structural similarity”, IEEE 
Trans. on Image Processing, March 2000, 13(3): 1–14. 

[14] Asmatullah Chaudhry, Asifullah Khan, Asad Ali and Anwar M. Mirza, 
“A hybrid image restoration approach: using fuzzy punctual kriging and 
genetic programming”, International Journal of Imaging Systems and 
Technology, 2006 (Submitted). 

 
 
 
 

 

 


