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Effect of Mesh Size on the Supersonic Viscous Flow
Parameters around an Axisymmetric Blunt Body
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Abstract—The aim of this work is to analyze a viscous flow
around the axisymmetric blunt body taken into account the mesh size
both in the free stream and into the boundary layer. The resolution of
the Navier-Stokes equations is realized by using the finite volume
method to determine the flow parameters and detached shock
position. The numerical technique uses the Flux Vector Splitting
method of Van Leer. Here, adequate time stepping parameter, CFL
coefficient and mesh size level are selected to ensure numerical
convergence. The effect of the mesh size is significant on the shear
stress and velocity profile. The best solution is obtained with using a
very fine grid. This study enabled us to confirm that the
determination of boundary layer thickness can be obtained only if the
size of the mesh is lower than a certain value limits given by our
calculations.
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. INTRODUCTION

HIS article presents a calculation of a viscous flow around
an axisymmetric blunt body. In the present work, we
employ a numerical technique to simulate the viscous
supersonic flow and the boundary layer thickness on the body
surface. The gas considered is the air in a standard state
composed of 21% of O,and79% of N,which is supposed a

perfect gas. The free-stream parameters are 170 Pascal and
295K, corresponding at the altitude of 45 Km. thus the
vibration and dissociation of molecules are neglected.

The nonlinear partial derivative equations system which
governs this flow is solved by an explicit unsteady numerical
scheme [1] by the finite volume method [2] and [3]. It is clear
that the stationary solution obtained depends on the size of the
mesh used in the numerical Discretization [4]. We tested
convergence for an inviscid flow by using a refining of grid
which will enable us to have the exact solution; after this, we
refined again the grid near the wall to determine the boundary
layer thickness.

Il. GOVERNING OF EQUATIONS

In a Newtonian fluid the viscous stresses are proportional to
the rates of deformation. The three-dimensional form of
Newton’s law of viscosity for compressible flows involves
two constants of proportionality, then first dynamic
viscosity, u to relate stresses to linear deformations, and the
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second viscosity, A to relate stresses to the volumetric
deformation. The viscous stress components are:
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Not much is known about the second viscosity A, because
its effect is small in practice. For gases a good working
approximation can be obtained by taking the value = — § u.

The Navier-stokes equations in a flux-vector formulation
in Cartesian coordinate system is given by
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The heat flux vector g has three components q,,q, and gq,
given by the Fourier’s law of heat conduction relates the heat
flux to the local temperature gradient. So

aT aT
qx = _ka' qy = _ka

4=k )
where k denotes the coefficient of thermal conductivity, it is
function of Prandtl number Pr = 0.75, viscosity and specific
heat.

k= Cp.u/Pr 3)

The energy per unit of mass e is defined as sum of internal
energy and kinetic energy such as

e=c,,T+%(u2+v2+W2) 4

1. AXISYMMETRIC FORMULATION

We do not lose general information by seeking the solution
at the points of an infinitely small domain Fig. 1. A method
developed within the Sinus project of the INRIA Sophia-
Antipolis [1] makes it possible to pass from 3D to 2D
axisymmetric by using a technique of disturbance of domain.
Taking advantage of this finding, here the problem is
considered as being axisymmetric.

The system of (1) can be written as:

mes(CU) LT

aE{x,x',y,y'} (Fl'lz + Gl‘]j) . ﬁ — H. aire(Ci_j) = 0(5)

where mes(C;;)is the measurement (in m)of an infinitely
small volume of center (ij). aire(C;;)is the surface of the
symmetry plane passing by the center of elementary volume.
n4is the integrated normal. The third term of the equation

expresses the axisymmetric flow condition. Flows, W, F, G
and H this time are given by:

p
_ [
W=\
pe
pu
F—/ pu2+p_fxx

pv
PUV — Tyy,

pr2+p—1yy
(pe + p)v— UTyxy —

—2Txy
H= 2p - 21, )

—2UTyy — 20Ty, + 2VT,, + 2qy

pUV — Tyy, /
(pe + p)u —UTxx — 17"'—xy + qx

UTyy +qy

where

ax dy

du Jv
oy =t =5+ 37)

dv du
Tyy = 2/3#(26__5

IVV. DISCRETIZATION IN TIME

The present numerical method is based on an explicit
approach in time and space. The step of time Atis such as:

Ati,j — min [(Ax.CFL) : ((Ax)Z.CFL)] ©)

Vii+a 2p

The CFL (Courant, Friedrich, Lewis) is a stability factor [5].
Vis the velocity of the flow and athe speed of sound. Axis the
small length of the mesh at the same point (i, j). At each time
step and for each point(i, j), the system of (5) can be written
as:

W-"v+1 =wn — At J

ij U mes(cy )Zaf{xx vy }( "T+ Gunf) Mg + Atu aire| (@) H” (7)

The choice of the grid plays an important role in
determining in the convergence of calculations. Therefore, it is
indeed advisable to have sufficiently refine meshes at the
places where the gradients of the flow parameters are
significantly large.

V. DecomposITION OF VAN-LEER

In this study, the decomposition of Van-Leer [6] is selected,
namely a decomposition of flows in two parts f;; and fi;
.This decomposition must apply to the present two-
dimensional problem by calculating the flow within each
interface between two cells. Moreover, through this interface,
the normal direction is paramount, thus, a change of reference
mark is applied to place in the reference mark of the interface
and its normal by the intermediary of a rotation R, Fig. 2.

The vector Wy (variable of Euler) is written W in the new

reference mark
p
WI:B = (an> (8)
pe

where V, is obtained from V, via the rotation R, in the
following way:

V=)= =)= g cose)) @

where

= ing =1~
cosf = “ “ sinf = i (20)
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7l = nz +n3 (11)

The overall transformation R is written overall

_(cosB sin@
k= (— sinf cos 9) 12

_1_ (cos@ —sin@
R = (sinG cos 6 ) (13)

Moreover, at each interface i + 1/2, two neighbor states i
andi +1 are known. Thus, one can calculate the one-
dimensional flow F through the interface, total flow f(W,n)
being deduced from F by applying the opposite rotation, as:

fw, i = IFll. R-L(FWR)) (14)

This property makes it possible to use only one component
of flow f (F for example) to define the decomposition of flow
in two dimensions. Moreover, this method is much easy and
simple to implement than the decomposition of flow in two
dimensions f = Fn, + Gn,, .

The expressions of Ff, and Fj;  in 1-D, which are
those of Fjf, (WR) and Fj;,(WR) by rotation R, where WRis
defined like the transform of W, can be written in the
following from:
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where M,, = u,/a, u, and v, are the velocity in the reference
mark of the interface.

For the viscous terms, we are obliged to use a generalized
grid (&,n) . Near the wall, £ and 7 are respectively tangent
and parallel to the wall. The return to the cartisian coordonates
is done by an opposite calculation.

VI. BOUNDARY CONDITIONS

Open (far field) boundary conditions give the most serious
problems for the designer of general purpose CFD codes. All
CFD problems are defined in terms of initial and boundary
conditions. It is important to specify these correctly and
understands their role in the numerical algorithm. In transient

problems the initial values of all the flow variables need to be
specified at all solution points in the flow domain. Since this
involves no special measures other than initializing the
appropriate data arrays in the CFD code we do not need to
discuss this topic further. The present work describes the
implementation of the following most common boundary
conditions in the discredited equations of the finite volume
method: inlet, outlet, wall and symmetry Fig. 1.

Outflow boundary

Axis of symmetry

Fig. 1 Computational domain and boundary conditions

A. Inlet Boundary Conditions

At the inlet the Mach number, pressure and temperature are
fixed because the flow is supersonic.

B. Body Surface

The no-slip condition for the velocity is usually used at the
body surface. The temperature gradient at the wall is zero, in
accordance with the Fourier equation of heat conduction in the
normal-direction together with the assumption of zero heat
flux at the wall. In this study, the wall shear stress is
calculated by:

Vv, %
w=n(Ge) =ug 17
where
V,=V.t (18)
and
An = \/Ax? + Ay? (129)

Here we assume that the coordinate of the unit vector ¢ is in
the direction of the shear force at the wall and the unit vector
n is normal at t Fig. 2.
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Fig. 2 Grid near the wall

C. Axis of Symmetry

The conditions at axis of symmetry boundary are no flow
and no scalar flux across the boundary.

D.Outlet Boundary Conditions

At the exit of the computational domain, the values of the
flow parameters are extrapolated from the interior values,
including in the boundary layer.

VII. RESULTS AND INTERPRETATIONS

Consider an axisymmetric blunt body defined geometrically
by hemisphere as shown in Fig. 3, when the ray is denoted
byr = 4 cm. The computational domain is limited by the
blunt body and an ellipse with a=1.2randb=1.51r .
Assume a hypersonic flow-field where the free-stream Mach
number equal6, corresponding to the velocity of 2065 m/s.
The configuration is at zero degree angle of attack. The Van
Leer flux vector splitting scheme is adapted for this purpose.
A (20x100) grid system is created by an elliptic scheme.
Note that grid points are clustered near the stagnation region
where the flow is expected to the subsonic. In our calculations
we used several sizes of grid while starting with that of Fig. 3
(20x100), 20meshesalong the axis and 100 meshes along the
wall.

Firstly, one must to fix the residue value from which the
results remain unchanged. The parameter which interests us
much more in this study is the velocity profile in order to
capture the boundary layer thickness Fig. 4. We observe that
the velocity profile is almost the same when the order of the
residue is 10°to 10°®. In the continuation of our work we stop
calculations when the residue equal10™. Note that the velocity
is calculated paralleling at the wall.

Secondly, one must also fix the size of the grid of the
calculation field from which the results remain unchanged,
without refinement in the boundary layer. With this intention,
one tests six sizes of grid for the same residue Fig. 5. It is
observed that the velocity profile starts to be flattened near the
wall when the grid is more and more refined. The grid
(70x350) is selected since it gives good results and requires
less time computing.
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Fig. 3 Grid of solution domain
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Fig. 4 Velocity profile with various residues at x/r = 0.6
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Fig. 5 Velocity profile with various meshes size at x/r = 0.6

Another parameter very significant to calculate in this kind
of flow, it is that of the stressz,,,,. Fig. 6 shows the variation of
the stress along the normal of the wall at x/r = 0.6 according
to the refinement of the grid in the boundary layer. This
profile itself converges to the exact solution for a grid of
(70x350). It is observed that the intensity of the stress
increases quickly while approaching the wall. The viscous
stress at the wall can be calculated from the all stresses at the
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same point. Fig. 7 shows the variation of the stress 7,,,;along
the wall of the blunt body for different grid.

—o— (20x100)
- - -(70x350)

02 00 02 04 06 08 1,0
xIr

Fig. 7 Stress at the wall for different grids

Concerning the profile of the temperature, it is represented
on Fig. 8. The solution also converges to the exact value of the
temperature by using refinement (70x350) Fig. 8, the wall of
the blunt body is adiabatic and the profile of the temperature is
thus perpendicular to the wall. One observes that the wall
temperature is 2280K less than 2419K compute by the

isentropic equation. The recovery factor at x/r = 0.6 is
defined as:

r=JlwTe _ 935

Toco—Teo

(21)

where, Ty, is the adiabatic wall temperature and T,.is the
isentropic stagnation temperature.
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Fig. 8 Static temperature for different grids at x/r = 0.6

A Fig. 9 shows the static and stagnation temperatures
respectively in the boundary layer. Fig. 10 shows the static
and stagnation pressures respectively in boundary layer.
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Fig. 9 Temperatures in boundary layer at x/r = 0.6
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Fig. 10 Pressures in the boundary layer at x/r = 0.6

Finally one represents the flow around the blunt body and
one compares it with the inviscid flow Figs. 11 and 12.

It is completely clear that the boundary layer influences on
the flow parameters.

J Mach number contours. step=0.1
§ viscous flow. (T0x350)
fffff sonic line
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Fig. 11 Mach number contours for viscous flow
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Fig. 12 Mach number contours for inviscid flow

VIIl. CONCLUSION

In conclusion, we can confirm that the results obtained in
viscous flow depend strongly on the mesh size in numerical
calculation. The program converges, certainly, some is the size
of the meshes used, but the exact solution is obtained only if
the grid, especially near the wall, is refined much more. The
approximation by the infinite volumes method with the non-
stationary scheme gave good results. Our code is stable,
consistent and the solution converges to the exact solution
when the grid is very small. The exactitude of our code is
carried out by using a mesh size of (350x78) with a residue of
10™*.We saw that the mesh size influences much more on the
flow parameters around the blunt body and even on the wall
stress.
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