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Abstract—The present study investigates the effect of inclusions 

on the shape and size of crack tip plastic zones in engineering materials 
subjected to static loads by employing the element free Galerkin 
method (EFGM). The modeling of the discontinuities produced by 
cracks and inclusions becomes independent of the grid chosen for 
analysis. The standard displacement approximation is modified by 
adding additional enrichment functions, which introduce the effects of 
different discontinuities into the formulation. The level set method has 
been used to represent different discontinuities present in the domain. 
The effect of inclusions on the extent of crack tip plastic zones is 
investigated by solving some numerical problems by the EFGM. 
 

Keywords—EFGM, stress intensity factors, crack tip plastic 
zones, inclusions. 

I. INTRODUCTION 

IFFERENT types of inclusions are present in engineering 
components, which have a considerable effect on the crack 

tip plastic zones developed ahead of the crack tip. Therefore, it 
is very important to estimate the size and shape of crack tip 
plastic zones in the presence of inclusions. Several numerical 
methods have been used to model the discontinuities produced 
by cracks, inclusions, holes and contact surfaces, such as the 
finite element method [1], the extended finite element method 
(XFEM) [2], the boundary element method [3], [4] and mesh 
free methods [5]-[7]. The conventional finite element method 
has evolved as the most dominant numerical tool in 
computational mechanics, but it requires conformal meshing 
for modeling different discontinuities, which is very difficult 
and computationally more demanding. 

The EFGM handles different types of discontinuities more 
efficiently than the finite element method because of its 
meshless approach [8], [9]. The moving least square (MLS) 
shape functions are used for approximating the displacement 
field in EFGM. The boundary conditions cannot be applied 
directly in EFGM because the MLS shape functions do not 
satisfy the Kronecker delta property. In recent times, several 
numerical techniques have been developed for imposing the 
boundary conditions in EFGM, such as the Lagrange multiplier 
method [10], the penalty method [11] and coupled FE-EFG 
method [12]. Until now, EFGM has been successfully applied 
to solve the problems of fracture mechanics [13], [14], frictional 
contact analysis [15], metal forming analysis [16], large 
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deformation analysis [17], and three-dimensional crack growth 
[18], [19]. 

The present approach employs the EFGM for investigating 
the effect of inclusions on the shape and size of plastic zones 
developed ahead of the crack tips. The stress intensity factors 
have been obtained by employing the domain based interaction 
integral approach [19]. The level set method is used to keep 
track of different discontinuities present in the domain. Finally, 
several numerical studies are performed on an edge cracked 
plate containing inclusions of different sizes and at different 
positions. 

II. MATHEMATICAL FORMULATIONS 

A. Modeling of Cracks by EFGM 

The equilibrium equation of a loaded body can be written as 
. 0, where σ is the stress tensor and b represents the 

body force vector. For linear elastic materials, we have , 
where D represents the elastic constitutive matrix and ε is the 
strain tensor. The equilibrium equation can be written in the 
integral form as: 

 

Ω Ω Ω Ω 0                (1) 

 
where u represents the displacement field and t denotes the 
traction vector. The enriched displacement based 
approximation for modeling cracks can be written as: 
 

∑ ∑

∑ ∑               (2) 
 
where	 represents the displacement approximation,  are the 
standard degrees of freedom,  and  are the enriched degrees 
of freedom corresponding to split and tip nodes respectively and 

, ,  represent the standard, split and tip nodes respectively. 
	are the MLS shape functions used in EFGM. The Heaviside 

jump function ′ ′ produces the discontinuity in the 
displacement field across the crack surface. The crack tip 
enrichment functions 	can be written for linear elastic 
materials as [19]: 
 

√ 	, √ 	, √ 	, √   (3) 

Effect of Inclusions on the Shape and Size of Crack 
Tip Plastic Zones by Element Free Galerkin Method  

A. Jameel, G. A. Harmain, Y. Anand, J. H. Masoodi, F. A. Najar 

D



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

481

 

 

The substitution of the displacement approximation (2) into 
the equilibrium equation (1) yields the final numerical model 

,	where and  are the global stiffness 
matrix and the force vector, respectively, and 
	 		 	 		 	 . We have: 
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B. Modeling of Inclusions by EFGM 

The displacement field is continuous across the material 
interface of the inclusion, whereas a discontinuity is created in 
the strain fields. The enrichment function F(x) used for 
modeling the discontinuities produced by inclusions can be 
written as [19]: 
 

∑ | | ∑                     (12) 
 
where represents the level sets. The displacement 
approximation for modeling inclusions can be written as: 
 

∑ ∑      (13) 
 

Substitution of the displacement approximation (13) into the 
equilibrium equation yields the final system of discrete 
equations as ,	where 

 

; 	 ;	 	         (14) 

 
such that 
 

Ω ; , ,                      (15) 
 

	 Ω 	 Γ                          (16) 
 

	 Ω 	 Γ (17) 
 

, 0
0 ,

, ,

                                      (18) 

 

, 0
0 ,

, ,

     (19) 

C. Imposition of Boundary Conditions in EFGM 

The Lagrangian multiplier technique has been used for 
imposing the essential boundary conditions in EFGM. With the 
help of the Lagrangian multiplier technique, the equilibrium 
equation of a loaded body can be written as: 

 

Ω dΩ Ω dΩ d 	 	 0 (20) 
 
where  represents the prescribed displacement at the 
displacement boundary  and  denotes the Lagrangian 
multipliers. With these modifications, the final numerical 
model can be written as: 
 

0
                                 (21) 

 
such that 
 

                                  (22) 

 

                                   (23) 

 
In (22) and (23),  denotes the standard finite element shape 

functions whereas  represents the MLS shape functions. 

D. The Level Set Method (LSM) 

The LSM has been used to keep track of the discontinuities 
produced by inclusions and cracks. This method defines the 
discontinuities by a zero value of a function called the level set 
function [16], [19], whose value is positive on one side of the 
interface and negative on the other side. The LSM has been 
extensively used in the modeling of different types of 
discontinuities such as cracks and inclusions [20], [21]. 

E. Evaluation of Stress Intensity Factors 

The present study employs the domain based interaction 
integral approach [19] for evaluating the mixed mode stress 
intensity factors. The interaction integral can be written as: 

 

, ,      (24) 

 
where, ′ 	is a smooth weight function with a value of ′0′ along 
the contour and ′1′ at the crack tip. The state ′1′	represents the 
actual state of the cracked body, whereas as state ′2 	denotes the 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:11, No:3, 2017

482

 

 

auxiliary state. The mutual strain energy , 	can be obtained 
as: 
 

,       (25) 
 
where ′ ′ represents the strains and ′ ′ denotes the stresses. In 
terms of the stress intensity factors 	and	 ,	 the interaction 
integral can be expressed as: 
 

,
∗                                       (26) 

 

where ∗ 	for plane strain and	 ∗  for plane stress. 

The mode-I stress intensity factors are obtained by choosing 

	 1, 	 0, which gives 
, ∗

. Similarly, the 

mode-II stress intensity factors can be obtained by selecting 

0, 	 1, which	gives	
, ∗

. 

F. Estimation of Crack Tip Plastic Zones 

The elastic stress field equations produce a stress singularity 
at the crack tip i.e. the stresses at the tip of the crack become 
infinite. But in actual practice, this is not possible because all 
the materials have a yield stress above which plastic 
deformation occurs and stress singularity cannot exist. There is 
a region around the crack tip where plastic deformation occurs, 
and this portion is called the crack tip plastic zone. The 
estimation of the size of the plastic zone around the crack tip is 
very important in fracture mechanics. The exact shape of the 
crack tip plastic zone can be obtained by applying the 
appropriate yield criterion. By applying the von Mises yield 
criteria, the shape of the crack tip plastic zone can be obtained 
for plane stress and plane strain conditions as: 

 

1 2 1 ;           (27) 

	 ) 
 

1 	;	 	        (28) 

 
Similarly, the Tresca yield criterion gives: 
 

1 2 ; 	    (29) 

 

1 	; 	          (30) 

III. NUMERICAL RESULTS AND DISCUSSIONS 

Now we investigate the effect of inclusions on the size and 
shape of plastic zones developed ahead of the crack tip by 
employing the EFGM. The effect of size and position of 
inclusions on the extent of the crack tip plastic zones is 
presented in this section. An edge cracked plate containing 
different inclusions at various positions is considered for 
simulation. The state of plane strain is considered for analysis. 
The length of the rectangular plate is 100 mm, whereas its 

height is 200	 . The elastic moduli of the rectangular plate 
and the inclusions are 74	  and 20	 , respectively. The 
Poisson’s ratio has been taken as 0.3 for both. The plate is fixed 
at the bottom, whereas a static tensile load of 100	 /  is 
applied at the top edge, as shown in Fig. 1. 

 

 

Fig. 1 Rectangular plate with an edge crack and inclusion 
 

 
Fig. 2 Domain representation for different radii of inclusions in 

EFGM 

A. Size of Inclusion 

The effect of the size of inclusions on the extent of crack tip 
plastic zones in presented here. The domain representation of 
an edge cracked plate containing different inclusions is shown 
in Fig. 2. The EFGM models the discontinuities produced by 
cracks and inclusions independent of the nodal distribution. The 
variations of stress intensity factors with load for different 
inclusions are shown in Fig. 3. The crack tip plastic zones for 
different sizes of inclusions, obtained by applying the von 
Mises and the Tresca yield criteria under plane stress conditions 
are shown in Figs. 4 and 5, respectively. The crack tip plastic 
zones for plane strain conditions are shown in Figs. 6 and 7. As 
expected, the size of plane strain crack tip plastic zones is much 
smaller than those of plane stress plastic zones. 
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Fig. 3 Variation of stress intensity factors with load for different radii 

of inclusions 
 

 
Fig. 4 Crack tip plastic zones for different radii of inclusions for 

plane stress conditions by von Mises Theory 
 

 
Fig. 5 Crack tip plastic zones for different radii of inclusions for 

plane stress conditions by von Mises Theory 
 

 
Fig. 6 Crack tip plastic zones for different radii of inclusions for 

plane strain conditions by von Mises Theory 
 

 
Fig. 7 Crack tip plastic zones for different radii of inclusions for 

plane strain conditions by Tresca Theory 
 

 
Fig. 8 Domain representation for positions of inclusions by EFGM 
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Fig. 9 Variation of stress intensity factors with load for different 

positions of inclusions 
 

 
Fig. 10 Crack tip plastic zones for different positions of inclusions for 

plane stress conditions by von Mises Theory 

B. Position of Inclusion 

The effect of the position of inclusions on crack tip plastic 
zones is presented here. The domain representation of an edge 
cracked plate containing inclusions at different positions is 
shown in Fig. 8. The variations of stress intensity factors with 
load are shown in Fig. 9. The crack tip plastic zones obtained 
by applying the von Mises and the Tresca yield criteria under 
plane stress conditions are shown in Figs. 10 and 11, 
respectively. The crack tip plastic zones for plane strain 
conditions are shown in Figs. 12 and 13. As expected, the size 
of plane strain crack tip plastic zones is much smaller than those 
of plane stress plastic zones. 

 

 
Fig. 11 Crack tip plastic zones for different positions of inclusions for 

plane stress conditions by Tresca Theory 
 

 
Fig. 12 Crack tip plastic zones for different positions of inclusions for 

plane strain conditions by von Mises Theory 
 

 
Fig. 13 Crack tip plastic zones for different positions of inclusions for 

plane strain conditions by Tresca Theory 
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IV. CONCLUSIONS 

The EFGM has been used to investigate the effect of 
inclusions on the size and shape of shape of the plastic zones 
developed ahead of the crack tip. EFGM provides a better 
numerical tool for modeling the discontinuities produced by 
cracks and inclusions because the modeling of discontinuities 
is independent of the mesh. Thus, the problems of conformal 
meshing, mesh refinement and re-meshing do not arise in 
EFGM. The presence of weak inclusions increases the size of 
the crack tip plastic zones. The extent of the crack tip plastic 
zone increases with the increase in the size of inclusions. The 
position of inclusions also affects the size of the plastic zones. 
The extent of the plastic zones increases as the inclusion 
approaches the crack. 
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