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Abstract—In the recent years, functionally gradient materials 
(FGMs) have gained considerable attention in the high temperature 
environment applications. In this paper, free vibration of thin 
functionally graded cylindrical shell with hole composed of stainless 
steel and zirconia is studied. The mechanical properties vary 
smoothly and continuously from one surface to the other according to 
a volume fraction power-law distribution. The Influence of shell 
geometrical parameters, variations of volume fractions and boundary 
conditions on natural frequency is considered. The equations of 
motion are based on strains-displacement relations from Love’s shell 
theory and Rayleigh method. The results have been obtained for 
natural frequencies of cylindrical shell with holes for different shape, 
number and location in this paper. 

 
Keywords—functionally gradient material; Vibration; various 
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I. INTRODUCTION 

microscopically inhomogeneous advanced composites 
with mechanical properties that vary continuously 

 through a given dimension.  In recent years, FGMs, especially 
metal-ceramic composites, have generated a great deal of 
interest in the aerospace community. This is due to their 
potential flexibil ity for use in the structural applications where 
extreme thermal, corrosion resistance and high-quality 
mechanical properties are required. In addition, FGMs have 
been widely used in various fields including electronics, 
chemistry, optics, biomedicine, etc.  In regards to the material 
advances, because of the superior properties of advanced 
composite materials, such as specific strength and high 
specific stiffness, greater corrosion resistance, greater fatigue 
life due to material properties are graded in continuous 
direction.  However, laminated composite structures exhibit 
serious risk of the delamination bonds at their interface of 
material layers when they are open to high-temperature 
environment.  They are also easily affected by buckling, large 
amplitudes, and excessive stresses induced by thermal or 
combined thermo-mechanical loading.The design idea of 
FGMs was first introduced in 1984 by a group of Japanese 
materials scientists as a means of preparing thermal barrier 
materials [1]. FGMs are usually made by combining different 
materials using powder metallurgy methods [2]. Cylindrical 
shells also have vast range of applications in engineering and 
technology.  
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Ootao et al. have carried out studies on volume fraction 
optimization for minimizing thermal stresses in FGM hollow 
circular cylinder [3]. Kadoli et al. presented information for a 
better combination of metal and ceramic for FGM shell and 
also the magnitude of power-law index required for better 
thermal buckling characteristics [4]. Loy et al. investigated the 
free vibration of simply supported FGM cylindrical shells [5]. 
Pradhan et al. have studied vibration characteristics of a 
functionally graded cylindrical shell made up of stainless steel 
and zirconia for various boundary conditions. Effects of the 
boundary conditions and the volume fractions on the shell 
frequencies are analyzed [6]. Shah et al. have investigated 
vibration frequencies of cylindrical shells with the exponential 
volume fraction law [7]. Patel et al. analyzed free vibration of 
FGM elliptical cylindrical shells using Finite Element Method 
(FEM) based on higher- order Shear Deformation Theory 
(HSDT) [8]. Zhi-yuan and Hau-ning have studied the free 
vibration of FGM cylindrical shells with hole. Their analysis 
is based on Hamilton's principle [9]. Shahsiah and Eslami used 
Sanders nonlinear strain–displacement relation and first-order 
shell theory to derive the equilibrium and stability equations 
for a functionally graded cylindrical shell [10].In this paper, 
the free vibration of a functionally graded cylindrical shell 
with hole is considered. Further, effect of the geometrical 
parameters, number of holes and the boundary conditions on 
the frequency characteristics of the FGM shells are studied. 
The analysis of the functionally graded cylindrical shell is 
carried out using Love’s shell theory and solved by using 
Rayleigh method. The functionally gradient material 
considered is composed of stainless steel at the outer surface 
and zirconia at the inner surface. 

II.   MATERIAL MODELS OF FUNCTIONALLY GRADED 

MATERIALS 

The properties in a FGM shell change through the 
thickness, consequently. FGMs can potentially provide 
designers with tailored material response and exceptional 
performance in thermal environments and their material 
properties are temperature dependent. The material properties 

iP can be expressed as a function of temperature [11] 
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Where 2110 ,,, PPPP −  and 3P  are the coefficients of 

temperature ( )KelvinT  and are unique to the constituent 

materials. The material properties fgmP  of FGMs are 

controlled by volume fractions fV and individual material 

properties iP  of the constituent materials. 

 
(2) 

 
 Where 

 
(3) 

 
The volume fraction varies according to a simple power law 

function of the distance from middle surface of the cylindrical 
shell as follows, 

 
(4) 

 

Where h is the cylinder wall thickness, N  is the volume 
fraction index, and z  is the coordinate in the radial direction 

( )2/2/ hzh ≤≤− with origin at the mid-surface, as shown 

in Fig.1 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Geometry of a cylindrical shell 
. 

 
For a functionally gradient material with two constituent 

materials, the Young's moduli( )fgmE , Poisson’s ratio ( )fgmυ , 

and mass density ( )fgmρ  for the materials M1 (Zirconia) and 

M2 (Stainless steel), respectively are expressed as 
 

(5) 
 

(6) 
 

(7) 
 
The materials in outer 2/hz =  and inner 2/hz −=

surfaces of the cylindrical shell are stainless steel and zirconia, 
respectively. The material properties of FGM constituents, 

calculated at ( )KT 300= , are listed in Table 1.  

III.   STRAIN RELATIONS, FORCES AND MOMENTS RESULTANT 

A cylindrical shell with radiusR , lengthL , thickness h
and square hole with dimensions 2,1 dd  (Fig. 2) is 

considered for the present analysis. The deformations defined 

with reference to a coordinate system( )zx ,,θ . 

   
 
 
 
 
 
 
 
 
 

 
Fig. 2 Cylindrical shell with hole. 

 
For a thin cylindrical shell, plane stress condition is 

assumed and the constitutive relation is given by 
 

 (8) 
 

Where { }σ  and { }e  represent stress and strain vectors and  

[ ]Q  is the reduced stiffness matrix. The stress and strain 

vectors are defined as 
 

(9) 
 

 (10) 
 

Where xσ  and θσ  are the stresses in x and θ directions, 

and θσ x is the shear stress on the θx plane, xe and θe  are 

the strains in the x and θ directions, and θxe is the shear strain 

on the θx  plane. The reduced stiffness matrix is defined as 
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For isotropic materials the reduced stiffness ijQ  are defined 
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From Love’s shell theory [13], the components in the strain 

vector { }e  are defined as 

 
 

(13) 
 
 
 

Where 1e , 2e and γ  are the reference surface strains and 

1κ , 2κ and τ  are the surface curvatures. These surface 

strains and curvatures are taken from Love’s shell theory 
 

(14) 
 
 

(15) 
 
 

The forces and moments resultant expressed in terms of the 
stress components through the thickness 

 
(16) 

 

(17) 

 

Substituting Eqs. (8) and (13) into Eqs. (16) and (17) 
following constitutive equation is obtained 

 

(18) 

Where{ }N ,  { }ε  and [ ]S  are defined as 

(19) 

(20) 

 

 

 

 

(21) 

 

 
 

Where ijA , ijB and ijD are the extensional, coupling and 

bending stiffness, respectively, defined as 
 

(22) 
 

 

IV.  ENERGY RELATIONS 

The Rayleigh approach is employed to obtain the equations 
of motion for a cylindrical shell. The Lagrangian energy 
functional Π  for a shell is defined as the difference between 
the kinetic and strain energies and is given by 

 
(23) 

 

Where MAXT  and MAXU  are the maximum kinetic and strain 

energies, respectively. The general expression for the kinetic 
energy of a circular cylindrical shell is given by 

 

(24) 

 
 

Where Tρ is the mass density per unit length defined as 

 
(25) 

 

    Zirconia       Stainless steel  

Coefficient ( )3−Kgmρ  υ  ( )2−NmE  ( )3−Kgmρ  υ  ( )2−NmE  

P0 5700 0.2882 2.44E+11 8166 0.3262 2.01E+11 

P-1 0 0 0 0 0 0 

P1 0 1.13E-04 -1.37E-03 0 -2.00E-04 3.08E-04 

P2 0 0 1.21E-06 0 3.80E-07 -6.53E-07 

P3 0 0 -3.68E-10 0 0 0 

total 5700 0.298 1.68E+11 8166 0.3178 2.08E+11 
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MATERIAL PROPERTIES OF FGMS FROM REF. [12] 
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The strain energy functional is given by 
 

(26) 

V.   SOLUTION PROCEDURE 

Spatial displacement field for a freely vibrating cylindrical 
shell with different boundary conditions can be expressed as  

 
(27) 

 
(28) 

 
(29) 

 
Where A, B and C are constants denoting the amplitudes of 

the vibration in the axial u, circumferential v and radial w 
directions. n and ω  denote the number of circumferential 
waves in mode shape and angular frequency of vibration, 

respectively. Further, axial modal function ( )xφ   is written as 
 

(30)  

Where the values of numbers 1C , 2C , 3C  and 4C are 

associated with the edge conditions described at the shell ends, 
and η  is a real number corresponding to the eigenvalues of 

the beam function and is related with the axial wave number 
(m). Applying physical constraints on the axial displacements 
and their derivatives yields the following feasible boundary 

conditions specified at the ends, 0=x  and Lx = , 
 

(31) 
 

(32) 
 

 
(33) 

 
To derive the frequency equation, the Lagrange function is 

minimized with respect to the amplitude coefficients A, B, and 
C. This leads to a set of three homogeneous simultaneous 
equations 

 
(34) 

 
Performing the minimization as in Eq. (33) yields a set of 

equations that can be expressed as follows 
 
 
 

(35) 
 
 
 

The coefficients C11, C12 . . . C33 for a simply supported 
(SS-SS) boundary condition are listed in the Appendix. In 
order to solve its non-zero solution, the determinant of 

coefficient [ ]ijC  must be zero, the frequency equation can be 

obtained as 
 

(36) 
 

Where, iα  (i = 0, 1, 2, 3) are constants and depend on 

material properties (E, ρυ, ), geometrical parameters (R, L, h) 

and waves numbers (n, m). Eq. (36) is solved to yield three 
natural frequencies. The smallest of the three natural 
frequencies is interest to the present study. 

 

VI. RESULTS AND DISCUSSIONS 

Studies on vibration of FGM cylindrical shell with various 
boundary conditions are carried out. Natural Frequency for the 
FGM shell with and without hole for four boundary conditions 
is listed in Tables 2a and 2b. 

 
TABLE II A. 

VARIATION OF NATURAL FREQUENCIES (HZ) AGAINST CIRCUMFERENTIAL  
WAVE NUMBER FOR VARIOUS BOUNDARY CONDITIONS 

(m=1, h: R: L=1:20:60, N=1) 

 
 

TABLE II B. 
VARIATION OF NATURAL FREQUENCIES (HZ) AGAINST CIRCUMFERENTIAL 

WAVE NUMBER OF FGM CYLINDRICAL SHELL WITH HOLE FOR VARIOUS 

BOUNDARY CONDITIONS (m=1, h: R: L=1:20:60, N=1) 

  Boundary conditions 

n S-S C-C C-S C-F 
1 16.261357 22.302244 19.459267 8.3503894 
2 8.2096594 12.818866 10.561945 3.8512663 
3 6.8128365 9.3649302 7.9726433 5.222871 
4 10.082657 10.982692 10.374538 9.3827253 
5 15.519614 15.81508 15.523359 14.996968 
6 22.385786 22.479455 22.293768 21.900155 
7 30.546852 30.561834 30.416044 30.068017 
8 39.974545 39.954881 39.825048 39.495442 
9 50.661796 50.62248 50.502126 50.181013 

10 62.606663 62.556622 62.440996 62.124233 

 

 Boundary conditions 

n S-S C-C C-S C-F 

1 16.171196 22.299541 19.464628 8.3449674 

2 8.1702022 12.817861 10.569889 3.8507581 

3 6.8004106 9.3559708 7.9774615 5.2233481 
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5 15.509753 15.814426 15.524134 14.998232 

6 22.374845 22.479015 22.294655 21.901716 

7 30.535261 30.561846 30.417192 30.069811 

8 39.962697 39.953862 39.826385 39.497387 

9 50.649988 50.622511 50.503518 50.18302 

10 62.595081 62.556587 62.442309 62.126216 
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In this paper studies are presented on the vibration of 
clamped-clamped (C-C) functionally graded (FG) cylindrical 
 shells. In Fig. 3 illustrate fundamental frequency versus 

aperture ratio ( Rd /2=β ) of different FGM shells with 

middle square hole. It shows that the curve pattern is different 
for different shells. For slender shell (a), the shell with bigger 
hole has the less frequency; and the tubby shell (c) is reverse. 
For middle case (b), frequency is first reduced and increased 
then. 
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(c) 

Fig. 3 Fundamental frequency versus aperture ratio. (m=1, N=1) 
 

Fundamental frequency versus length–span ratio 

( )LR /=η  of FGM shells with middle square hole (

20:1: =Rh , 4.0=β ) for different circumferential wave 

number (n) is shown in Fig. 4.  Table 3 gives the value of ω  

and n of the lowest frequency (sameη ). For the shorter shell 

(larger η ) and the same m, ω is not always increasing with n. 
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Fig. 4 Fundamental frequency versus length–span ratio 

 
TABLE III 

HIGH-FREQUENCY COEFFICIENT WITH RATIO OF LENGHT AND SPAN OF MIDDLE 

SQUARE HOLE 

    Η 

m n 0.025 0.1 0.2 0.4 0.6 

1 1 3.84E-01 4.822721 12.87550 26.02425 33.50546 

 2 1.69E+00 2.523638 6.376213 15.90966 23.86286 

 3 4.773937 4.905615 5.971117 11.48642 18.13591 

 4 9.150680 9.215393 9.578131 12.12003 16.73229 
n of 

lowest 
frequency n=1 n=2 n=3 n=3 n=4 

 
In Fig. 5 is show fundamental frequency versus offsetting 

span ratio ( )Le /=γ of FGM shell with offset square hole. 

Frequency is first increased and reduced then. 
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Fig. 5 Fundamental frequency versus offsetting span ratio of hole 

(m=1, N=1) 
 

Fundamental frequency versus length–width ratio 

12 / ddp =φ  of FGM shells with middle rectangular hole is 

shown in Fig. 6.  Frequency is first reduced and increased 
then.  In eneral when rectangular hole being groove in axial 
length frequency is reduced and when will be grooved in 
circumferential length frequency is increased. 
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Fig. 6 Fundamental frequency versus length–width ratio of hole 

(m=1, N=1) 
 

Fundamental frequency coefficient of FGM shell with 
multi-holes is shown in Fig. 7. When the holes distributed 
along circumferential or axial directions, the frequency is 
increasing with axial hole number. However, when hole 
number is even and holes distributed along circumferential, 
then fundamental frequency is smaller than odd number holes. 
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Fig. 7 Fundamental frequency coefficient of the shell with 
 multi-holes (m=1, N=1) 

VII.  CONCLUSIONS 

In this study, the frequency analysis of thin functionally 
graded cylindrical shells with hole composed of stainless steel 
and zirconia has been presented. The equations of motion are 
based on Love’s shell theory and solved by Rayleigh method. 
The maximum coupling stiffness occurs at N equals to 1 and 
the results are obtained for this power- law index. The 
influence of radius–span ratio, aperture ratio, offsetting, 
length–width ratio of hole and the numbers of holes on the 
natural frequency of functionally graded cylindrical shells is 
given by the numerical analyses. Results for the various 
boundary conditions are available (different boundary of 

( )xφ in Eqs. (31) to (33)). 
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