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Abstract—In this paper, the effects of fiber types and elevated 

temperatures on compressive strength, modulus of rapture and the 
bond characteristics of fiber reinforced concretes (FRC) are 
presented. By using the three different types of fibers (steel fiber-SF, 
polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens 
were produced and exposed to elevated temperatures up to 800 ºC for 
1.5 hours. In addition, a plain concrete (without fiber) was produced 
and used as a control. Test results obtained showed that the steel fiber 
reinforced concrete (SFRC) had the highest compressive strength, 
modulus of rapture and bond stress values at room temperatures, the 
residual bond, flexural and compressive strengths of both FRC and 
plain concrete dropped sharply after exposure to high temperatures. 
The results also indicated that the reduction of bond, flexural and 
compressive strengths with increasing the exposed temperature was 
relatively less for SFRC than for plain, and FRC with PPF and PVA. 
 

Keywords—Bond stress, Compressive strength, Elevated 
temperatures, Fiber reinforced concrete, Modulus of rapture. 

I. INTRODUCTION 

ONCRETE is commonly considered to have good fire 
resistance but chemical and physical reactions occur at 

elevated temperatures [1]-[4]. As a consequence, exposure to 
high temperatures may cause considerable variations in the 
physical and mechanical properties with irreversible loss of 
strength and stiffness [1], [5]. This behavior is influenced by 
microcracking and spalling, generated by thermal 
incompatibility of the various components, the type of 
aggregate, heating rate, initial moisture content and 
permeability. For the cement matrix, thermal treatments to 
high temperatures cause a reduction in the amount of 
chemically bonded water in the hydrate phase. In particular, 
with an increase in temperature, gel-like hydration products 
are decomposed followed by a removal of hydroxide from the 
calcium hydroxide [1], [6]. Moreover, the concrete has some 
percentage of water. When they exposed to high temperatures, 
the water within the internal concrete structure passes to the 
gaseous state resulting in an increase of pressure in the 
concrete voids. If concrete offers resistance to the escape of 
the water vapor, high pressures will be developed in the 
internal concrete structure, which can lead to very brittle 
concrete failure. 

To avoid situation described above, several studies have 
been performed worldwide for the development of concrete 
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compositions of enhanced fire behaviors. Concretes with steel 
(SF), polypropylene (PPF) and polyvinyl alcohol (PVA) fibers 
showed good behaviors in fire in the controlling of the 
spalling [7]–[9]. In case of fire the PPF and PVA fibers melts 
around 170 and 230oC, respectively, and will create a network 
of micro-channels in the concrete which served as a way for 
the release of water vapor to the outside, and, consequently, 
will avoid the brittle type failure in which explosive and the 
concrete becomes separated from the reinforcing bars. Pullout 
test is frequently used to determine the bond between steel 
reinforcing bars and the surrounding concrete [10]–[12].  

The present study investigates the contribution of three 
types of fibers (steel fiber (SF), polypropylene fiber (PPF) and 
polyvinyl alcohol (PVA) fiber)) on the compressive and 
flexural strengths and bond stress between concrete and steel 
bar at high temperatures in the range of 200–800oC. The fibers 
were incorporated in concrete separately at a volumetric 
fraction of 1%. The bond and flexural strengths were 
evaluated using direct pullout and four point bending tests, 
respectively.  

II.  EXPERIMENTAL PROGRAM 

A. Materials 

An ordinary Type-I Portland cement (CEM I 42.5R) and a 
F-type fly ash (FA) were used as binder. In all mixes, 40% of 
the total binder content was FA. Natural sand and 10-mm 
maximum size gravel stone were used as fine and coarse 
aggregates, respectively.  

In order to improve the flowability of concrete, a 
polycarboxylic-ether type HRWR was used. Three types of 
fibers with distinct properties were selected. SF, PPF and PVA 
were added to the nonfibrous mixture at a concentration of 1% 
for the SF, PPF and PVA-reinforced concretes. The properties 
of the three types of fibers appear in Table I. Four concrete 
mixtures in total were produced and tested for compressive, 
flexural and bond stress properties; details of the mixtures are 
provided in Table II.  

 
TABLE I 

PROPERTIES OF THE FIBERS 

Property SF PPF PVA 

Nominal strength (MPa) 1000 760 1620 

Apparent strength (MPa) 690 550 1092 

Diameter (µm) 20 40 39 

Length (mm) 13 19 8 

Young's modulus (GPa) -- 4.11 42.8 

Elongation (%) -- >30 6.0 

Density (kg/m3) 7170 910 1300 
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IV. RESULTS AND DISCUSSIONS 

A. Compressive Strength 

Fig. 2 presents the compressive strength change and percent 
lose in compressive strength depend on the exposure 
temperatures, respectively. As shown in Fig. 2, compressive 
strength values of the concrete increased remarkable with 
inclusion of SF and PVA fiber while it decreased slightly with 
the PPF with respect to plain concrete. At room temperature, 
plain and fiber reinforced concretes produced with SF, PPF 
and PVA fiber had the compressive strength values of 50.4, 
65.5, 45.5 and 60.9 MPa, respectively.  

 

 

Fig. 2 Compressive strength depend on temperature level 

B. Flexural Strength 

Table III displays the test results of flexural strength 
(modulus of rupture-MOR) and ultimate mid-span deflection 
at the peak stress. The typical flexural stress-mid span 
deflection curves for plain and fiber reinforced concretes with 
SF, PPF, and PVA fiber are shown in Fig. 3. Each result in 
Table III is the average of at least three specimens. 

As seen in Fig. 3, in comparison to the plain (non-fibrous) 
concrete, PPF and PVA fiber reinforced concretes, SF 
reinforced concrete specimens demonstrated more deflection 
at the room temperature with steel fibers that bridged the 
cracks and failed in bond. The fibers were rarely broken. The 
SFRC mixture had the greatest MOR values at all temperature 
levels. 

 
TABLE III 

TEMPERATURE DEPENDENT MID-SPAN DEFLECTIONS AND FLEXURAL 

STRENGTHS 

Mix 
ID 

23 oC 200 oC 400 oC 
MSD 
mm 

FS 
MPa 

MSD 
mm 

FS 
MPa 

MSD 
mm 

FS MPa 

M1 0.62 6.0 0.32 5.3 0.49 4.2 
M2 1.06 8.0 0.88 7.3 0.51 5.8 
M3 0.49 4.5 0.49 4.3 0.30 3.7 
M4 0.31 6.0 0.34 5.5 0.23 4.4 

Mix  
ID 

600 oC 800 oC 
MSD  
mm 

FS 
MPa 

MS 
mm 

FS 
MPa 

M1 0.38 1.4 0.55 0.7 
M2 0.74 4.0 0.88 1.6 
M3 0.41 1.0 0.52 0.3 
M4 0.35 1.2 0.39 0.4 

MSD: Mid-span deflection; FS: Flexural strength 
 

In all mixtures, flexural strength values decreased gradually 
up to 400oC, however, beyond that temperature, a dramatic 
decrease was monitored in flexural strength irrespective of 
fiber type. On average, at room temperature, for SFRC, the 
flexural strength value was approximately 12.3% of its 
compressive strength; however, that was 9.9% for the PPF and 
PVA fiber reinforced concretes. Interestingly, at 400oC, 
flexural to compressive strength percent rate of PPF and PVA 
fiber reinforced concretes was around 10%, however, as well 
known that both of the PPA and PVA fiber are melting around 
the 170 and 230oC. Melting of the PPF and PVA fiber did not 
alter the flexural to compressive strength percent rate. When 
the temperatures elevated to the 600oC, the flexural strength 
values of the M1 to M4 to their compressive strength values 
decreased to 5.4, 7.6, 3.4 and 4.3%, respectively. On the other 
hand, at 800oC, flexural to compressive strength percent rate 
of PPA and PVA fiber reinforced concretes was only 2.2 and 
2.1%. These results indicated that contribution of all kinds of 
fibers to maintaining flexural strengths was limited in the 
temperature range of 400–800oC, especially at a temperature 
of 800oC, those fibers are not yet significant. Haddad et al. 
[12] mentioned that such behavior may be related to: (a) the 
partial loss in bond between fibers and surrounding matrix due 
to the difference in their expansion coefficients at high 
temperatures and (b) the higher sensitivity of fibrous concrete 
mixtures to high temperatures as compared to plain concrete, 
due to the greater strength of the fibrous concrete mixture at 
room temperature.  

As seen in both Table III and Fig. 4, there was no general 
ascending and descending trend in the peak stress mid-span 
deflection values of the all mixtures, but, the mid-span 
deflection values of the SFRC mixture was higher than those 
the all other concretes at all temperature levels. The increase 
in temperature level from room temperature to 800oC affect 
the maximum flexural strength values dramatically while peak 
stress mid-span deflection values of the mixtures did not 
change remarkably. The slope of the load-deflection curve 
represents the stiffness of the beams. It can be easily noted 
from Fig. 4 that the slope decreases with increasing 
temperature level, thus indicating a reduction in the stiffness 
of the plain and fiber reinforced concretes irrespective of fiber 
type.  

C. Bond Characteristics 

As bond characteristics, ultimate pullout load, bond strength 
and average bar slip distance values were presented in both 
Table IV and Fig. 4. During the pullout tests, regardless of the 
fiber type and exposed temperature level, all the specimens 
had failure due to splitting of concrete and no pullout failure 
of bars was observed.  

Typical splitting failure of the specimens is shown in Fig. 5. 
In this study, performance and bond characteristic variation of 
mixtures compared according to the exposed temperatures and 
fiber types. If the measured bond strengths are to be applied 
for design purposes, as mentioned by previous researchers, the 
characteristics of the pullout test need to be taken into 
consideration. As mentioned in the test method-pullout test 
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section, in this study, bond strength was calculated taking into 
account the maximum pullout load sustained during the test. 

 

Fig. 3 Flexural strength mid-span deflection curves of mixtures 
 

(a)  
 

(b)  

Fig. 4 Variation of (a) ultimate load (b) bond strength 
 

TABLE IV 
ULTIMATE LOADS, BOND STRENGTHS AND BAR SLIP DISTANCES OF 

MIXTURES 

Mix no 

Ultimate load (KN) 

Temperature 

23 200 400 600 800 

M1 32.5 27.5 25.5 22.5 13.0 

M2 95.5 81.0 78.0 62.5 41.5 

M3 63.0 49.5 33.0 31.0 11.5 

M4 69.0 56.0 40.0 26.5 12.5 

Mix no 

Bond strength (MPa) 

Temperature 

23 200 400 600 800 

M1 3.9±0.6 3.3±0.1 3.1±1.1 2.7±0.9 1.6±0.0 

M2 11.6±3.3 9.8±0.6 9.5±0.7 7.6±0.8 5.0±1.6 

M3 7.6±0.4 6.0±0.5 4.0±0.0 3.8±1.9 1.4±0.9 

M4 8.4±0.0 6.8±1.7 4.9±0.0 3.2±0.4 1.5±0.4 

Mix no 
Slip (mm) 

Temperature 
23 200 400 600 800 

M1 72.5±3.5 75.5±6.4 9.0±1.4 3.5±2.1 9.5±3.5 

M2 9.5±5.7 15.0±1.4 11.0±0.0 16.5±2.1 13.0±2.8 

M3 1.5±0.7 4.0±5.7 6.0±8.5 37.5±41.7 56.0±39.6 

M4 21.5±6.4 17.0±4.2 34.5±33.2 50.0±21.2 6.0±2.8 
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(a) M1 at 400oC 

 
(b) M2 at 400oC 

 
(c) M3 at 400oC 

 
(d) M4 at 400oC 

Fig. 5 Typical splitting failures of pullout specimens which were 
exposed to 400 oC 

 
From Table IV and Figs. 4 (a) and (b) it can be seen that SF 

reinforced concrete specimens had the quite higher ultimate 
pullout load and bond strength values than those of the plain 
and PPF and PVA fiber reinforced concretes. This situation is 
valid for the all temperature levels. Increase in temperature 
level from room temperature to 800oC, decreased the both of 
ultimate pullout load and bond strength values significantly. 
This behavior is attributed to the increase in intensity, width, 
and extension of cracks with temperature that led to a 
reduction in concrete confinement of the reinforcing steel [12]. 
The effect of PPF and PVA fiber on the ultimate pullout load 
and bond strength of the concretes according to the plain 
concrete was more evident up to 400 oC and it was two times 
larger than that of the plain concrete, however, even after that 
temperature there were no considerable difference among 
them. Moreover, at 800 oC, plain concrete had slightly higher 
ultimate pullout and bond strength values.  

Table IV also presents the bar slip distance of the plain and 
FRC mixtures. Bar slip distance values of mixtures showed no 
specific trend in its behavior depend on the exposed 
temperature and with/without inclusion of the fiber. The 
implication of the bar slip distance is that it gives an indication 
of the ultimate slip that can be allowed in practice prior to 
bond failure represented by sudden splitting of concrete along 
the steel bar [12].  
  

V. CONCLUSION 

Based on this study, the following conclusions are drawn: 
 Explosive spalling was not observed in any plain or fiber 

reinforced concretes. 
 At room temperature, inclusion of the steel and polyvinyl 

alcohol based fibers increased the compressive strength 
according to the plain concrete while a slight decrease 
was observed with the inclusion of polypropylene fiber. 
Exposure to the specimens up to 400oC decreased the 
compressive strength gradually, however, after that a 
dramatic decrease was observed at the plain and PPF and 
PVA fiber included FRC. Lose in compressive strength 
for those concretes increased around to 80%. 

 Inclusion of PVA and especially PPF exhibit significantly 
less flexural strength values than that of the plain 
concretes. However, a remarkable increase in flexural 

strength and mid-span deflection values was monitored 
with the addition of steel fiber. As in compressive 
strength, flexural strength of the concretes decreased with 
the increase in exposed temperatures. After exposure to 
600oC, the flexural strength values of the plain and FRC 
with PPF and PVA fiber were round 1 MPa.  

 Loss of material stiffness took place with the increase in 
exposure temperature and it is more evident after 
exposure to peak temperatures of 400°C. 

 Bond strength values of the concretes increased 
drastically with the addition of the fibers, however, after 
exposed to the 400oC, bond strength values of the plain 
and FRC with PPF and PVA fiber decreased significantly 
and bond values of these concretes are very close to each 
other.  
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