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Abstract—This study presented the investigation of the influence 

of the tool holder interface stiffness on the dynamic characteristics of a 
spindle tool system. The interface stiffness was produced by drawbar 
force on the tool holder, which tends to affect the spindle dynamics. In 
order to assess the influence of interface stiffness on the vibration 
characteristic of spindle unit, we first created a three dimensional finite 
element model of a high speed spindle system integrated with tool 
holder. The key point for the creation of FEM model is the modeling of 
the rolling interface within the angular contact bearings and the tool 
holder interface. The former can be simulated by a introducing a series 
of spring elements between inner and outer rings. The contact stiffness 
was calculated according to Hertz contact theory and the preload 
applied on the bearings. The interface stiffness of the tool holder was 
identified through the experimental measurement and finite element 
modal analysis. Current results show that the dynamic stiffness was 
greatly influenced by the tool holder system. In addition, variations of 
modal damping, static stiffness and dynamic stiffness of the spindle 
tool system were greatly determined by the interface stiffness of the 
tool holder which was in turn dependent on the draw bar force applied 
on the tool holder. Overall, this study demonstrates that identification 
of the interface characteristics of spindle tool holder is of very 
importance for the refinement of the spindle tooling system to achieve 
the optimum machining performance. 
 

Keywords—Dynamic stiffness, Drawbar force, Interface stiffness, 
Spindle-tool holder. 

I. INTRODUCTION 
ECENTLY there has been rapid increase in need for high 
speed, high precision, and high efficiency machining. This 

also prompts the development of high speed spindle tool system 
to be applied on machine tool with high speed machining 
ability [1], [2]. In practice, the machining performance is 
determined by the interaction of the dynamic characteristics of 
the machine-tool structure and the dynamics of the cutting 
process [3], [4]. Also the machining stability is greatly 
dominated by the dynamic characteristics of the spindle tool 
system. Therefore, understanding the factors affecting dynamic 
behavior of a spindle tooling system and the affecting factors is 
a perquisite in dominating the final machining performance of 
machine tool system [5], [6]. The influencing factors consist of 
bearing preload, interface property between spindle and tool 
holder associated with drawing bar system. However, the more 
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important thing is the realizations on these effects caused by 
these factors should be established on the machining system 
constructed by the machining frame structure and spindle 
tooling system.  

In essential, the dynamic characteristics at the tip of the tool 
are affected strongly by the characteristics of the connection 
between the tool and the tool holder, and between the tool and 
the spindle [7]. Considerable efforts have been made recently to 
the measurement and computation of the interfacial 
characteristics of various tool holder-spindle interfaces 
[7]-[11]. Levina [7] studied the effects of angular deformations 
in the spindle–tool holder interface on deflection at the tool tip. 
Generally, the too holder is fixed inspindle nose through the 
drawbar mechanism, which generated a contact bonding status 
determined by the drawbar force. Levina [10] investigated the 
effect of drawbar force and taper tolerance on the static 
stiffness of the tool holder–spindle connection. Smith et al. [12] 
also showed that increased drawbar force increases the static 
stiffness of the tool holder–spindle interface, at the expense of 
reduced damping. 

On the other hand, for the design of a milling tooling system 
with better performance and efficiency, the dynamic behavior 
of a spindle tool unit was concerned and should be adjusted by 
means of the modeling technology on the assemblage model of 
a spindle-tool holder-tool unit. Basically, this requires a fully 
modeling of the coupling interface between the cutter and the 
tool holder and between the tool holder and spindle, apart from 
the bearing groups. In general, the required tool holder–spindle 
machine dynamics can be obtained by modal testing, but time- 
and cost-consuming associated with this complicated task 
should be overcome for a large number of tool–holder 
combinations in typical production facilities. A number of 
significant developments have been completed to improve the 
tool and holder modeling techniques and understand the 
connection stiffness and damping behavior [13]-[18]. For 
example, Schmitz and Donaldson [13], [14] implemented the 
receptance coupling theory of structural dynamics by using 
experimentally obtained spindle–holder dynamics and 
analytically obtained tool dynamics for the prediction of the 
FRF. Ertürk et al. [17], [18] analyzed the effects of bearing 
supports and spindle-holder and tool-holder interfaces on the 
FRF, and suggested a fast and accurate approach for the 
identification of connection parameters.  

Although the effects of tool holder interface properties on the 
dynamic behavior are demonstrated previously in the literatures 
[13]-[15], quantifications of the effects with the adjustment of 
the drawbar force on the modal parameters associated with 
spindle frequency responses is worthy of further study. This 
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stiffness was determined by the drawing force applied on tool 
holder for fixation. To investigate the influence, we further 
conducted the vibration tests on the spindle tool holder system 
with different drawbar force. The drawbar force was set as 160, 
210, 260, 340 and 380 Kg, respectively. For each case of 
spindle–tool holder unit, the dynamic frequency response 
functions measured at the tool tip were measured following the 
previous procedure.  

A.  Experimental Evaluations  
Fig. 6 presents the dynamic frequency response functions 

measured for spindle-tool holder with different drawbar forces. 
As shown in the figure, the spindles behavior similar dynamic 
responses, in which the compliance at first modal is greatly 
affected by the drawbar force on tool holder, but modal 
frequency remains unchanged. The second mode was found to 
occur at different frequency that is affected to change with the 
drawbar force on tool holder. 

For each spindle samples, the modal characteristics 
associated with the first two modes including the modal 
frequency, modal damping and compliances are extracted. The 
relationship between the drawbar force and the modal 
parameters are presented in Fig. 7. As shown in Fig. 7 (a), the 
second modal frequency is positively affected by the drawbar 
force (R2=0.6597). This implies that the interface stiffness 
between tool holder and spindle nodes increases with the 
increasing drawbar force, about by 6% with respect to 
increment of the drawbar force by 52%. As shown in Fig. 7 (b), 
it is noticed that the first modal damping ratio is much less than 
the second mode and is slightly affected by the drawbar force. 
The second modal damping ratio is negatively related to the 
drawbar force (R2=0.7818). With the increasing drawbar force 
from 160 to 380Kg, the damping ratio associated with the 
second mode decreases from 5.64 to 4.68.  

As shown in Fig. 7 (c) the drawbar force has a negatively 
influence on the dynamic stiffness of the first and second, 
(R2=0.5104, 0.7951), with variations of23% and 17% with 
respect to increment of the drawbar force by 52%. The negative 
effect of the drawbar force on the dynamic stiffness of spindle 
tool holder system can be ascribed to the fact that the decrement 
of damping ratio is much more than that increment of the 
interface stiffness caused by the increasing drawbar force. In 
other words, increasing the drawbar force on the tool holder 
may not enhance the dynamic stiffness of the spindle tool unit. 
Since the second mode is governed by the interface properties 
between the tool holder and spindle nose, the effect of the 
drawbar force on the second modal damping ratio seem to be 
more important than on the first mode. This experimental 
investigation also implies that the variation of damping ratio 
with the varying drawbar force dominate the dynamic behavior 
of the spindle tool system. 

B. Finite Element Modeling  
The effect of drawbar force on the dynamic characteristics of 

spindle unit has been investigated the through the vibration 
tests. Also, the dynamic behavior of a spindle- tool holder unit 
was also successfully simulated, in which the modeling of the 

ball bearings and the interface characteristics between the tool 
holder and spindle nose is of importance. While, the tool holder 
interface characteristics are identified through the validation 
with the experimental measured dynamic characteristics of 
physical spindle. Generally, such interface characteristics is 
greatly determined by the force applied on the tool holder. In 
this section, the effect of the drawbar force associated with its 
variation can also be investigated through the introduction of 
the tool holder interface characteristics into the analysis model.  

 

 
Fig. 6 The dynamic frequency response functions measured for 

spindle-tool holder with different drawbar forces 
 

 

 

 
Fig. 7 Variations of the modal parameters of the spindle-tool holder 
system with different drawbar forces, (a) modal frequency (b) modal 

damping ratio (c) dynamic stiffness 
 
In analysis, each spindle tool holder system with different 

drawbar force was modeled using the same finite element 
model established in Section III, but the interface 
characteristics were estimated by adequately adjusting the 
interface stiffness based on the values for standard drawbar 
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