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Effect of Buoyancy Ratio on Non-Darcy Mixed
Convection in a Vertical Channel: A Thermal

Non-equilibrium Approach
Manish K. Khandelwal∗, P. Bera, and A. Chakrabarti,

Abstract—This article presents a numerical study of the double-
diffusive mixed convection in a vertical channel filled with porous
medium by using non-equilibrium model. The flow is assumed
fully developed, uni-directional and steady state. The controlling
parameters are thermal Rayleigh number (RaT ), Darcy number (Da),
Forchheimer number (F), buoyancy ratio (N), inter phase heat trans-
fer coefficient (H), and porosity scaled thermal conductivity ratio
(γ). The Brinkman-extended non-Darcy model is considered. The
governing equations are solved by spectral collocation method. The
main emphasize is given on flow profiles as well as heat and solute
transfer rates, when two diffusive components in terms of buoyancy
ratio are in favor (against) of each other and solid matrix and fluid
are thermally non-equilibrium. The results show that, for aiding flow
(RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a
certain value of H, beyond that decreases smoothly and converges
to a constant, whereas in case of opposing flow (RaT = -1000),
the result is same for N = 0 and 1. The variation of Nuf in (N,
Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases
(aiding and opposing) the flow destabilize on increasing N by inviting
point of inflection or flow separation on the velocity profile. Overall,
the buoyancy force have significant impact on the non-Darcy mixed
convection under LTNE conditions.

Keywords—buoyancy ratio, mixed convection, non-Darcy model,
thermal non-equilibrium

I. INTRODUCTION

THE study of double diffusive mixed convection in fluid
saturated porous media has substantially increased during

recent years because of its wide range of application, from the
solidification of binary mixtures to the migration of solutes in
water saturated soils. The other examples include geophysical
system, hydrothermal vents and hot springs etc. A deep
monograph to the various aspects of convection in porous
medium is presented by Nield and Bejan [1] and Vafai [2].
The most of the former works on convective heat transfer
in porous medium were under the assumption that the solid
and fluid phases are in local thermal equilibrium (LTE) state.
Generally, it is not true in some applications such as media in
which the temperatures of solid and fluid phases are no longer
identical [3]. In this situations the temperature of fluid and
solid phases are accounted separately, therefore two energy
equations emerge to represent each phase. This situation is
known as local thermal non-equilibrium (LTNE) state.
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Recently, Khandelwal et al. [4] have studied the non-Darcy
fully developed mixed convection in a vertical channel filled
with porous media under the thermal non-equilibrium model.
They have found that inter phase heat transfer coefficient (H)
smooths out the flow profile by removing point of inflection
as well as flow separation on it, i.e. it stabilizes the basic
state. However, effect of thermal conductivity ratio (γ) is
reverse. It is then natural to study how will the flow dynamics
modulled on the consideration of solute transport in [4].
Based on this, in present study a fully developed double
diffusive mixed convection along with LTNE assumption in
a vertical porous channel is investigated by using non-Darcy-
Brinkman-Forchheimer. A brief literature review on thermal
convection has presented in [4], under the assumption of LTE
and LTNE. Under the references of this, we have presented
only recent articles on double-diffusive mixed convection in
vertical geometry.

Bera et al. [5] have investigated stability properties on
double-diffusive mixed convection in a vertical channel filled
with a porous medium. They have found in two dimensional
flow all compound within the hot vent fluid and the pore-
water in the sediment undergo exchange, and the concept of
unidirectional hot vent flows breaks down. An analytical and
numerical study of mixed convection heat and mass transfer
of a binary fluid in a vertical channel is examined by Alloui et
al. [6]. They have discussed the possible existence of reverse
flow in the channel. Double-diffusive mixed convection in a
vertical pipe under local thermal non-equilibrium state has
been investigated by Bera et al.[7]. They have found that, a
kind of distortion appears on velocity profile, when buoyancy
forces are opposing to each other. They have also shown that,
for N < 0.7, there exists a minimum value of H such that the
kind of distortion dies out i.e. velocity profile becomes free
from flow separation.

II. MATHEMATICAL MODEL

A fully developed double-diffusive mixed convective flow
in a vertical channel filled with porous medium is consid-
ered. The flow caused by an external pressure gradient and
two buoyancy forces (due to temperature and concentration
differences). The wall temperature and concentration are as-
sumed to vary linearly with x as Tw = T0 + C1x and
Cw = C0 + C2x, where C1 and C2 are constant and T0

and C0 are the upstream reference temperature concentration
respectively (see Fig. 1). The temperature of fluid and solid
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phases are defined by different energy equation i.e a local
thermal non-equilibrium model is adopted. Density is kept
constant except in the buoyancy term in the momentum
equation, which is satisfied by the Boussinesq approximation.
The governing equations are written under assumption of non-
Darcy-Brinkman-Forchheimer extended model [1].

Using the non-dimensional quantities x∗ = x/L, y∗ = y/L,
z∗ = z/L, P ∗ = PL2/ρf ν̃2, t∗ = tν̃Pg/L2, V ∗ = V L/ν̃Pg ,
θf = (Tf − Tw)/C1LPr∗Pg , θs = (Ts − Tw)/C1LPr∗Pg ,
and Φ = (C−Cw)/C2LScPg , the non-dimensional governing
equations are given by

∇ ·V∗ = 0 (1)

Pg

ε

∂V ∗

∂t∗
+

Pg

ε2
(V ∗.∇)V ∗ =

−
1

Pg

∇P ∗ − F|V ∗|V ∗ + Ra∗T (θf + NΦ)−→ex +∇2V ∗ −
1

Da∗
V ∗
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in which Pg = − dP∗

dx
, Da∗ = μ̃K

μf L2 , F =
CF LPg

K1/2
,

Ra∗T = gβT C1L4

ν̃kf

, Ra∗S = gβSC2L4

ν̃D
, Pr∗ = ν̃

αf
, Sc = ν̃

D
,

N = RaS

RaT
H = hL2

εkf
, γ =

εkf

(1−ε)ks
, Γ =

αf

αs
and −→ex

are pressure gradient, modified Darcy number, Forchheimer
number, modified thermal Rayleigh number, modified solutal
Rayleigh number, modified Prandtl number, Schmit number,
buoyancy ratio inter-phase heat transfer coefficient, porosity-
scaled thermal conductivity ratio, diffusivity ratio and unit
vector along vertical direction, respectively. The equation of
motion are to be completed by the boundary conditions:
V ∗ = 0, θf = θs = Φ = 0 at y = ±1.

Since the objective of the paper is to understand the flow
dynamics as well as heat transfer mechanism of the steady,
unidirectional fully developed flow, therefore, the above gov-
erning differential equations are reduced into the following
set of coupled ordinary differential equations. (asterisks ne-
glected).

1 −
1

Da
Uf − F|Uf |Uf + RaT (Θf + NΦ0) +

d2Uf

dy2
= 0 (6)

d2Θf

dy2
−

Uf

ε
+ H(Θs − Θf ) = 0 (7)

d2Θs

dy2
+ γH(Θf − Θs) = 0 (8)

d2Φ0

dy2
= Uf (9)

with boundary conditions Uf = Θf = Θs = Φ0 at y = ±1,
where Uf , Θf , Θs, and Φ0 are the base velocity, base fluid
temperature, base solid temperature and base concentration
respectively. Above basic state equations (6)-(9) along with
boundary condition are solved numerically by using the spec-
tral Chebyshev collocation method. The details of this method
and implementation can be found in ([8], [4]).
The rates of heat as well as mass transfer are determined in

Fig. 1. Schematic diagram of the physical problem and coordinate system.

terms of bulk temperature and concentration. The local Nusselt
numbers for fluid (Nuf ), as well as solid (Nus) and Sherwood
(Sh) are defined as:

Nuf = 2L

∂Tf

∂y
|y=L(

Tw −

∫
L

−L
Uf Tf dy∫

L

−L
Uf dy

) (10)

Nus = 2L

∂Ts

∂y
|y=L(

Tw −

∫
L

−L
Uf Tsdy∫

L

−L
Uf dy

) (11)

Sh = 2L

∂Φ
∂y

|y=L(
Tw −

∫
L

−L
Uf Φdy∫ L

−L
Uf dy

) (12)

These integrals are evaluated by Gauss-Chebyshev quadratures
formula.
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III. RESULTS AND DISCUSSION

In this section, the heat and solute transfer and fluid flow are
governed by thermal Rayleigh number (RaT ), Darcy number
(Da), Forchhiemer number (F), buoyancy ratio (N), inter
phase heat transfer coefficient (H), porosity scaled thermal
conductivity ratio (γ) and porosity ( ε). Here, our objective
is to investigate the effect of buoyancy ratio (N) and thermal
non-equilibrium parameter (H) on the heat and mass transfer
and fluid flow profiles. Based on this, we have fixed other
parameters Da, F, γ, and ε, at 10−3, 100, 0.01 and 0.97
respectively. An important note must be made regarding to
buoyancy ratio (N) in the present study. Here in the entire
study buoyancy ratio has been considered as a positive value.
From our base equation, the positive (Negative) value of RaT

shows that two buoyancy forces are in favor (against) of each
other i.e. the thermal and solutal forces make aiding (opposing)
contribution of each other. Therefore, two value of RaT is
fixed at 1000 and -1000. The range of H and N is considered
[10−1,103] and [0, 100] respectively. Before discussing the
impact of different above parameters on mixed convection, a
code validation is given. The numerical code is a modification
of the code generated by Khandelwal et al. [4] for the present
problem. We have compared our results with published results
of Chen et al. [9] . He has obtained the Nusselt number for
RaT = 1000 and Da = 10−2 and F = 0, in single diffusive case.
Its corresponding value is 8.45. The same is also calculated
for N = 0, H = 0 and given by 8.44. It can be seen from the
comparison with the present work is in a good agreement with
previous work.

In case of aiding (two buoyancy forces are in favor, RaT

= 1000) the variation of the Nusselt number (fluid (Nuf ) and
solid (Nus)) as well as Sherwood number (Sh) as function of H
for different values 0, 1, 10 and 100 of N are plotted in Fig.2
(a)-(c). Following observations can be pointed out from the
above figure. First, for a given value of N the heat transfer rate
of fluid (Nuf ) increases significantly in a small interval of H
(starting from zero), and it attends maximum value at a certain
value of H, and denoted by Ho. Beyond Ho, the Nuf decreases
smoothly and converge to a constant value (See Fig.2(a)).
Second, increasing of buoyancy ratio results increasing of
Nuf . Third, the solid heat transfer rate Nus shows constant
behavior in [0,H0] for N = 0 and 1, beyond that it increases.
However, for N = 10 and 100 Nus increases significantly and
converge to a constant (See Fig.2(b)). Forth, the variation of
the Sherwood number (Sh) decreases on increasing H and
converge to constant for a given value of N. The Sh in (H,
Sh)-plane is almost constant for H>50.

A qualitative explanation for the physics involved behind
above phenomena can be explained by the definition of H and
γ. On fixing the other parameters, increasing of H , increases
the volumetric inter phase heat transfer coefficient. Therefore,
in the beginning it is expected that heat transfer of fluid as well
as solid will be enhanced on increasing H. As H is increased
beyond a threshold value (Ho), the heat transfer in between
fluid to solid will be reduced. At the same time, the heat
transfer characteristic in solid is expected to be reverse beyond

(
(a)

(
(b)

(
(c)

H

S
h

10-1 100 101 102 103 1045

5.5

6

6.5

7
N=0

H

S
h

10-1 100 101 102 103 1045

6

7

8
N=1

H

S
h

10-1 100 101 102 103 10410

10.5

11

11.5

12
N=10

H

S
h

10-1 100 101 102 103 10426

26.5
N=100

H

N
u f

10-1 100 101 102 103 1040

20

40

60

80

N=0
N=1
N=10
N=100

H

N
u s

10-1 100 101 102 103 1040

10

20

30

N=0
N=1
N=10
N=100

Fig. 2. Representation of Nu/Sh as a function of H for different value of N
at RaT = 1000, Da = 10−3, F = 100 and γ = 0.01.

the threshold value of H. For higher values of H both fluid as
well as solid will approach to equilibrium state i.e both media
will not exchange the heat. Therefore a smooth decay/increase
of Nuf /Nus is also expected beyond Ho. γ = 0.01 and porosity
0.97 imply conductivity of solid is 3300 times conductivity of
fluid, which implies that diffusivity of solute is less compare
to diffusivity of fluid. Consequently of it, for N = 10, 100
solid heat transfer rate increases on increasing H, and mass
transfer rate due to LTNE does not much more effective for
given N.

Similarly, for opposing flow (RaT = -1000), the variation
of the Nusselt number (Nuf and Nus) as well as Sherwood
number (Sh) as a function of H for different values 0, 1, 10
and 100 of N is plotted in Fig. 3(a)-(c). As can be observed
from the above figures, for N = 0, 1 the Nuf is same as RaT =
1000, whereas it is reverse for N = 10 and 100. The solid heat
transfer rate and for N = 0, 1 and 10 increases on increasing
H and converge to a constant value. However for N = 100 it is
reverse and converge to constant value. The variation of Sh in
(H, Sh)-plane is similar to variation of Nus in (H, Nus)-plane,
for N = 0 and 1, but for N = 100 it is reverse. In case of N =
10, the magnitude of Sh decreases on increasing H from 0 to
H0, and beyond it the same starts to increase as a function of
H. It is also pointed that the magnitude of Sh does not much
more effective on increasing H (see Fig.3(b) and 3(c)).
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Fig. 3. Representation of Nu/Sh as a function of H for different value of N
at RaT = -1000, Da = 10−3, F = 100 and γ = 0.01.

To understand the the physics behind this anomaly, variation
of velocity as a function of N is plotted in Fig. 4. For N = 0 and
1, the velocity profile is free from point of inflection. However,
for N = 10 and 100 the profile contains the point of inflection
i.e the profiles possess back flow tendency. In case of N = 100,
variation of velocity profile shows a sinusoidal pattern and the
number of zeroes increase. Similarly the temperature as well
as concentration profile contains point of inflection (Fig. is not
shown).

As can be seen that from the above figure, the velocity
profile possesses a kind of distortion [4], [8]. The existence
of the flow separation as well as inflection point on velocity
profile shows the instability of the flow [10], [11]. Therefore,
in this situation, assuming flow (fully developed and unidi-
rectional) is not realistic. Hence, above unfavorable results (in
Nusselt and Shearwood number) may be the consequence of it.
Furthermore, the back flow and number of zeroes increase on
increasing N. As a result, it can be concluded that N destabilize
the flow.

To more explanation in this direction, a study of the varia-
tion of heat transfer rate at the wall, Nuf , in (N, Nuf )-plane
is required. It has been observed that in case of aiding flow
(RaT = 1000), Nuf varies smoothly as an increasing function
of N (see Fig. 5(a)), whereas, in case of opposing flow (RaT

= -1000) the variation of Nuf is similar to a sinusoidal form
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Fig. 4. Velocity profiles of flow for different value of N at RaT = -1000,
Da = 10−3, F = 100, γ = 0.01, and H = 30.

(see Fig. 5(b)). Similarly type observation is also obtained for
Nus and Sh (figure is not shown) . Therefore, the domain of
N can be divided into finite number of sub domain, such that,
in each sub domain Nuf attains a maximum and a minimum
value. The length of the sub interval increases on increasing
N.
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Fig. 5. Variation of the Nusselt number (Nuf ) as a function of N at Da =
10−3 and F = 100, H = 100 and γ = 0.01: (a) RaT = 1000 and (b) RaT =
-1000 .

Apart from this, for N ≤ 0.1, there exist a minimum
value of H such that velocity profile becomes free from
point of inflection, when RaT = 1000. However, for N ≥
0.1 the velocity profile always contains point of inflection
for any value of H. This shows that solutal buoyancy force
is dominated over thermal buoyancy force, i.e. N destabilizes
the flow.(see Fig.6 (a))

Similarly, for opposing flow (RaT = -1000), it is found that,
the flow separation as well as point of inflection does not
appear for N ≤ 1.6 and H = 0, or the flow separation as
well as point of inflection appears for N> 1.6 and H = 0. In
this situation, for N ≤ 2.8, there exist a minimum value of
H such that the velocity profile becomes free from inflection
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point as well as flow separation. But for N ≥ 2.9, the velocity
profile contains flow separation for any value of H. At N = 7.2
velocity profile is changed as upside down (see Fig.6 (b)). This
type of sudden change shows that, in this situation assuming
flow is fully developed and unidirectional is not realistic.
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Fig. 6. Velocity profiles of flow for different value of N and H at Da =
10−3, F = 100 and γ = 0.01 : (a) RaT = 1000 and (b) RaT = -1000 .

IV. CONCLUSIONS

We have studied a fully developed double diffusive mixed
convective flow in a vertical porous channel by using the
local thermal non-equilibrium (LTNE) model. The non-Darcy-
Brinkman-Forchheimer extended model has been used. The
governing equations are solved by numerically by Spectral
collocation method. The main emphasize is given on combine
influence of two buoyancy forces in terms of N as well as
LTNE parameter H on appearance of point of inflection/flow
separation on the flow profile. The following remarks can be
made from detailed results.

• When both the buoyancy forces thermal as well as solutal
are in favor of each other (RaT = 1000), the heat transfer
rate of fluid (Nuf ) increases upto a certain value of
H, beyond that decreases smoothly and converge to a
constant value. However, in case of opposing flow (RaT

= -1000), the result is same as above for N = 0 and 1,
and reverse for N = 10 and 100.

• In case of aiding flow the variation of Sherwood num-
ber(Sh) decreases on increasing H and converge to con-
stant for all given value of N, whereas for opposing flow
it is reverse for N = 0,1 and 100.

• Variation of Nuf in the (N , Nuf )-plane shows a sinu-
soidal form for opposing flow (RaT = -1000), whereas
for aiding flow, the same shows as a smooth increasing
function.

• The velocity profile contains point of inflection as well
as flow separation on increasing N i.e N destabilizes the
flow.

• Overall, the buoyancy force have significant effect on the
non-Darcy mixed convection under LTNE conditions.
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