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Abstract—The main idea behind in network aggregation is that, 
rather than sending individual data items from sensors to sinks, 
multiple data items are aggregated as they are forwarded by the 
sensor network. Existing sensor network data aggregation techniques 
assume that the nodes are preprogrammed and send data to a central 
sink for offline querying and analysis. This approach faces two major 
drawbacks. First, the system behavior is preprogrammed and cannot 
be modified on the fly. Second, the increased energy wastage due to 
the communication overhead will result in decreasing the overall 
system lifetime. Thus, energy conservation is of prime consideration 
in sensor network protocols in order to maximize the network’s 
operational lifetime. In this paper, we give an energy efficient 
approach to query processing by implementing new optimization 
techniques applied to in-network aggregation. We first discuss earlier 
approaches in sensors data management and highlight their 
disadvantages. We then present our approach “Energy Efficient 
Indexed Aggregation” (EEIA) and evaluate it through several 
simulations to prove its efficiency, competence and effectiveness. 

Keywords—Sensor Networks, Data Base, Data Fusion, 
Aggregation, Indexing, Energy Efficiency

I. INTRODUCTION

ENSOR networks have become an important source of 
data acquisition with numerous applications being 
developed in monitoring various real-life phenomena. One 

example of monitoring applications includes organizing 
vehicle traffic in a large city [1]. Unfortunately, sensor data is 
subject to several sources of errors resulting from power 
limitations, wireless communication, latency, throughput, and 
various environmental effects. Such errors may seriously 
impact the answer to any query posed in the network. Current 
production of motes are roughly 2cm x 4cm x 1cm and are 
equipped with a radio, a processor, memory, a small package 
of AA batteries, and a collection of sensors. Additionally, new 
nodes are not passive devices [2], they are capable of sharing, 
computing and combining sensor readings; therefore, they are 
becoming tiny computers with different functionalities. Smart-
sensor devices have been developed to an extent that it is now 
feasible to deploy large, distributed networks of such nodes [3, 
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4, 5, and 6] and extracting the data from the network is an 
essential step for the applications to work.  

In-network aggregation is a well known technique to 
achieve energy efficiency when propagating data from 
information sources (sensor nodes) to multiple sinks. The 
main idea behind in-network aggregation is that, rather than 
sending individual data items from sensors to sinks, multiple 
data items are aggregated as they are forwarded by the sensor 
network. Data aggregation is application dependent, i.e., 
depending on the target application, the appropriate data 
aggregation operator (or aggregator) will be employed. From 
the information sink’s point of view, the benefits of in-
network aggregation are that in general it yields more 
manageable data streams avoiding overwhelming sources with 
massive amounts of information, and performs some filtering 
and preprocessing on the data, making the task of further 
processing the data less time and resource consuming. 
Because of its well-known power efficiency properties, in-
network aggregation has been the focus of several recent 
research efforts on sensor networks. As a result, a number of 
data aggregation algorithms and data base systems targeting 
different sensor network scenarios have been proposed [2, 8, 
9, 10, 11, 12, 13, and 14].  

In contrast, our approach is a general one unrelated to any 
application but includes in-network aggregation because of the 
central usefulness of aggregations in sensor networks. Unless 
all the problems introduced by the resource constraints of 
nodes are handled, the future of handling data in sensor 
networks will not be rewarding and these restrictions are: 

1. The system is highly volatile 
2. Relational data tables are not static since new data is 

continuously being sensed  
3. Energy costs in communication is high so in-network 

querying is desirable 
4. We need to continuously monitor the rates and 

availability of data leading to long delays. 
5. We need to maintain high-level of statistical summaries 

since we have limited storage on single nodes 

All the current and future researches and innovations are 
taking into consideration these drawbacks because they are 
very crucial limitations on the sensor network’s overall 
operational lifetime. 

Although all researches and approaches [2, 7, 8, 9, 10, 11, 
15, and 16] that were done earlier in this field provide some 
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advantages over traditional centralized approaches, they still 
face some pitfalls and disadvantages. Studying the 
disadvantages of previous work, we concluded that we need to 
work on several major areas such as: power consumption, 
reliability, less aggregation overhead, less contention, fault-
tolerance, and concurrency. In addition to that, the queries 
should also consider data integrity, security and efficiency. 
Our new distributed algorithms should take into consideration 
that nodes might have unequal battery levels opposed to 
unrealistic assumptions made in previous work. Taking into 
consideration these facts, our algorithm should evaluate the 
remaining power on each node and the varying power 
consumption that might differ from node to node to be able to 
maintain longer network lifetime to transmit useful data. We 
propose a new combinational improvement of all the available 
solutions taking into consideration the above constraints to 
develop the sensor node’s ability to handle data locally in a 
very efficient way.  

The rest of the paper is organized as follows: Section II will 
present a glance on previous approaches focusing on their 
disadvantages. Section III will present the EEIA approach. In 
Section IV, we present our simulation model. We will evaluate 
and simulate and analyze our proposed algorithms using our 
own simulator in Section V. We conclude this paper in Section 
VI with possible improvements. 

II.   RELATED WORK

Many researchers such as Yao et al., Bonnet et al., Gray et 
al., and Madden et al. [ 2, 7, 8, 9, 10, 11, 15, 16, and 17] 
tackled the data management topic in wireless sensor networks 
including query processing and data handling but none generic 
useful results and findings were originated for 
implementation. There has been a lot of work and approaches 
on query processing in distributed database systems [8 and 9], 
but most related work on distributed aggregation did not 
consider the physical limitations of sensor networks [18 and 
19]. In addition, the TinyDB Project at Berkeley [15] 
conducted by Madden et al. also investigates query processing 
techniques for sensor networks including an implementation 
of the system on the Berkeley motes and aggregation queries. 
The basic approach used in both TinyDB [15] and TAG [16] is 
to compute a partial state record (partial aggregation value) at 
each intermediate node in the routing topology. During the 
epoch after query propagation, each mote listens for messages 
from its children during the interval it specified when 
forwarding the query. It then computes a partial state record 
consisting of the combination of any child values it heard with 
its own local sensor readings. Finally, during the transmission 
interval requested by its parent, the mote transmits this partial 
state record up the network. Figure 1 illustrates the process. 

Previous studies [12-15] have shown that aggregation 
dramatically reduces the amount of data routed through the 
network, increasing throughput and extending the lifetime of 
battery powered sensor networks as less load is placed on 
power-hungry radios. Previous simulation studies have shown 

that aggregation can reduce energy consumption by a factor of 
5 in a large network (150-250 nodes) with five active sources 
and five sinks. In one experiment, we found that aggregation 
reduces traffic by up to 42% and nested queries reduce loss 
rates by 15-30% as shown in Figure 2. 

Fig. 1 Partial State Records up the tree during an epoch 
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Fig. 2 Impact of duplicate suppression on energy savings 

Previous networking research [12, 13, 14, 21] approached 
aggregation as an application specific technique that can be 
used to reduce the amount of data that must be sent over a 
network. In a previously proposed data dissemination scheme 
(directed diffusion with opportunistic aggregation), data is 
opportunistically aggregated at intermediate nodes on a low 
latency tree. In [13], the authors explore and evaluate greedy 
aggregation, an approach that adjusts aggregation points to 
increase the amount of path sharing. The greedy aggregation 
approach was implemented. Greedy aggregation differs from 
opportunistic aggregation in path establishment and 
maintenance. To construct a greedy incremental tree, a 
shortest path is established for only the first source to the sink 
whereas each of the other sources is incrementally connected 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2896

at the closest point on the existing tree. Figure 3 indicates that 
30% on average reduction of energy savings resulted from the 
greedy aggregation. 
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Fig. 3 Energy savings in the Greedy Aggregation vs. Energy 
savings in the Opportunistic Aggregation 

 In [2], they didn’t explore all their techniques relative to 
mobility, and multiple queries.  Thus, we can’t be sure if their 
techniques are more efficient and reliable than the old 
techniques.  In addition, they mentioned that in some cases 
that in-network aggregation performs worst than even the 
simplest approach “the naïve approach” [2, 8].  

In [16], the authors presented TAG as a generic 
aggregation service for ad hoc networks of TinyOS motes. 
Thus, it provides a simple, declarative interface for data 
collection and aggregation. In addition, it intelligently 
distributes and executes aggregation queries in the sensor 
network in a time and power-efficient way, and is sensitive to 
the resource constraints and lossy communication properties 
of wireless sensor networks. TAG processes aggregates in the 
network by computing partial aggregation values over the 
flow of data from the nodes, discarding irrelevant data and 
combining relevant readings into more compact records when 
possible. Thus, the TAG paper contributes to the data 
management field in ad-hoc sensor networks in four aspects: 
simplicity, reduction in communication overhead, data 
messages overhead and finally reducing loss in the sensor 
network. In Figure 4, we present the TAG vs Centralized 
“naïve” approach to emphasize on its efficiency in the number 
of bytes transmitted. 

Most of the conclusions that the above researchers are 
credited for can be described as: “We described a vision of 
processing queries over sensor networks” [11]. Some 
presented a prototype or some techniques they used without 
any actual implementation and simulation results. For 
example, the Cornell COUGAR system prototype [7, 8, 9, 10, 
and 11] is a first effort towards sensor database system. Thus, 
a lot of improvements are still needed in this field to achieve 
better generic approaches for implementation in wireless 
sensor networks plus taking into consideration all the 
drawbacks and pitfalls of earlier techniques. Unlike other 

networks, wireless sensor network still need an international 
standard ISO to be build upon and all these future researches 
are directed towards this goal. One part is related to finding a 
general applicable approach for data management in sensor 
networks which will become a self-aware, self-configuring 
and reliable system with respect to all nodes’ resource 
constraints.

0

20000

40000

60000

80000

Ce
nt
ra
liz
ed
(N

ot
TA
G)

CO
UN

T

M
IN

HI
ST
OG

RA
M

AV
ER
AG

E

CO
UN

TD
IST

IN
CT

M
ED

IA
N

By
te
sT
ra
ns
m
itt
ed

/E
po

ch
,A

llS
en

so
rs

Aggregation Function

In Network vs. CentralizedAggregation
Network Diameter = 50, No Loss

Fig. 4 In-network vs. Centralized Aggregates 

As various groups around the country have begun to deploy 
large networks of sensors, a need has arisen for tools to collect 
and query data from these networks. Of particular interest are 
aggregates – operations which summarize current sensor 
values in some or all of a sensor network. For example, given 
a dense network of thousands of sensors querying temperature, 
users want to know temperature patterns in relatively large 
regions encompassing tens of sensors – individual sensor 
readings are of little value. Sensor networks are limited in 
external bandwidth, i.e. how much data they can deliver to an 
outside system. In many cases the externally available 
bandwidth is a small fraction of the aggregate internal 
bandwidth. Thus computing aggregates in-network is also 
attractive from a network performance and longevity 
standpoint: extracting all data over all time from all sensors 
will consume large amounts of time and power as each 
individual sensor’s data is independently routed through the 
network. As noted before, aggregation dramatically reduces 
the amount of data routed through the network, increasing 
throughput and extending the life of battery powered sensor 
networks as less load is placed on power-hungry radios. Also, 
The fact that every message is effectively broadcast to all 
other sensors within range enables a number of optimizations 
that can significantly reduce the number of messages 
transmitted and increase the accuracy of aggregates in the face 
of transmission failures. 

To conclude this section we present a table listing the 
drawbacks from all the approaches that we will try to 
overcome (Table I). In the next section, we provide an outline 
of our approach and all the necessary steps to implement our 
distributed in-network aggregation approach.
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TABLE I
DRAW BACKS IN PREVIOUS APPROACHES

III. THE EEIA APPROACH

Our approach consists of providing a new distributed 
algorithm for query processing in wireless sensor networks 
which is an optimized energy efficient distributed algorithm 
with respect to all the sensor’s resource constraints. Some 
similarities to recent approaches are also used such as 
upgrading the tinyDB [10, 15] approach, an ACQP engine that 
is a distributed query processor which runs on each of the 
nodes in a sensor network, and the TAG approach [16]. 

Our goal is to provide significant reductions in power 
consumption through reducing the number of query related 
messages in the whole network. Low energy consumption, and 
limited storage and memory usage are the three main 
constraints which we focus on in our approach. This section 
will provide a detailed explanation of our approach by 
presenting the problem and the corresponding solution. We 
evaluate the approach in the next section through simulation.  

Sensor networks have very limited power, small memory 
computational power and limited bandwidth so some possible 
unanswered questions related to in network data aggregation 
schemes in sensor networks are: 

How can we decrease power consumption in a data 
management algorithm? 

How can we decrease the number of collisions and 
thus reduce the overall end-end latency? 

How can we decrease the number of computations at 
each node? 

How could we let our algorithm be self-adaptive to 
the changing network conditions? 

Our distributed algorithm offers three new ideas in order to 
answer the previous questions. Our first aim is to decrease the 
packet size and the second is to decrease the number of 
packets sent. To decrease the packet size each sensor should 
have values in its buffer of all its children nodes to perform 

Paper Disadvantages 

“The Design of an 
Acquisitional Query 
Processor For 
Sensor Networks”
(TinyDB) [10] 

Costs for disseminating, executing and forwarding false query results in terms of incorrect 
initiation can be high.  

SRT are limited to constant attributes 
SRT maintenance and construction costs are high. 
Building SRT could be costly 
No handling of multi-queries (one query runs at a time) 
Radio communication has high link-level losses typically about 20% @ 5m 
Central node failures cause lost of data from a sub-tree 

“The Cougar 
Approach to In-
Network Query 
Processing in Sensor 
Networks” [11] 

Unreliable data due to several facts such as noise 
Node failure especially Leader node failure 
Multi-hop routing consumes energy over large networks 
Time Synchronization between sensor nodes 
Uncertainty decisions by the optimizer 
Changes in network topology and power level at nodes affect the Cougar approach 
Storage and update of metadata in each node is crucial 
No handling of multi-queries 
No experimental results are mentioned in the paper 
Constantly changing conditions 
Meta-data management 
Fault tolerance 

“Supporting 
aggregate queries 
over ad-hoc sensor 
networks” [2] 

Assumption of TinyOS as a sending-receiving API 
Symmetry  in Radio links (not valid)  
Routing tree maintenance and flooding requests consume a great deal of energy 
Generalized aggregation predicate as median and mode are not considered 
Time delay depends on the depth of the routing tree  
Long computation time 
Pipelined approach: an extra number of message for 1st aggregate  extra overhead 
Failure independence assumption (messages to both parents can’t be lost) 
Sensor values are independent and randomly distributed 
User acceptance of error bounds 
Buffer overhead 
Effect of sensor mobility 
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partial aggregation before sending this value to its parent. In 
large sensor networks, aggregation of data having small 
packets and small values decreases the power consumption 
and the computation overhead. Our second approach is to 
index the network so to be able to query data with minimum 
number of exchanged packets. We will start by building an 
index tree (IST) that is similar to the SRT of TinyDB [10] but 
for not only fixed attributes but also variable ones.  The 
problem with building such a tree is the maintenance 
overhead, but we will prove that our algorithm maintains the 
tree with little or no maintenance overhead.  

Our algorithm is to first build an index routing tree (Section 
A). Secondly, each child in the tree sends its index to its 
parent. Since the parent knows the number of children it has, it 
compares the indexes received from each child, if they are 
equal, the parent indexes itself with their index and sends the 
index to its parent otherwise it does nothing. Upon a change in 
the index of one node, this node sends the new index to its 
parent, the parent checks again to see if the indexes are equal; 
if not and this parent is indexed, it removes its index and 
informs its parent, but if this parent is not indexed, it doesn’t 
have to inform its parent. With our network, indexing a query 
could take less time and computation power to return the 
result. For example if we have a query that asks for the 
average temperature where the temperature is above 36. When 
this query reaches a node with index 1, the node doesn’t 
forward the query to its children.  Our third idea is to conserve 
energy as much as possible using indexing with the power 
evaluation criteria available in TinyDB at each node. We can 
use an index of 0 to note that a certain node is low in power 
try eliminate it in the execution flow of the query. In the next 
sections, we present our algorithm in details. 

A. Building the Routing Tree 

After the nodes are randomly deployed, an index routing 
tree is built. The routing tree is built as follows.  The closest 
node to the base station is chosen to be the root of the tree 
(level = 0). Once chosen, the root broadcasts requests 
containing its level to all its one hop neighbors (within its 
transmission range). When receiving the request, a neighbor 
node assigns itself a level = level + 1 and chooses its parent to 
be the level up node from which it received the request, then 
re-broadcasts  new requests containing its new level to all its 
neighbors and so on until no neighbors are found; thus the last 
nodes become leaf nodes. Whenever a node receives two 
requests from two different nodes, if it has a level, it discards 
the second request; and if not, it selects the first arrived 
request. Thus it chooses one parent and one new level  (level = 
level + 1). In our tree algorithm, we intend to let every node 
have only a single parent. Figure 5 displays the flowchart of 
building the tree. After building the tree each node sends its 
reading value to its parent starting from the leaf and up. Every 
node stores its last sent value. Every parent node receiving 
values from multiple children calculates the average of the 
values received and sends it to its parent and so on until the 
value reaches the base station (Figure 6).

As an example, we are going to implement an application 
that calculates the average temperature of all the nodes which 
are part of the tree. The number of nodes is relative to the 
application under study (we incorporated 11 nodes in our 
example)

Fig.  5 Flowchart of building the tree 
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B.  Building the Index Table in the Routing Tree 

When the base station receives the values, it sends a packet 
containing the index table to all the nodes. The first time the 
index table is sent, the value ranges of each index will be 
large; the reason behind this approach is not to send large 
packets in the network. If the index table is large, it may lead 
to collisions. When a node receives the index table, it 
compares its readings to the index table and indexes itself 
accordingly (Figure 7.1).  

 In the second round the index table changes as value for 
index ranges becomes smaller. After couple of rounds the 
index values will be more accurate (Figure 7.2). The number 
of rounds depends on the size of the index table decided once 
the network is deployed.  The final index table will be derived 
on each node. Deciding on the index ranges of the system 
depends on the type of sensor node; sensor nodes with 
readings that vary in large ranges should have index ranges 
with large values (Figure 7.3).  

T: 36 ; Index: 5

Index
Packet

T: 32 ; Index: 5

Round 1

T: 30 ; Index: 3

T: 32 ; Index: 5

T: 36 ; Index: 5

T: 32 ; Index: 5

T: 31 ; Index: 5

T: 34 ; Index: 5

T: 33 ; Index: 5
T: 35 ; Index: 5

T: 29 ; Index: 3

Fig. 7.1 Round 1 for assigning indexes 

T: 36 ; Index: 6

Index
Packet

T: 32 ; Index: 5

Round 2

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 31 ; Index: 5

T: 34 ; Index: 5

T: 33 ; Index: 5
T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 7.2 Round 2 for assigning indexes

Fig. 7.3 Final index table 

The child sends its index to its parent. When a parent 
receives an index from its children, the parent compares all its 
indexes with its own, if they are all similar, the parent indexes 
itself as such. However, if all indexes are not the same, the 
node examines the percentage of the similarity, if the 
similarity is larger or equal to 75% (based on the simulation 
results in Section V), it indexes itself with the dominant index 
and ignores the others. If the index similarities are lower than 
75% then the parent indexes itself as between the smallest and 
largest index (Figure 7.4). After all the nodes are indexed in 
the network, the parents and children agree on a common 
value. 

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
T: 34 ; Index: 5

T: 33 ; Index: 5

T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 7.4 Assigning parent indexes 

C. Common Value Agreement (CV) 

After a parent receives values from its children, it first 
calculates the average of the values; it stores the calculated 
average and sends it back to its children. We call this value 
“common value” and we denoted it by cv (Figure 8). Each 
node stores two values: the cv of its parent and the cv of its 
children (except leaf nodes). When a node needs to send a new 
reading to its parent, it subtracts the cv from its reading and 
forwards the value to its parent. The cv will be updated in case 
there is a major change in the average of the children.  

When a parent notices a large change between its children 
and the cv, the parent resends the new average to its children 
as the new cv. With our cv approach, sent packets are smaller 
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and therefore leading to less collisions, more energy efficiency 
and less calculation overhead. 

Fig. 8 Agreement on the value 

D. Aggregate Functions Evaluation 

The calculation approach defers between different 
aggregate functions. In our algorithm, we evaluate the 5 basic 
aggregate functions Sum, Average, Count, Min, Max. 

Average Function 

We start with the Average function. To elaborate more on 
this function let us examine the following query: 

SELECT Avg(temp) 

FROM Sensors 

Since this query asks for the average temperature of the 
whole network, the query should reach all the nodes where 
values will be extracted. In our algorithm this is not the case; 
our algorithm offers the user two approaches to calculate the 
average. In the first approach, when the query reaches the root 
node, the root node doesn’t forward the query to its children 
but returns his cv since the cv is the common average between 
it and its children. In the second approach the query reaches 
all the nodes but not all the nodes return a value. When a 
query reaches a node, the node examines its current reading 
and index. If his current reading still lies within the same 
index the node doesn’t forward any value since his value will 
not have a noticeable change to the final result. If the current 
reading doesn’t lie in the same index the node changes its 
index, and sends the cv subtracted from his reading to the 
parent node. After receiving the new reading the parent 
notices a large value from his child thus updates his index 
status and cv if needed according to the previously discussed 
approaches. Then the parent node calculates the new average. 
Assume Avg is the old average value, Avg_new the new 
average, nv the new value received from the child and p the 
children count involved in the query. The parent calculates the 
new average using the following formula: 

                                         (1) 

In the second approach, sending the value depending on the 
index change decreases the overhead of sending packets where 
the change in reading will not cause a notable change to the 
overall value; thus, using this approach results in sending a 
small number of packets. Deciding on what approach to use 
depends on how accurate the data needs to be.  

Count, Sum, Min and Max Functions 

The Count function is evaluated in a normal approach 
where the node, if meeting the criteria, sends 1 to his parent 
where the parent adds the count of his children and forwards 
them to his parent and so on. The Sum function can also be 
evaluated using two approaches. The first approach is the 
usual one where values are sent to the parent node that in his 
turn sums them and sends them to his parent and so on. The 
second approach of evaluating sum is to break the Sum query 
into two queries, an average query and a count query. In this 
approach the advantages of average evaluation discussed 
previously can be used. After a node receives a sum function it 
sends it’s reading as if it is calculating the average and then 
sends the count. The base station calculates the Sum as 
Average   Count. 

Deciding on the approach to use depends on the query and 
the exactness of the result. Our engine on the base station 
decides what approach to use. The Min and Max function are 
evaluated in similar approach to the average where the node 
sends the cv subtracted from his value. The parent node in its 
turn chooses the largest or smallest (Min or Max) value 
received, adds to it the children cv then subtracts from it its 
parent cv and sends it to its parent. 

E.  Queries with conditions 

For other types of queries that have a condition, our 
approach should increase the throughput of the query since 
indexing will help in the injection of the query. Let us 
elaborate more by examining the following query: 

SELECT Avg(temp) 

FROM Sensors 

WHERE temp>35

Our engine on the base station will parse this query and 
translate the condition into index. The condition “Where 
temp>35” will be translated into “Where tempIndex > 5”
assuming index 5 and its preceding indexes are between 0 and 
30.  After this translation the query is injected into the 
network. From the root and on, every parent node checks if it 
has an index smaller or equal to 5, if yes, it will not forward 
the query to its children. Thus the query is filtered through the 
injection state. As shown in Figure 9 below, the root 
broadcasts the query to its children. Once arrived to each 
child, they check if they have an index smaller or equal to 5. 
Thus, for node having the index 5, it ignores the query request, 
but in the case of the other node, it re-broadcasts the request to 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2901

all of its children (index > 5) which in their turn, each of them 
forwards the request if its index is greater than 5. 

This approach removes the overhead of sending the query 
to unneeded nodes. This approach increases the energy 
efficiency of the network where nodes that do not satisfy the 
condition will not need to spend energy since filtering is 
happening in the injection of the query rather than the base 
station. 

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
T: 34 ; Index: 5

T: 33 ; Index: 5

T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 9 Handling the “Where” condition 

F.  Power Management 

Power consumption and network life time are major issues 
in the wireless sensor network design. In our algorithm, we try 
to increase the lifetime of the network through two different 
approaches.  

In the first approach, the node keeps track of the number of 
messages sent and number of messages received. From these 
numbers the node can approximate the energy consumed and 
therefore the amount of energy left. We can also incorporate a 
battery model in our algorithm. When the node reaches a state 
where its energy is close to a predefined threshold, it informs 
its parent. The parent will therefore decrease the number of 
packets sent to this child thus will send packets to this child 
every two rounds rather than every round hence decreasing the 
transfer data rate to this child. If the child reaches a very low 
state of energy, it informs its parent where the parent stops 
sending any packets to this child. 

The second approach is achieved by changing the root 
parent every two rounds. If a child can have multiple parents, 
the child, after couple of rounds, changes to another parent if 
the other parent has more energy than his current parent. 
When a parent is low on energy it informs its children, the 
children in their turn will ask another parent node if they could 
join it. If another parent with more energy is found, the child 
switches to this new parent. A child could know if the new 
parent has more energy than his old one by knowing the 
amount of energy consumed by both parents derived from the 
formula discussed before.  We will just incorporate the first 
approach in our simulator leaving the second approach for 
future work. The first approach should reduce the energy 
consumption of every single node in the network thus 
increasing the network lifetime. 

G. Query Optimization 

In this section, we will discuss our approach in optimizing 
a query.  The base station keeps record of the last queries with 
a time stamp. Upon issuing a new query, the query optimizer 
checks for similar queries issued before and their results. If the 
results are close, it concludes that the network readings are not 
changing so instead of sending the query to the whole 
network, the query is sent to different parts of the network. To 
send the query to different parts of the network, the query 
optimizer sends the query to the level 1 parent nodes which in 
turn will choose some of their children and forward them the 
query. The number of children nodes chosen depends on the 
query optimizer decision. With this approach a smaller amount 
of nodes participate in the query (Figure 10).  

This approach increases energy efficiency and throughput 
of the network but gives an approximation of the result. This 
optimization technique doesn’t apply on all kinds of queries. 

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
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T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 10 Decrease in the number of nodes participating  
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IV. SIMULATION MODEL

To test the efficiency of our algorithm, we decided to 
model our own simulator to achieve our goals because of the 
lack of database simulators. We will present the detailed 
information on how our simulation was built. 

A.  Our Simulator Model 

Our simulator is written in VB and it incorporates our 
algorithm to be tested with the naive and the simple TinyDB 
approaches. We will evaluate our algorithm by comparing it to 
these approaches in terms of energy consumption, network 
lifetime and time delays. We randomly deploy a large number 
of nodes, then a routing tree is build in which the query is sent 
from the root to the leaf nodes to be evaluated, processed. The 
leaf nodes will send the results back to their parents where 
they are aggregated and sent over to the parent’s parents until 
an aggregated value reaches the root which in its turn, sends 
the aggregated value  back to the base station.  

In the tree, each node is randomly colored to present its 
level (number of hops away from the base station). An edge 
connects two neighbor nodes if there are in the communication 
range of each other i.e. they can communicate by sending and 
receiving messages. Every node contains a cache in which it 
saves its level number, its index, its parent id and its children’s 
ids. Figure 11.1 portrays the building of the routing tree. 
Figure 11.2 shows our simulator at work (building indexes in 
the tree). Every parent node is colored by the color of its 
children if the percentage of itself and its children’s color is 
greater than 75%. Each node is colored by its index value. 

Fig. 11.1 Building the routing tree simulation 

Fig. 11.2 Building indexes in the routing tree 

B.  Evaluation Metrics 

Our Algorithm will be evaluated based on two basic 
metrics: power consumption and network lifetime. We are 
going to compare the power consumed in retrieving queries 
using our algorithm with other known algorithm (the naive 
and the simple TinyDB approaches). The performance of the 
algorithm over time will also be studied to determine the 
benefits of using in-network aggregation. This is done by 
assuming that each sensor node has a limited energy supply of 
and is deactivated when the available energy is used up. The 
performance is evaluated in terms of network lifetime. The 
network lifetime is the continuous operational time of the 
system before the coverage drops below a specified threshold 
(for example 0.8). In addition to that, we will incorporate the 
energy wastage resulting from building the IRT (index routing 
tree).

C. Investigated Parameter Space 

In our simulation, we are going to randomly spread about 
500 sensor nodes in a 10000 x 10000 region in VB to 
investigate the change in temperature and humidity. We are 
going to query these nodes to get Max, Min, and Average 
values. Further investigation about some sensor nodes 
measurements (return numbers) are left for future work. 

D. Scenarios 

The node we are going to use are the Berkley Mica motes 
[28, 3, 5] with TinyOS [10, 25]. S-MAC is used as the default 
MAC layer protocol. The sensor nodes will be used to 
measure temperature, humidity and other metrics as provided 
by the sensor itself (The Mica motes already support 
temperature sensors, light sensors, magnetometers, 
accelerometers, and microphones). These nodes will be 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2903

connected to a base station that will issue the query and the 
results are returned to this station by in-network aggregation in 
the intermediate motes, thus, providing a reduction in message 
overhead and in energy consumption.  

In addition, several optimization techniques should be 
applied to prevent other problems such as nodes mobility, 
node failures, network changes and others, from affecting the 
network. 

E.  Expected Results 

We have to investigate the efficiency of our approach in 
several areas through some excepted results from the 
simulation such as: 

1. Energy efficiency in terms of low power consumption 
while transferring the query related data through the 
network (reduce the number of messages required to 
compute the aggregations).

2. Overhead calculation in the network (decrease the 
overhead)

3. Result accuracy from the data aggregated (is the data 
used for aggregation satisfactory and reliable?).

4. Other factors should be taken to consideration such as 
time delays, communication failures and sensor mobility. 

V.SIMULATION RESULTS AND ANALYSIS

In this section, we are going to evaluate our algorithm in 
terms of power consumption, network lifetime and finally time 
delay. Then, we are going to compare our results to well 
known data management approaches such as the naive and the 
simple TinyDB approaches. We are going to prove the 
efficiency of our distributed approach and its adaptive manner 
in maintenance and re-construction of the index routing tree 
due to unexpected failures. We compare our EEIA approach 
with the: 

1. Naïve algorithm: all the query results from each node 
are sent to its parent until the results reach the root 
where they are aggregated and sent to the base station. 

2. Simple TinyDB: the results are aggregated at each 
intermediate node until reaching the root. 

In our simulation, we assumed the energy wasted is 1µJ for 
sending a single bit and 0.5µJ for receiving a single bit. 
Initially, each node has 1 J of available energy. 

In our simulation, we also incorporated the energy 
consumption of building an index tree. As you can see in 
Figure 12, as the number of nodes increases, the energy 
consumption increases linearly since all nodes participate in 
building the query with same amount of energy. We 
concluded that the energy consumption of building the index 
tree is equivalent to initiating one query in the network.  

As for the maintenance of the index tree, we see from 
Figure 13 that the average energy consumed in the 
maintenance depends on the readings of the nodes in the 
network. If the network readings change significantly in a 
small amount of time, the energy consumed in maintaining the 
tree increases. On the other hand, if the network readings 
change slowly then the energy consumption of the index 
maintenance decreases. The energy consumption in the first 15 
seconds is high since the index tree was being built. 

We issued a number of different queries on 500 nodes and 
compared the energy consumption, delay and number of 
instructions using our approach compared to the normal 
approach of broadcasting the query to the network. To 
simulate the same queries, we implemented in our simulator 
two approaches, the first approach queries the network by 
broadcasting the query to all the nodes and aggregating the 
results back to the base station. As for the second approach, 
we added our index querying approach. To make our 
simulation more realistic, we maintained the same condition 
on the network while using the different querying approaches.  

In Figure 14, we compared the energy consumed for the 
same queries using the 2 approaches. We issued 12 different 
queries and calculated the energy consumed by these queries 
to return the result. As can be seen from the graph, all queries 
using the indexed approach consume less energy than using 
the other approach. You can also note from the graph that 
some queries have energy consumption that is close to the 
normal approach while others have larger energy 
consumption. This difference depends on the conditions of the 
issued query since more selective queries tend to have a larger 
advantage using our approach (indexing with more 
selectiveness decreases the number of messages sent and 
received in the network).

In Figure 15, we compare the number of packets sent for 
the same query using the 2 approaches. As the figure shows, 
the number of packets sent decreases with the indexing 
approach since some nodes will not forward the packets to 
their children if their children don’t satisfy the query 
conditions.  

As can be seen in Figure 16, the delay is decreased using 
our approach since as discussed before the number of packets 
sent decrease hence collisions decrease. In the delay 
simulation, we assumed a packets needs 0.01 sec to be resent. 

In the last simulation, we added the cv (common value)
approach to our simulator and compared the lifetime of the 
network using indexing and cv querying to the normal 
approach. As can be seen from Figure 17, the first node dies 
after 83 queries in the normal approach while using our 
approach; the first node dies after 130 queries. This increase in 
the lifetime of the network is due to two factors. The first 
factor is that nodes are sending fewer packets using the 
indexed approach thus less energy consumption per node. The 
second factor is the decrease in packet size with cv approach 
where less energy is consumed in sending the packet.  
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VI. CONCLUSIONS

In summary, we have showed how aggregate queries are 
efficiently executed over wireless sensor networks in a 
distributed manner. We have proved that our in-network 
distributed approach performed better in terms of energy 
reduction and network lifetime than the naïve and simple 
TinyDB approaches. Furthermore as for future work, our 
approach should confront with the difficulties of topology 
construction, data routing, loss tolerance by including several 
optimization techniques that further decrease message costs 
and improve tolerance to failure and loss. In addition to 
implementing these techniques, we need to rethink some of 
these techniques to present more efficiency to network 
changes and external factors which could affect our approach 
such as node mobility, obstacles and other issues. In addition 
as future work, we could also extend our simulator to 
incorporate a 3D tree construction technique plus other 
methodologies mentioned above. 
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