
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2894

Abstract—The main idea behind in network aggregation is that,
rather than sending individual data items from sensors to sinks,
multiple data items are aggregated as they are forwarded by the
sensor network. Existing sensor network data aggregation techniques
assume that the nodes are preprogrammed and send data to a central
sink for offline querying and analysis. This approach faces two major
drawbacks. First, the system behavior is preprogrammed and cannot
be modified on the fly. Second, the increased energy wastage due to
the communication overhead will result in decreasing the overall
system lifetime. Thus, energy conservation is of prime consideration
in sensor network protocols in order to maximize the network’s
operational lifetime. In this paper, we give an energy efficient
approach to query processing by implementing new optimization
techniques applied to in-network aggregation. We first discuss earlier
approaches in sensors data management and highlight their
disadvantages. We then present our approach “Energy Efficient
Indexed Aggregation” (EEIA) and evaluate it through several
simulations to prove its efficiency, competence and effectiveness.

Keywords—Sensor Networks, Data Base, Data Fusion,
Aggregation, Indexing, Energy Efficiency

I. INTRODUCTION

ENSOR networks have become an important source of
data acquisition with numerous applications being
developed in monitoring various real-life phenomena. One

example of monitoring applications includes organizing
vehicle traffic in a large city [1]. Unfortunately, sensor data is
subject to several sources of errors resulting from power
limitations, wireless communication, latency, throughput, and
various environmental effects. Such errors may seriously
impact the answer to any query posed in the network. Current
production of motes are roughly 2cm x 4cm x 1cm and are
equipped with a radio, a processor, memory, a small package
of AA batteries, and a collection of sensors. Additionally, new
nodes are not passive devices [2], they are capable of sharing,
computing and combining sensor readings; therefore, they are
becoming tiny computers with different functionalities. Smart-
sensor devices have been developed to an extent that it is now
feasible to deploy large, distributed networks of such nodes [3,

M. K. Watfa is with the Department of Computer Science at the American
University of Beirut, Beirut Lebanon. Phone#: 961-70-159757; fax: 961-1-
744461; e-mail: mw11@aub.edu.lb.

W. Daher is with the Department of Computer Science at the American
University of Beirut, Beirut Lebanon. Phone#: 961-70-159757; fax: 961-1-
744461; e-mail: wsd03@aub.edu.lb.

H. Al Azar is with the Department of Computer Science at the American
University of Beirut, Beirut Lebanon. Phone#: 961-70-159757; fax: 961-1-
744461; e-mail: hga08@aub.edu.lb.

4, 5, and 6] and extracting the data from the network is an
essential step for the applications to work.

In-network aggregation is a well known technique to
achieve energy efficiency when propagating data from
information sources (sensor nodes) to multiple sinks. The
main idea behind in-network aggregation is that, rather than
sending individual data items from sensors to sinks, multiple
data items are aggregated as they are forwarded by the sensor
network. Data aggregation is application dependent, i.e.,
depending on the target application, the appropriate data
aggregation operator (or aggregator) will be employed. From
the information sink’s point of view, the benefits of in-
network aggregation are that in general it yields more
manageable data streams avoiding overwhelming sources with
massive amounts of information, and performs some filtering
and preprocessing on the data, making the task of further
processing the data less time and resource consuming.
Because of its well-known power efficiency properties, in-
network aggregation has been the focus of several recent
research efforts on sensor networks. As a result, a number of
data aggregation algorithms and data base systems targeting
different sensor network scenarios have been proposed [2, 8,
9, 10, 11, 12, 13, and 14].

In contrast, our approach is a general one unrelated to any
application but includes in-network aggregation because of the
central usefulness of aggregations in sensor networks. Unless
all the problems introduced by the resource constraints of
nodes are handled, the future of handling data in sensor
networks will not be rewarding and these restrictions are:

1. The system is highly volatile
2. Relational data tables are not static since new data is

continuously being sensed
3. Energy costs in communication is high so in-network

querying is desirable
4. We need to continuously monitor the rates and

availability of data leading to long delays.
5. We need to maintain high-level of statistical summaries

since we have limited storage on single nodes

All the current and future researches and innovations are
taking into consideration these drawbacks because they are
very crucial limitations on the sensor network’s overall
operational lifetime.

Although all researches and approaches [2, 7, 8, 9, 10, 11,
15, and 16] that were done earlier in this field provide some

EEIA: Energy Efficient Indexed Aggregation in
Smart Wireless Sensor Networks

Mohamed Watfa, William Daher and Hisham Al Azar

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2895

advantages over traditional centralized approaches, they still
face some pitfalls and disadvantages. Studying the
disadvantages of previous work, we concluded that we need to
work on several major areas such as: power consumption,
reliability, less aggregation overhead, less contention, fault-
tolerance, and concurrency. In addition to that, the queries
should also consider data integrity, security and efficiency.
Our new distributed algorithms should take into consideration
that nodes might have unequal battery levels opposed to
unrealistic assumptions made in previous work. Taking into
consideration these facts, our algorithm should evaluate the
remaining power on each node and the varying power
consumption that might differ from node to node to be able to
maintain longer network lifetime to transmit useful data. We
propose a new combinational improvement of all the available
solutions taking into consideration the above constraints to
develop the sensor node’s ability to handle data locally in a
very efficient way.

The rest of the paper is organized as follows: Section II will
present a glance on previous approaches focusing on their
disadvantages. Section III will present the EEIA approach. In
Section IV, we present our simulation model. We will evaluate
and simulate and analyze our proposed algorithms using our
own simulator in Section V. We conclude this paper in Section
VI with possible improvements.

II. RELATED WORK

Many researchers such as Yao et al., Bonnet et al., Gray et
al., and Madden et al. [2, 7, 8, 9, 10, 11, 15, 16, and 17]
tackled the data management topic in wireless sensor networks
including query processing and data handling but none generic
useful results and findings were originated for
implementation. There has been a lot of work and approaches
on query processing in distributed database systems [8 and 9],
but most related work on distributed aggregation did not
consider the physical limitations of sensor networks [18 and
19]. In addition, the TinyDB Project at Berkeley [15]
conducted by Madden et al. also investigates query processing
techniques for sensor networks including an implementation
of the system on the Berkeley motes and aggregation queries.
The basic approach used in both TinyDB [15] and TAG [16] is
to compute a partial state record (partial aggregation value) at
each intermediate node in the routing topology. During the
epoch after query propagation, each mote listens for messages
from its children during the interval it specified when
forwarding the query. It then computes a partial state record
consisting of the combination of any child values it heard with
its own local sensor readings. Finally, during the transmission
interval requested by its parent, the mote transmits this partial
state record up the network. Figure 1 illustrates the process.

Previous studies [12-15] have shown that aggregation
dramatically reduces the amount of data routed through the
network, increasing throughput and extending the lifetime of
battery powered sensor networks as less load is placed on
power-hungry radios. Previous simulation studies have shown

that aggregation can reduce energy consumption by a factor of
5 in a large network (150-250 nodes) with five active sources
and five sinks. In one experiment, we found that aggregation
reduces traffic by up to 42% and nested queries reduce loss
rates by 15-30% as shown in Figure 2.

Fig. 1 Partial State Records up the tree during an epoch

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

A
v
e
ra
g
e
D
is
si
p
a
te
d
E
n
e
rg
y

(J
o
u
le
s/
N
o
d
e
/
R
e
ce
iv
e
d
D
a
ta

P
K
T
)

NetworkSize

With Aggregation Without Aggregation

Fig. 2 Impact of duplicate suppression on energy savings

Previous networking research [12, 13, 14, 21] approached
aggregation as an application specific technique that can be
used to reduce the amount of data that must be sent over a
network. In a previously proposed data dissemination scheme
(directed diffusion with opportunistic aggregation), data is
opportunistically aggregated at intermediate nodes on a low
latency tree. In [13], the authors explore and evaluate greedy
aggregation, an approach that adjusts aggregation points to
increase the amount of path sharing. The greedy aggregation
approach was implemented. Greedy aggregation differs from
opportunistic aggregation in path establishment and
maintenance. To construct a greedy incremental tree, a
shortest path is established for only the first source to the sink
whereas each of the other sources is incrementally connected

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2896

at the closest point on the existing tree. Figure 3 indicates that
30% on average reduction of energy savings resulted from the
greedy aggregation.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 5 10 15 20 25 30 35 40 45 50

Av
er
ag
eD

iss
ip
at
ed

En
er
gy
(Jo

ul
es
/N

od
e/
Re

ce
ive

d
Di
st
in
ct

Ev
en

t)

Number of Neighbors

Opportunistic Aggregation Greedy Aggregation

Fig. 3 Energy savings in the Greedy Aggregation vs. Energy
savings in the Opportunistic Aggregation

 In [2], they didn’t explore all their techniques relative to
mobility, and multiple queries. Thus, we can’t be sure if their
techniques are more efficient and reliable than the old
techniques. In addition, they mentioned that in some cases
that in-network aggregation performs worst than even the
simplest approach “the naïve approach” [2, 8].

In [16], the authors presented TAG as a generic
aggregation service for ad hoc networks of TinyOS motes.
Thus, it provides a simple, declarative interface for data
collection and aggregation. In addition, it intelligently
distributes and executes aggregation queries in the sensor
network in a time and power-efficient way, and is sensitive to
the resource constraints and lossy communication properties
of wireless sensor networks. TAG processes aggregates in the
network by computing partial aggregation values over the
flow of data from the nodes, discarding irrelevant data and
combining relevant readings into more compact records when
possible. Thus, the TAG paper contributes to the data
management field in ad-hoc sensor networks in four aspects:
simplicity, reduction in communication overhead, data
messages overhead and finally reducing loss in the sensor
network. In Figure 4, we present the TAG vs Centralized
“naïve” approach to emphasize on its efficiency in the number
of bytes transmitted.

Most of the conclusions that the above researchers are
credited for can be described as: “We described a vision of
processing queries over sensor networks” [11]. Some
presented a prototype or some techniques they used without
any actual implementation and simulation results. For
example, the Cornell COUGAR system prototype [7, 8, 9, 10,
and 11] is a first effort towards sensor database system. Thus,
a lot of improvements are still needed in this field to achieve
better generic approaches for implementation in wireless
sensor networks plus taking into consideration all the
drawbacks and pitfalls of earlier techniques. Unlike other

networks, wireless sensor network still need an international
standard ISO to be build upon and all these future researches
are directed towards this goal. One part is related to finding a
general applicable approach for data management in sensor
networks which will become a self-aware, self-configuring
and reliable system with respect to all nodes’ resource
constraints.

0

20000

40000

60000

80000

Ce
nt
ra
liz
ed
(N

ot
TA
G)

CO
UN

T

M
IN

HI
ST
OG

RA
M

AV
ER
AG

E

CO
UN

TD
IST

IN
CT

M
ED

IA
N

By
te
sT
ra
ns
m
itt
ed

/E
po

ch
,A

llS
en

so
rs

Aggregation Function

In Network vs. CentralizedAggregation
Network Diameter = 50, No Loss

Fig. 4 In-network vs. Centralized Aggregates

As various groups around the country have begun to deploy
large networks of sensors, a need has arisen for tools to collect
and query data from these networks. Of particular interest are
aggregates – operations which summarize current sensor
values in some or all of a sensor network. For example, given
a dense network of thousands of sensors querying temperature,
users want to know temperature patterns in relatively large
regions encompassing tens of sensors – individual sensor
readings are of little value. Sensor networks are limited in
external bandwidth, i.e. how much data they can deliver to an
outside system. In many cases the externally available
bandwidth is a small fraction of the aggregate internal
bandwidth. Thus computing aggregates in-network is also
attractive from a network performance and longevity
standpoint: extracting all data over all time from all sensors
will consume large amounts of time and power as each
individual sensor’s data is independently routed through the
network. As noted before, aggregation dramatically reduces
the amount of data routed through the network, increasing
throughput and extending the life of battery powered sensor
networks as less load is placed on power-hungry radios. Also,
The fact that every message is effectively broadcast to all
other sensors within range enables a number of optimizations
that can significantly reduce the number of messages
transmitted and increase the accuracy of aggregates in the face
of transmission failures.

To conclude this section we present a table listing the
drawbacks from all the approaches that we will try to
overcome (Table I). In the next section, we provide an outline
of our approach and all the necessary steps to implement our
distributed in-network aggregation approach.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2897

TABLE I
DRAW BACKS IN PREVIOUS APPROACHES

III. THE EEIA APPROACH

Our approach consists of providing a new distributed
algorithm for query processing in wireless sensor networks
which is an optimized energy efficient distributed algorithm
with respect to all the sensor’s resource constraints. Some
similarities to recent approaches are also used such as
upgrading the tinyDB [10, 15] approach, an ACQP engine that
is a distributed query processor which runs on each of the
nodes in a sensor network, and the TAG approach [16].

Our goal is to provide significant reductions in power
consumption through reducing the number of query related
messages in the whole network. Low energy consumption, and
limited storage and memory usage are the three main
constraints which we focus on in our approach. This section
will provide a detailed explanation of our approach by
presenting the problem and the corresponding solution. We
evaluate the approach in the next section through simulation.

Sensor networks have very limited power, small memory
computational power and limited bandwidth so some possible
unanswered questions related to in network data aggregation
schemes in sensor networks are:

How can we decrease power consumption in a data
management algorithm?

How can we decrease the number of collisions and
thus reduce the overall end-end latency?

How can we decrease the number of computations at
each node?

How could we let our algorithm be self-adaptive to
the changing network conditions?

Our distributed algorithm offers three new ideas in order to
answer the previous questions. Our first aim is to decrease the
packet size and the second is to decrease the number of
packets sent. To decrease the packet size each sensor should
have values in its buffer of all its children nodes to perform

Paper Disadvantages

“The Design of an
Acquisitional Query
Processor For
Sensor Networks”
(TinyDB) [10]

Costs for disseminating, executing and forwarding false query results in terms of incorrect
initiation can be high.

SRT are limited to constant attributes
SRT maintenance and construction costs are high.
Building SRT could be costly
No handling of multi-queries (one query runs at a time)
Radio communication has high link-level losses typically about 20% @ 5m
Central node failures cause lost of data from a sub-tree

“The Cougar
Approach to In-
Network Query
Processing in Sensor
Networks” [11]

Unreliable data due to several facts such as noise
Node failure especially Leader node failure
Multi-hop routing consumes energy over large networks
Time Synchronization between sensor nodes
Uncertainty decisions by the optimizer
Changes in network topology and power level at nodes affect the Cougar approach
Storage and update of metadata in each node is crucial
No handling of multi-queries
No experimental results are mentioned in the paper
Constantly changing conditions
Meta-data management
Fault tolerance

“Supporting
aggregate queries
over ad-hoc sensor
networks” [2]

Assumption of TinyOS as a sending-receiving API
Symmetry in Radio links (not valid)
Routing tree maintenance and flooding requests consume a great deal of energy
Generalized aggregation predicate as median and mode are not considered
Time delay depends on the depth of the routing tree
Long computation time
Pipelined approach: an extra number of message for 1st aggregate extra overhead
Failure independence assumption (messages to both parents can’t be lost)
Sensor values are independent and randomly distributed
User acceptance of error bounds
Buffer overhead
Effect of sensor mobility

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2898

partial aggregation before sending this value to its parent. In
large sensor networks, aggregation of data having small
packets and small values decreases the power consumption
and the computation overhead. Our second approach is to
index the network so to be able to query data with minimum
number of exchanged packets. We will start by building an
index tree (IST) that is similar to the SRT of TinyDB [10] but
for not only fixed attributes but also variable ones. The
problem with building such a tree is the maintenance
overhead, but we will prove that our algorithm maintains the
tree with little or no maintenance overhead.

Our algorithm is to first build an index routing tree (Section
A). Secondly, each child in the tree sends its index to its
parent. Since the parent knows the number of children it has, it
compares the indexes received from each child, if they are
equal, the parent indexes itself with their index and sends the
index to its parent otherwise it does nothing. Upon a change in
the index of one node, this node sends the new index to its
parent, the parent checks again to see if the indexes are equal;
if not and this parent is indexed, it removes its index and
informs its parent, but if this parent is not indexed, it doesn’t
have to inform its parent. With our network, indexing a query
could take less time and computation power to return the
result. For example if we have a query that asks for the
average temperature where the temperature is above 36. When
this query reaches a node with index 1, the node doesn’t
forward the query to its children. Our third idea is to conserve
energy as much as possible using indexing with the power
evaluation criteria available in TinyDB at each node. We can
use an index of 0 to note that a certain node is low in power
try eliminate it in the execution flow of the query. In the next
sections, we present our algorithm in details.

A. Building the Routing Tree

After the nodes are randomly deployed, an index routing
tree is built. The routing tree is built as follows. The closest
node to the base station is chosen to be the root of the tree
(level = 0). Once chosen, the root broadcasts requests
containing its level to all its one hop neighbors (within its
transmission range). When receiving the request, a neighbor
node assigns itself a level = level + 1 and chooses its parent to
be the level up node from which it received the request, then
re-broadcasts new requests containing its new level to all its
neighbors and so on until no neighbors are found; thus the last
nodes become leaf nodes. Whenever a node receives two
requests from two different nodes, if it has a level, it discards
the second request; and if not, it selects the first arrived
request. Thus it chooses one parent and one new level (level =
level + 1). In our tree algorithm, we intend to let every node
have only a single parent. Figure 5 displays the flowchart of
building the tree. After building the tree each node sends its
reading value to its parent starting from the leaf and up. Every
node stores its last sent value. Every parent node receiving
values from multiple children calculates the average of the
values received and sends it to its parent and so on until the
value reaches the base station (Figure 6).

As an example, we are going to implement an application
that calculates the average temperature of all the nodes which
are part of the tree. The number of nodes is relative to the
application under study (we incorporated 11 nodes in our
example)

Fig. 5 Flowchart of building the tree

AVG= 32

31
AVG= 32

32

AVG= 33

32

AVG= 32

33

AVG= 34

34

3232
31

34 33
35

Calculatesthe
averagebetween
it and its children
then sends it up
the tree

Fig. 6 Initial deployment

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2899

B. Building the Index Table in the Routing Tree

When the base station receives the values, it sends a packet
containing the index table to all the nodes. The first time the
index table is sent, the value ranges of each index will be
large; the reason behind this approach is not to send large
packets in the network. If the index table is large, it may lead
to collisions. When a node receives the index table, it
compares its readings to the index table and indexes itself
accordingly (Figure 7.1).

 In the second round the index table changes as value for
index ranges becomes smaller. After couple of rounds the
index values will be more accurate (Figure 7.2). The number
of rounds depends on the size of the index table decided once
the network is deployed. The final index table will be derived
on each node. Deciding on the index ranges of the system
depends on the type of sensor node; sensor nodes with
readings that vary in large ranges should have index ranges
with large values (Figure 7.3).

T: 36 ; Index: 5

Index
Packet

T: 32 ; Index: 5

Round 1

T: 30 ; Index: 3

T: 32 ; Index: 5

T: 36 ; Index: 5

T: 32 ; Index: 5

T: 31 ; Index: 5

T: 34 ; Index: 5

T: 33 ; Index: 5
T: 35 ; Index: 5

T: 29 ; Index: 3

Fig. 7.1 Round 1 for assigning indexes

T: 36 ; Index: 6

Index
Packet

T: 32 ; Index: 5

Round 2

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 31 ; Index: 5

T: 34 ; Index: 5

T: 33 ; Index: 5
T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 7.2 Round 2 for assigning indexes

Fig. 7.3 Final index table

The child sends its index to its parent. When a parent
receives an index from its children, the parent compares all its
indexes with its own, if they are all similar, the parent indexes
itself as such. However, if all indexes are not the same, the
node examines the percentage of the similarity, if the
similarity is larger or equal to 75% (based on the simulation
results in Section V), it indexes itself with the dominant index
and ignores the others. If the index similarities are lower than
75% then the parent indexes itself as between the smallest and
largest index (Figure 7.4). After all the nodes are indexed in
the network, the parents and children agree on a common
value.

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
T: 34 ; Index: 5

T: 33 ; Index: 5

T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 7.4 Assigning parent indexes

C. Common Value Agreement (CV)

After a parent receives values from its children, it first
calculates the average of the values; it stores the calculated
average and sends it back to its children. We call this value
“common value” and we denoted it by cv (Figure 8). Each
node stores two values: the cv of its parent and the cv of its
children (except leaf nodes). When a node needs to send a new
reading to its parent, it subtracts the cv from its reading and
forwards the value to its parent. The cv will be updated in case
there is a major change in the average of the children.

When a parent notices a large change between its children
and the cv, the parent resends the new average to its children
as the new cv. With our cv approach, sent packets are smaller

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2900

and therefore leading to less collisions, more energy efficiency
and less calculation overhead.

Fig. 8 Agreement on the value

D. Aggregate Functions Evaluation

The calculation approach defers between different
aggregate functions. In our algorithm, we evaluate the 5 basic
aggregate functions Sum, Average, Count, Min, Max.

Average Function

We start with the Average function. To elaborate more on
this function let us examine the following query:

SELECT Avg(temp)

FROM Sensors

Since this query asks for the average temperature of the
whole network, the query should reach all the nodes where
values will be extracted. In our algorithm this is not the case;
our algorithm offers the user two approaches to calculate the
average. In the first approach, when the query reaches the root
node, the root node doesn’t forward the query to its children
but returns his cv since the cv is the common average between
it and its children. In the second approach the query reaches
all the nodes but not all the nodes return a value. When a
query reaches a node, the node examines its current reading
and index. If his current reading still lies within the same
index the node doesn’t forward any value since his value will
not have a noticeable change to the final result. If the current
reading doesn’t lie in the same index the node changes its
index, and sends the cv subtracted from his reading to the
parent node. After receiving the new reading the parent
notices a large value from his child thus updates his index
status and cv if needed according to the previously discussed
approaches. Then the parent node calculates the new average.
Assume Avg is the old average value, Avg_new the new
average, nv the new value received from the child and p the
children count involved in the query. The parent calculates the
new average using the following formula:

 (1)

In the second approach, sending the value depending on the
index change decreases the overhead of sending packets where
the change in reading will not cause a notable change to the
overall value; thus, using this approach results in sending a
small number of packets. Deciding on what approach to use
depends on how accurate the data needs to be.

Count, Sum, Min and Max Functions

The Count function is evaluated in a normal approach
where the node, if meeting the criteria, sends 1 to his parent
where the parent adds the count of his children and forwards
them to his parent and so on. The Sum function can also be
evaluated using two approaches. The first approach is the
usual one where values are sent to the parent node that in his
turn sums them and sends them to his parent and so on. The
second approach of evaluating sum is to break the Sum query
into two queries, an average query and a count query. In this
approach the advantages of average evaluation discussed
previously can be used. After a node receives a sum function it
sends it’s reading as if it is calculating the average and then
sends the count. The base station calculates the Sum as
Average Count.

Deciding on the approach to use depends on the query and
the exactness of the result. Our engine on the base station
decides what approach to use. The Min and Max function are
evaluated in similar approach to the average where the node
sends the cv subtracted from his value. The parent node in its
turn chooses the largest or smallest (Min or Max) value
received, adds to it the children cv then subtracts from it its
parent cv and sends it to its parent.

E. Queries with conditions

For other types of queries that have a condition, our
approach should increase the throughput of the query since
indexing will help in the injection of the query. Let us
elaborate more by examining the following query:

SELECT Avg(temp)

FROM Sensors

WHERE temp>35

Our engine on the base station will parse this query and
translate the condition into index. The condition “Where
temp>35” will be translated into “Where tempIndex > 5”
assuming index 5 and its preceding indexes are between 0 and
30. After this translation the query is injected into the
network. From the root and on, every parent node checks if it
has an index smaller or equal to 5, if yes, it will not forward
the query to its children. Thus the query is filtered through the
injection state. As shown in Figure 9 below, the root
broadcasts the query to its children. Once arrived to each
child, they check if they have an index smaller or equal to 5.
Thus, for node having the index 5, it ignores the query request,
but in the case of the other node, it re-broadcasts the request to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2901

all of its children (index > 5) which in their turn, each of them
forwards the request if its index is greater than 5.

This approach removes the overhead of sending the query
to unneeded nodes. This approach increases the energy
efficiency of the network where nodes that do not satisfy the
condition will not need to spend energy since filtering is
happening in the injection of the query rather than the base
station.

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
T: 34 ; Index: 5

T: 33 ; Index: 5

T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 9 Handling the “Where” condition

F. Power Management

Power consumption and network life time are major issues
in the wireless sensor network design. In our algorithm, we try
to increase the lifetime of the network through two different
approaches.

In the first approach, the node keeps track of the number of
messages sent and number of messages received. From these
numbers the node can approximate the energy consumed and
therefore the amount of energy left. We can also incorporate a
battery model in our algorithm. When the node reaches a state
where its energy is close to a predefined threshold, it informs
its parent. The parent will therefore decrease the number of
packets sent to this child thus will send packets to this child
every two rounds rather than every round hence decreasing the
transfer data rate to this child. If the child reaches a very low
state of energy, it informs its parent where the parent stops
sending any packets to this child.

The second approach is achieved by changing the root
parent every two rounds. If a child can have multiple parents,
the child, after couple of rounds, changes to another parent if
the other parent has more energy than his current parent.
When a parent is low on energy it informs its children, the
children in their turn will ask another parent node if they could
join it. If another parent with more energy is found, the child
switches to this new parent. A child could know if the new
parent has more energy than his old one by knowing the
amount of energy consumed by both parents derived from the
formula discussed before. We will just incorporate the first
approach in our simulator leaving the second approach for
future work. The first approach should reduce the energy
consumption of every single node in the network thus
increasing the network lifetime.

G. Query Optimization

In this section, we will discuss our approach in optimizing
a query. The base station keeps record of the last queries with
a time stamp. Upon issuing a new query, the query optimizer
checks for similar queries issued before and their results. If the
results are close, it concludes that the network readings are not
changing so instead of sending the query to the whole
network, the query is sent to different parts of the network. To
send the query to different parts of the network, the query
optimizer sends the query to the level 1 parent nodes which in
turn will choose some of their children and forward them the
query. The number of children nodes chosen depends on the
query optimizer decision. With this approach a smaller amount
of nodes participate in the query (Figure 10).

This approach increases energy efficiency and throughput
of the network but gives an approximation of the result. This
optimization technique doesn’t apply on all kinds of queries.

T: 36 ; Index: 6

T: 32 ; Index: 5

T: 30 ; Index: 4

T: 32 ; Index: 5

T: 36 ; Index: 6

T: 32 ; Index: 5T: 31 ; Index: 5
T: 34 ; Index: 5

T: 33 ; Index: 5

T: 35 ; Index: 5

T: 29 ; Index: 4

Fig. 10 Decrease in the number of nodes participating

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2902

IV. SIMULATION MODEL

To test the efficiency of our algorithm, we decided to
model our own simulator to achieve our goals because of the
lack of database simulators. We will present the detailed
information on how our simulation was built.

A. Our Simulator Model

Our simulator is written in VB and it incorporates our
algorithm to be tested with the naive and the simple TinyDB
approaches. We will evaluate our algorithm by comparing it to
these approaches in terms of energy consumption, network
lifetime and time delays. We randomly deploy a large number
of nodes, then a routing tree is build in which the query is sent
from the root to the leaf nodes to be evaluated, processed. The
leaf nodes will send the results back to their parents where
they are aggregated and sent over to the parent’s parents until
an aggregated value reaches the root which in its turn, sends
the aggregated value back to the base station.

In the tree, each node is randomly colored to present its
level (number of hops away from the base station). An edge
connects two neighbor nodes if there are in the communication
range of each other i.e. they can communicate by sending and
receiving messages. Every node contains a cache in which it
saves its level number, its index, its parent id and its children’s
ids. Figure 11.1 portrays the building of the routing tree.
Figure 11.2 shows our simulator at work (building indexes in
the tree). Every parent node is colored by the color of its
children if the percentage of itself and its children’s color is
greater than 75%. Each node is colored by its index value.

Fig. 11.1 Building the routing tree simulation

Fig. 11.2 Building indexes in the routing tree

B. Evaluation Metrics

Our Algorithm will be evaluated based on two basic
metrics: power consumption and network lifetime. We are
going to compare the power consumed in retrieving queries
using our algorithm with other known algorithm (the naive
and the simple TinyDB approaches). The performance of the
algorithm over time will also be studied to determine the
benefits of using in-network aggregation. This is done by
assuming that each sensor node has a limited energy supply of
and is deactivated when the available energy is used up. The
performance is evaluated in terms of network lifetime. The
network lifetime is the continuous operational time of the
system before the coverage drops below a specified threshold
(for example 0.8). In addition to that, we will incorporate the
energy wastage resulting from building the IRT (index routing
tree).

C. Investigated Parameter Space

In our simulation, we are going to randomly spread about
500 sensor nodes in a 10000 x 10000 region in VB to
investigate the change in temperature and humidity. We are
going to query these nodes to get Max, Min, and Average
values. Further investigation about some sensor nodes
measurements (return numbers) are left for future work.

D. Scenarios

The node we are going to use are the Berkley Mica motes
[28, 3, 5] with TinyOS [10, 25]. S-MAC is used as the default
MAC layer protocol. The sensor nodes will be used to
measure temperature, humidity and other metrics as provided
by the sensor itself (The Mica motes already support
temperature sensors, light sensors, magnetometers,
accelerometers, and microphones). These nodes will be

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2903

connected to a base station that will issue the query and the
results are returned to this station by in-network aggregation in
the intermediate motes, thus, providing a reduction in message
overhead and in energy consumption.

In addition, several optimization techniques should be
applied to prevent other problems such as nodes mobility,
node failures, network changes and others, from affecting the
network.

E. Expected Results

We have to investigate the efficiency of our approach in
several areas through some excepted results from the
simulation such as:

1. Energy efficiency in terms of low power consumption
while transferring the query related data through the
network (reduce the number of messages required to
compute the aggregations).

2. Overhead calculation in the network (decrease the
overhead)

3. Result accuracy from the data aggregated (is the data
used for aggregation satisfactory and reliable?).

4. Other factors should be taken to consideration such as
time delays, communication failures and sensor mobility.

V.SIMULATION RESULTS AND ANALYSIS

In this section, we are going to evaluate our algorithm in
terms of power consumption, network lifetime and finally time
delay. Then, we are going to compare our results to well
known data management approaches such as the naive and the
simple TinyDB approaches. We are going to prove the
efficiency of our distributed approach and its adaptive manner
in maintenance and re-construction of the index routing tree
due to unexpected failures. We compare our EEIA approach
with the:

1. Naïve algorithm: all the query results from each node
are sent to its parent until the results reach the root
where they are aggregated and sent to the base station.

2. Simple TinyDB: the results are aggregated at each
intermediate node until reaching the root.

In our simulation, we assumed the energy wasted is 1µJ for
sending a single bit and 0.5µJ for receiving a single bit.
Initially, each node has 1 J of available energy.

In our simulation, we also incorporated the energy
consumption of building an index tree. As you can see in
Figure 12, as the number of nodes increases, the energy
consumption increases linearly since all nodes participate in
building the query with same amount of energy. We
concluded that the energy consumption of building the index
tree is equivalent to initiating one query in the network.

As for the maintenance of the index tree, we see from
Figure 13 that the average energy consumed in the
maintenance depends on the readings of the nodes in the
network. If the network readings change significantly in a
small amount of time, the energy consumed in maintaining the
tree increases. On the other hand, if the network readings
change slowly then the energy consumption of the index
maintenance decreases. The energy consumption in the first 15
seconds is high since the index tree was being built.

We issued a number of different queries on 500 nodes and
compared the energy consumption, delay and number of
instructions using our approach compared to the normal
approach of broadcasting the query to the network. To
simulate the same queries, we implemented in our simulator
two approaches, the first approach queries the network by
broadcasting the query to all the nodes and aggregating the
results back to the base station. As for the second approach,
we added our index querying approach. To make our
simulation more realistic, we maintained the same condition
on the network while using the different querying approaches.

In Figure 14, we compared the energy consumed for the
same queries using the 2 approaches. We issued 12 different
queries and calculated the energy consumed by these queries
to return the result. As can be seen from the graph, all queries
using the indexed approach consume less energy than using
the other approach. You can also note from the graph that
some queries have energy consumption that is close to the
normal approach while others have larger energy
consumption. This difference depends on the conditions of the
issued query since more selective queries tend to have a larger
advantage using our approach (indexing with more
selectiveness decreases the number of messages sent and
received in the network).

In Figure 15, we compare the number of packets sent for
the same query using the 2 approaches. As the figure shows,
the number of packets sent decreases with the indexing
approach since some nodes will not forward the packets to
their children if their children don’t satisfy the query
conditions.

As can be seen in Figure 16, the delay is decreased using
our approach since as discussed before the number of packets
sent decrease hence collisions decrease. In the delay
simulation, we assumed a packets needs 0.01 sec to be resent.

In the last simulation, we added the cv (common value)
approach to our simulator and compared the lifetime of the
network using indexing and cv querying to the normal
approach. As can be seen from Figure 17, the first node dies
after 83 queries in the normal approach while using our
approach; the first node dies after 130 queries. This increase in
the lifetime of the network is due to two factors. The first
factor is that nodes are sending fewer packets using the
indexed approach thus less energy consumption per node. The
second factor is the decrease in packet size with cv approach
where less energy is consumed in sending the packet.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2904

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200

E
n
e
rg
y
C
o
n
su
m
e
d

Nb of Nodes

Building Indexes in the Rounting Tree

Energy consumed (mJ) VS
Density of the Network

Fig. 12 Building the routing tree

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 15 30 45 60 75 90 105 120

E
n
e
rg
y
co
n
su
m
e
d
(�
J)

Time in seconds (Readings Change)

Energy ConsumedVS Change in Readings

Maintaining Routing Tree (100
nodes initially deployed)

Fig. 13 Maintaining the routing tree

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

0 1 2 3 4 5 6 7 8 9 10

E
n
e
rg
y
C
o
n
su
m
e
d
(
J)

Query: Select AVG(temp)
From sensors
where temp > 25
and temp< 33

Energy ConsumedPer Query

Simple TinyDB

EEIA

Naive

Fig. 14 Energy consumption per query

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 1 2 3 4 5 6 7 8 9 10

N
b
o
f
In
st
ru
ct
io
n
s

Query: Select AVG(temp)
From sensors
where temp > 25
and temp< 33

Nb of Instruction Per Query

Simple TinyDB

EEIA

Naive

Fig. 15 Nb of instructions per query

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10

D
e
la
y
in

S
e
co
n
d
s

Query: Select AVG(temp)
From Sensors
Where temp> 25
And temp< 33

Delay Per Query

Simple TinyDB

EEIA

Naive

Fig. 16 Time delay per query

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000
5500000
6000000
6500000
7000000
7500000

0 10 20 30 40 50 60 70 80 90 100 110 120 130

E
n
e
rg
y
C
o
n
su
m
e
d
(
J)

Nb of Queries

Network Lifetime

Simple TinyDB

EEIA

Naive

Fig. 17 Network lifetime

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2905

VI. CONCLUSIONS

In summary, we have showed how aggregate queries are
efficiently executed over wireless sensor networks in a
distributed manner. We have proved that our in-network
distributed approach performed better in terms of energy
reduction and network lifetime than the naïve and simple
TinyDB approaches. Furthermore as for future work, our
approach should confront with the difficulties of topology
construction, data routing, loss tolerance by including several
optimization techniques that further decrease message costs
and improve tolerance to failure and loss. In addition to
implementing these techniques, we need to rethink some of
these techniques to present more efficiency to network
changes and external factors which could affect our approach
such as node mobility, obstacles and other issues. In addition
as future work, we could also extend our simulator to
incorporate a 3D tree construction technique plus other
methodologies mentioned above.

ACKNOWLEDGMENT

The authors would like to gratefully thank the support of the
American University of Beirut university research board
(URB) and the Lebanese National Council for Scientific
Research (LNCSR) through their corresponding research
grants.

REFERENCES

[1] D. Estrin, R. Govindan, J. Heidemann (Editors), “Embedding the
Internet”, In CACM Volume 43, Issue 5, May 2000, Pages: 38 - 41.

[2] S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting
aggregate queries over ad-hoc sensor networks”, In Workshop on
Mobile Computing and Systems Applications (WMCSA), Callicoon,
NY, June 2002, Pages: 49 – 58.

[3] G. Pottie and W. Kaiser, “Wireless integrated network sensors”,
Communications of the ACM, Volume 43, Issue 5, May 2000, Pages:
51- 58.

[4] Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless sensor
networks for habitat monitoring”, In Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications,
Atlanta, Georgia, USA, 2002, Pages: 88 - 97.

[5] J. Hill, R. Szewczyk, A.Woo, S. Hollar, and D. Pister, “System
architecture directions for networked sensors”, In Proceedings of the
1st international conference on Embedded networked sensor systems
Los Angeles, California, USA, November 2000, Pages: 193 - 204.

[6] Cerpa, J. Elson, D.Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat
monitoring: Application driver for wireless communications
technology”, In ACM SIGCOMM Workshop on Data Communications
in Latin America and the Caribbean, April 2001, Pages: 20- 41.

[7] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database
systems”, In 2nd International Conference on Mobile Data
Management, Hong Kong, January 2001, Pages: 3 - 14.

[8] Y. Yao and J. Gehrke, “Query Processing in Sensor Networks”, In
Proceedings of the First Biennial Conference on Innovative Data
Systems Research (CIDR 2003), Asilomar, California, January 2003.

[9] Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and Y. Yao, “Energy-
Efficient Data Management for Sensor Networks: A Work-In-Progress
Report”, 2nd IEEE Upstate New York Workshop on Sensor Networks.
Syracuse, NY, October 2003.

[10] S. Madden, M. Franklin, J. Hellerstein, W. Hong, “The Design of an
Acquisitional Query Processor for Sensor Networks”, ACM SIGMOD
Conference, San Diego, CA, June 2003, Pages: 491 - 502.

[11] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network Query
Processing in Sensor Networks”, Sigmod Record, Volume 31, Number
3, September 2002, Pages: 9 – 18.

[12] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-
level naming”, In Proceedings of the eighteenth ACM symposium on
Operating systems principles, Banff, Alberta, Canada, October 2001,
Pages: 146-159.

[13] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann, “Impact
of network density on data aggregation in wireless sensor networks”, In
ICDCS-22, November 2001.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks”, In
Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networks (MobiCOM 2000), Boston, MA, August
2000, Pages: 56-67.

[15] S. Madden, M. Franklin, J. Hellerstein and W. Hong, “TinyDB: An
Acquisitional Query Processing System for Sensor Networks”, In
ACM Transactions on Database Systems (TODS), Volume 30, Issue
1, March 2005, Pages: 122 - 173

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a Tiny
AGgregation service for ad-hoc sensor networks,” In 5th Annual
Symposium on Operating Systems Design and Implementation (OSDI),
December 2002, Pages: 131-146.

[17] J. Hellerstein, P. Hass, and H.Wang, “Online aggregation”, In
Proceedings of the ACM SIGMOD, Tucson, AZ, May 1997, Pages:
171–182.

[18] Shatdal and J. Naughton, “Adaptive parallel aggregation algorithms”,
In Proceedings of the 1995 ACM SIGMOD international conference on
Management of data, San Jose, California, United States, Pages: 104 –
114.

[19] W. Yan and P. Larson, “Eager aggregation and lazy aggregation”, In
Proceedings of the 21th International Conference on Very Large Data
Bases (VLDB), September 1995, Pages: 345 – 357.

[20] ANSI. SQL Standard, 1992. X3.135-1992.
[21] P. Larson, “Data reduction by partial preaggregation”, In ICDE, 2002.
[22] S. Madden and M. Franklin, “Fjording the stream: An architecture for

queries over streaming sensor data”, In ICDE, 2002.
[23] M. Garofalakis and P. Gibbons, “Approximate query processing:

Taming the terabytes!” (Tutorial), In VLDB, 2001.
[24] M. Stonebraker and G. Kemnitz, “The POSTGRES Next-Generation

Database Management System”, Communications of the ACM, Volume
34, Issue 10, 1991, Pages: 78–92.

[25] UC Berkeley, “Smart buildings admit their faults”, Web Page,
November 2001. Lab Notes: Research from the College of
Engineering, UC Berkeley.
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[26] O. Wolfson, A. Sistla, B. Xu, J. Zhou, and S. Chamberlain, “DOMINO:
Databases fOr MovINg Objects tracking”, In Proceedings of the 1999
ACM SIGMOD international conference on Management of data,
Philadelphia, Pennsylvania, United States, June 1999, Pages: 547 –
549.

[27] D. Kossman, “The state of the art in distributed query processing”, In
ACM Computing Surveys (CSUR), Volume 32, Issue 4, December
2000, Pages: 422 – 469.

[28] Crossbow, “Wireless sensor networks (mica motes)”,
http://www.xbow.com/Products/WirelessSensorNetworks.htm.

[29] Hill. A software architecture to support network sensors. Master’s
thesis, UC Berkeley, 2000.

[30] Mica motes: Crossbow technology, inc. Tech. rep.
http://www.xbow.com.

