
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

1

Abstract—With the necessity of increased processing capacity

with less energy consumption; power aware multiprocessor system
has gained more attention in the recent future. One of the additional
challenges that is to be solved in a multi-processor system when
compared to uni-processor system is job allocation. This paper
presents a novel task dependent job allocation algorithm: Energy
centric- Allocation (Ec-A) and Rate Monotonic (RM) scheduling to
minimize energy consumption in a multiprocessor system. A
simulation analysis is carried out to verify the performance increase
with reduction in energy consumption and required number of
processors in the system.

Keywords—Energy consumption, Job allocation, Multiprocessor

systems, Task dependent.

I. INTRODUCTION
ULTI-processor systems are preferred over uni-
processor systems due to a number of reasons viz.

increased performance in terms of increased throughput,
reduced time to complete the jobs, increased reliability and
dependability. Multiprocessor system may be either
homogeneous or heterogeneous, based on the application for
which it is designed. Even though there are many advantages
using multiprocessor systems, the implementation of such
systems becomes difficult due to the complexity and difficulty
in inter-processor communication and synchronization. The
additional overhead that is to be addressed for a
multiprocessor system when compared to a uni-processor
system includes: task-processor allocation, task
communication and synchronization, increased complexity
and cost. Task assignment is the process of partitioning the
available system of tasks and resources into modules and
assignment of these modules into the available processors.
Normally task assignment is carried out offline. Because, if
the system is static and the complete knowledge of the
application is known a priori, then after identifying different
modules, the tasks are assigned and bound to processors in the
system. Normally, finding an optimal assignment is
impractical and is NP-hard [1]. For multiprocessor systems,
there are available different algorithms for task-allocation
namely: Next-fit algorithm, Bin-packing algorithm, Utilization
balancing algorithms, myopic offline scheduling algorithm,
Focused, Buddy strategy and Assignment with precedence
constraints etc. [2]. Once the tasks are assigned to the

Anju S. Pillai is with the Electrical Engineering Department, Amrita
Vishwavidyapeetham, Coimbatore, India (Contact: 09942660603; e-mail:
s_anju@cb.amrita.edu).

T.B.Isha is with the Electrical Engineering Department, Amrita
Vishwavidyapeetham, Coimbatore, India (e-mail: tb_isha@cb.amrita.edu).

processor, they need to be scheduled. The traditional
algorithms which are used for scheduling include: Rate
Monotonic (RM) scheduling, Earliest Deadline First (EDF)
policy, Deadline Monotonic (DM) etc. [3], [4].

The major issue of most of portable embedded devices is
the amount of duration for which battery charge can be
retained. This is a major concern as it affects the system
usefulness. Energy issues are not only critical for portable
devices, but also for standalone systems too. Because this
induces problems associated with cooling, power delivery and
result in high power densities. Most of today’s processors
support either chip-multiprocessor or chip-threading
techniques and is very popular in the market. Due to the wide
spread use of multiprocessor systems, these systems can now
be found in desktop applications and in small embedded
devices [5]. While ensuring the computational needs, energy
consumption issues need more attention to make it a best
solution for all sorts of applications. Therefore, most of
today’s systems are power aware systems.

Power consumption reduction can be attempted at different
levels and by different methods. Software, hardware and
power-aware embedded solutions are popular in the field with
significant contributions by the software approaches [6]. From
the literature, it can be found that, there are plenty of power
aware algorithms and protocols available to reduce the power
consumption in both uniprocessor and multiprocessor systems
[7]. Most of the works carried out for the uniprocessor system
are implementable for multiprocessors as well. But, the
additional complexities of multiprocessors like: task
allocation, inter-processor communication and
synchronization have to be exclusively solved for such
systems. In this paper, an algorithm for job allocation to
minimize the energy consumption of the system by grouping
the tasks based on the dependencies is presented.

For power consumption reduction, there are available a
good deal of algorithms exploiting Dynamic Voltage Scaling
(DVS) techniques. The possible power reductions are by
utilizing the processor slack to slowdown the tasks by
reducing the supply voltage and clock frequency [8], [9]. In
the field, DVS techniques still stands as one of the prime
method for energy saving.

In this paper, a task allocation algorithm: Ec-A based on
task dependencies and precedence constraints are presented to
minimize the system energy consumption. Here a new task
grouping and allocation strategy is presented which is
beneficial for power consumption reduction and number of
processors to execute the given set of tasks. The major
contributions of the work include:

Ec-A: A Task Allocation Algorithm for Energy
Minimization in Multiprocessor Systems

Anju S. Pillai, T.B. Isha

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

2

• New task allocation algorithm for energy minimization –
Energy centric- Allocation (Ec-A) Algorithm

• Implementation of task allocation and scheduling in
power aware multiprocessor system

The rest of the paper is organized as follows: Section II
gives a detailed literature survey and in Section III, the system
model is presented. This section includes the problem
definition and solution steps including the functioning of Ec-A
algorithm. Section IV describes the simulation results and
Section V concludes the paper.

II. RELATED WORKS
The field of real time systems is enriched with sufficient

algorithms and protocols solving most of the existing
problems. As the computing needs vary from time to time and
application to application; more and more features needs to be
incorporated into the existing embedded devices to meet the
current performance requirements. Due to this, there is a shift
from uni-processor model to multi-core and multiprocessor
systems. In the field, there are available many algorithms for
task allocation and scheduling. The different algorithms vary
in terms of the cost which is minimized while performing the
assignment. The popular task assignment algorithms are:
Utilization balancing algorithm, Next-Fit algorithm for RM,
Bin packing algorithm for EDF, Buddy algorithm, myopic
algorithm etc. The simulation analysis and validation of each
of these algorithms are carried out clearly in the literature [2].

The popular and widely used scheduling algorithms are
RM, DM and EDF which are actually optimal only for
uniprocessor systems. Although EDF is not optimal for
multiprocessors, it still remains as a good algorithm for
scheduling tasks in multiprocessors. Some of the reasons
favoring EDF is, its work conserving nature and bounded
preemptions and inter-processor task migrations [10].

There are available a class of algorithms named: fair
algorithms introduced by Baruah et al. which are found
optimal for multiprocessor scheduling. These algorithms are
used to guarantee quality of service in computing systems and
the first quantum based optimal global scheduling algorithm
for multiprocessor real time systems was proposed:
Proportionate fair (Pfair) algorithm [11]. Tasks are separated
based on the utilization as light (Utilization ≤ 50%) and heavy
(utilization > 50%) and another algorithm named: PD was also
proposed [12]. A simpler algorithm proposed is PD2 [13]
which use less parameter to compare the priorities of the tasks
when compared to PD. A variant of Pfair scheduling, early-
release scheduling, was also proposed in [14]. But, the above
algorithms considered periodic tasks for scheduling. In [15],
sporadic tasks and intra-sporadic tasks were introduced in the
system. Anyway, the scheduling overheads in Pfair algorithms
were quite high and so, another algorithm: Boundary fair
(Bfair) is implemented in [16] where the number of time
instants at which the scheduling decisions are made was
considerably reduced. This algorithm reduces the number of
context switches and task migrations and run time overhead
during scheduling the tasks. The task scheduling in the
multiprocessor system is found to be NP-hard [1]. In order to

optimize such systems for different cost functions, certain
heuristic based methods have been used rather than
conventional techniques. Conventional techniques take
reasonable amount of time when compared to heuristic
approach.

The need for increased performance of the system is met
with architectural supports like multicore and multiprocessors.
Additionally, software techniques like multi threading, parallel
processing, pipelining, exploiting parallelism at instruction
and data levels etc. are also incorporated in today’s processors
to increase the performance and throughput. To meet the
performance needs in such Multi Processors on Chip (MPoC)
devices; the energy issues are to be much stringent. If the field
of real time systems is explored, a variety of techniques for
energy consumption reduction attempted in all possible ways
can be found. Out of these techniques, energy aware task
scheduling is one of the prime. A reliability aware energy
management is proposed in [17]. Also, energy minimization is
attempted by life time reliability aware scheduling in [18]. In
one of the recent papers, a joint effort for reducing
communication cost, throughput degradation and migration
overhead is attempted [19].

The literature supports a few task allocation algorithms in
multiprocessor systems which intend to minimize the energy
consumption of the system. ETAHM [20] is one such
allocation algorithm, which combines task scheduling,
mapping, DVS utilization and ant colony optimization while
allocating jobs to heterogeneous multiprocessors to reduce the
energy consumption. To reduce the energy required to
complete a given work load, a robust static resource allocation
heuristic was proposed in [21]. The energy consumption
reduction is implemented using DVS technique in this method
also. ERTJA algorithm is used in sensor networks to reduce
communication energy and problems associated with temporal
characteristics of the nodes. Energy consumption reduction of
the cluster is carried out by reducing the activation of the
sleeping nodes [22]. A time and energy aware starvation free
allocation algorithm: SCATE for wireless sensor nodes are
presented in [23]. An energy aware task allocation for RM
scheduling was proposed by Tarek et al. [24], which include
RM admission control, partition heuristics and speed
adjustment to conserve the energy. A method to calculate
optimal work load assignment at run time by scalable
implementation is shown in [25].

 This paper proposes a job allocation for multiprocessor
applications, whose primary objective is to minimize the
energy consumption of the system while allocating jobs to the
processors. For the implementation, a novel task assignment
algorithm: Ec-A is developed and RM scheduling policy is
used for task scheduling.

III. SYSTEM MODEL

A. Problem Statement
For a set Г with n independent and periodic tasks and P

homogeneous processors in the system, the goal is to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

3

implement a task allocation and scheduling in multi-processor
system for energy minimization subject to the condition:
• The total utilization of the task set is less than or equal to

available processor capacity
• Individual processor assignment is done without violating

the schedulability by RM policy

B. Solution
The solution steps include details about the task-processor

assignment algorithm and scheduling policy. These details are
described in the following sub sections.

1. Task-processor Allocation Algorithm: E-centric
Allocation Algorithm (Ec-A Algorithm)

Once the number of tasks and the task attributes are known,
tasks are to be assigned to an optimal number of processors for
scheduling. The main objective of the work is to minimize the
power consumption of the embedded multiprocessor system
during task allocation. For this, an appropriate task assignment
strategy is devised. The functioning of the proposed new task
allocation algorithm and the significance of task allocation
based on dependency and precedence constraints are described
in detail in the following subsection.

Various task allocation algorithms are available in the
literature. Some of these algorithms aim for energy
consumption reduction too. Here, a new task allocation
strategy for multiprocessor systems is presented whose
primary objective is to group the tasks based on the
dependency and allocating those dependent tasks on the same
processor so as to reduce the communication cost and using
only the minimum peripherals as possible, to conserve energy.
Due to the dependent nature, and task precedence relations, a
task grouping strategy is formed which is beneficial for energy
consumption reduction. In the proposed Ec-A algorithm, once
the required peripherals and ports of the processor/controller
are identified, the clock inputs to the other peripherals are cut
down to ensure protection against associated energy wastage.
The use of this algorithm for energy and processor reduction
can be better realized when used for actual hardware
implementation.

In the field of multiprocessor systems, there are two
techniques which are widely used; one is global scheduling
and the other one is partitioned scheduling. In global
scheduling, only one main queue is maintained where each
task is present and ordered according to some priority
assignment policy. In normal approach, from the main queue,
few highest priorities, say p tasks are assigned to q processors
and so on until all tasks are assigned to the available number
of processors. In this approach, the overhead of task admission
control and ordering is limited to one main queue alone. But,
in partitioned approach, the tasks are assigned to processors as
it arrives. Tasks remain in the assigned processor only, no task
migration is allowed thereafter. Once the tasks are assigned to
different processors, tasks ordering and scheduling is done by
the individual queue available in each processor. From the
literature it can be found that it is inappropriate to compare the
two different approaches, but due to the simplicity in

managing the queue at processor level, partitioned approach is
more widely used [26].

The proposed Ec-A algorithm uses the global scheduling
approach for task allocation and the main queue is created by
considering the task dependence relations. Task dependencies
can be due to:
• Data dependency – The result of a task execution is the

input to the other task.
• Resource requirement – Two tasks ߬௜ and ௝߬ need the

same peripherals like: PORTS, LCD display, printers etc.
for the execution. In such cases, based on the precedence
relations, tasks can be assigned to the same processor for
scheduling.

• Nature of application – Based on application nature, tasks
may depend on each other.

• Control/conditional dependency – A task execution may
be activated only when a particular condition is TRUE in
another task. For example, in a sensor task, if the input
temperature goes above a particular threshold, activate a
Buzzer task for warning. Also, task precedence relations
are considered to order and group the tasks in the main
queue. Assigning dependent tasks to the same processor is
advantageous due to the following features.

• Use of resource constrained processors to reduce the
system cost - Processors with limited resources like
peripherals and other hardware devices can be
appropriately used. If a particular device is available only
in one of the processor, then the tasks which require those
peripherals can be assigned to that processor. All the
resources need not be present in all processors in the
system.

• Reduction in inter-processor communication – If
dependent tasks are assigned to different processors, those
tasks need to communicate across the processors for
sharing data, information regarding execution completion
or condition checking etc. This external communications
can be avoided if these tasks are assigned to the same
processor.

• Synchronization at task level and processor level – If
tasks are dependent on each other, they need to be
synchronized. Otherwise, it may result in inconsistency.
Thus, if dependent tasks are allocated to different
processors, synchronization between the tasks becomes
hard to achieve. In addition to task synchronization, in
such cases processor synchronization also becomes
essential. By assigning the dependent tasks to the same
processor, this overhead can be eliminated.

• Reduction in time delay – The delay in communication
and sharing of data can be avoided if dependent tasks are
assigned to the same processor.

• Creation of feasible schedule – A feasible schedule can be
created when tasks precedence and dependency relations
are known a priori and the tasks are available in the same
processor. In addition to the above mentioned advantages,
dependent task grouping and allocation to the same

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

4

processor is beneficial in terms of energy consumption
reduction. Energy is consumed:

• When all the peripherals and hardware devices are present
in all the processors, even though those devices are not
used by the application task, there is some energy wastage
associated, due to the availability of system clock input to
the peripherals.

• Due to the need of task communication and
synchronization for sharing data and control signals,
across the processors, the processor utilization increases
due to the extra time processor expends in waiting for an
acknowledgement from the other processor which is
executing the dependent task. The increased utilization
means the processor is not idle but busy doing some work.
This will increase the energy consumption of the
processor.

• Also, increased time delay will add up to increased power
consumption.

Thus, assigning dependent tasks to the same processor is
vital for energy saving in multiprocessor systems. Energy
saving in the order of milli Joules (mJ) is also significant,
because when it comes to the implementation of large and
complex applications like sensor networks or smart grids;
where thousands of such processors are executing throughout
the time, the energy saving can be significant.

The functioning of the proposed algorithm involves two
stages.

Stage I: Task Dependency Identification and Queue
Creation

The tasks are arranged in the main queue by considering the
task dependencies. If a task ߬௜

′ s operation depends on
௝߬ task then, tasks ൫߬௜, ௝߬൯ are grouped together to assign to

the same processor. In this phase, in addition to task
dependency identification and grouping, the total number of
processors required in the system is also calculated and fixed.
By knowing the total task set utilization, the number of
required processors is fixed as:

The required optimal number of processors,

௧ܷ௢௧௔௟ ൌ ෍
௜ܥ

 ௜ܶ

௡

௜ୀଵ

where: ܥ௜ is the execution time of the task and ௜ܶ the time
period.

 ݊ ൌ ڿ ௧ܷ௢௧௔௟ۀ

Stage II: Task Assignment
Upon the identification of task dependencies, the next step

is task assignment. Task assignment is carried out satisfying
the following conditions:
a. After the formation of dependent task groups, the first

dependent group ݀௜ is assigned to the first processor ௜ܲ.
Next dependent group is assigned to the next processor
and so on, until all the processors are assigned with one
dependent group each.

݀௜ ՜ ௜ܲ , ௝݀ ՜ ௝ܲ , …. ݀௠ ՜ ௠ܲ

where: ݀௜ is the group of dependent tasks represented by
൫߬௣, ߬௤൯. After the assignment, find individual processor
utilization: ௜ܷ , ௝ܷ , … …. ܷ௠. Then, check whether the
feasibility condition of RM policy holds good after the
assignment. The sufficient condition for schedulability by RM
policy is given by the upper bound condition.

ܷ ൌ ෍
௜ܥ

 ௜ܶ

௡

௜ୀଵ

 ൑ ݊ ቀ2ଵ ௡ൗ െ 1ቁ

where: ݊ is the total number of tasks in the system. However,
the above utilization test is not optimal as the workload on the
processor would be overestimated. The sufficient and
necessary condition for schedulability by RM is given by the
Response Time Analysis (RTA) [27] as below:

ܴ௜
௡ାଵ ൌ ௜ܥ ൅ ෍ ቜ

ܴ௜
௡

௝ܶ
ቝ

௛௣ሺ௜ሻא௝׊

 ௝ܥ

The response time of each task is iteratively calculated until

it converges to a fixed value. Finally, if ܴ௜ ൑ ௜ then the givenܦ
task set is schedulable by RM priority assignment.

On completion of dependent task assignment, next is the
independent task assignment in the system. The independent
task with higher utilization is assigned to the processor with
lesser utilization. The assignment is continued until all the
independent tasks are assigned to the processors or without
violating the feasibility condition. In case, if any of the
independent task cannot be allocated to the available
processors then, task splitting-up is carried out. i.e.
independent task is split into two or more smaller functions
without affecting the functionality of the task. Each of the
smaller functions is assigned to different processors so that the
processor can still schedule the dependent and independent
tasks without affecting the schedulability. Task splitting
strategy helps to pack the processors more effectively and thus
result in reduced number of processors when compared to
Next-fit or any such algorithms used in the multiprocessor
domain.

If task ߬௠ is an independent task whose utilization is ܷ௠ and
is not possible to allocate to any of the processors as the
schedulability condition fails. Under this condition, task ߬௠ is
portioned into two parts initially as: ߬௠ଵ ܽ݊݀ ߬௠ଶ . These two
parts are assigned to the processors ௜ܲ ܽ݊݀ ௝ܲ which are the
least used processors among all the available processors.

߬௠ଵ ՜ ௜ܲ ܽ݊݀ ߬௠ଶ ՜ ௝ܲ

The time complexity of Ec-A algorithm for allocating n
periodic tasks to the processor is O(n log(n)).

The E-cA algorithm steps are shown in Fig. 1.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

5

as
th
as
its
th
op
sc
w

sim
U
w
ev

Fig. 1 Flow

2. Scheduling
Tasks are sch

ssignment pol
he time perio
ssignment, a t
s execution. A

he same prior
ptimum numb
cheduled on in

without violatin

Performance
mulations ar

UUnifast algor
with varying
valuation. For

w chart describ

g of Tasks
heduled based
icy RM. The
od, higher t
task holds the
Also, different
rity. After all
ber of proce
ndividual pro
ng the schedul

IV. SIMUL

e evaluation is
re done with
ithm [28]. Ta
utilizations

r analysis, AR

bing the steps of

d on the well
priority assign
the priority.

e assigned prio
t instances of
locating the j
essors in the
ocessors. Task
lability of the

LATION RESUL

s carried out u
h synthetic
ask number va
of 2 to 10

RM7 LPC214

f Ec-A algorithm

known fixed p
nment rule is

Upon the p
ority until the
f the same tas
jobs to the r
e system, tas
k assignment

system.

LTS
using MATLA
tasks genera
arying from 1

is consider
48 microcontr

m

priority
shorter
priority

e end of
ks hold

required
sks are
is done

AB. The
ated by
0 to 20

red for
roller is

use
fre
is

wh
an
the

va

va
en

ed, whose r
equency 60MH
calculated usi

here: ܥ௘௙௙ the
nd ݂ the clock
e processor is
Fig. 2 show

arying number

Fig. 2 Va

Fig. 3 shows

ariation in task
nergy consump

Fig. 3 Variat

0

2

4

6

8

10

10

N
um

be
r o

f P
ro
ce
ss
or
s

0
1
2
3
4
5
6
7
8
9

10

2.1

N
um

be
r o

f P
ro
ce
ss
or
s

rated operatin
Hz. The ener
ing the equatio

E୮୰୭ୡୣୱୱ୭୰ ൌ

e effective ca
k frequency. t
executing the

ws the requir
r of tasks.

ariation in no. o

the variation
k set utilizatio
ption of the pr

tion in no. of pr

11 12 13

Ec‐A
Next‐fit

Bin‐packing
Utilization b

Num

2.3 3.5 3.7
Taskse

ng voltage i
rgy consumpti
on

௘௙௙ܥ ෍ ௜ݒ
ଶ כ ݂

௡

௜ୀଵ

apacitance, ݒ
t is the time p
e tasks.
red number

f processors wi

in the process
on and Fig. 4 s
rocessor with n

rocessors with t

14 15 16

balancing

mber of tasks

4.3 4.4 4.8

Ec‐

Ne

Bin

Uti

et Utilization

is 3.3V and
ion of the pro

୧݂ כ ݐ

 the supply v
period during

of processors

ith no. of tasks

sor requiremen
shows the cha
number of tas

task set utilizati

17 18 19

5.9 5.9 6.9

‐A

ext‐fit

n‐packing

ilization balanc

clock
ocessor

voltage
which

s with

nt with
ange in
sks.

ion

20

7.0

ing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

6

Fig. 4 Number of tasks Vs Energy consumption

When compared to Next-fit allocation algorithm, which is

suitable for scheduling tasks with RM policy in multiprocessor
systems, the Ec-A allocation algorithm takes only O(n log(n))
complexity to assign n tasks to the processors. While Next-fit
algorithm has a complexity of O(n2). From the above graphs,
it is verified that Ec-A algorithm outperforms the other
existing task allocation algorithms for multiprocessors, in
terms of reduced number of processors and reduced energy
consumption and complexity.

V. CONCLUSION
The present era systems are mostly multiprocessor systems

due to the demand of high ended complex application
implementation. For such systems, energy consumption is a
critical issue due to the resource limitations and need for
battery power. An optimal task allocation strategy is vital for
obtaining a proper scheduling that can minimize the energy
consumption of the system. This paper presents a task
allocation algorithm, Energy centric Allocation: Ec-A, for
energy consumption reduction in multiprocessor systems. The
allocation strategy is based on grouping the tasks by the
dependencies and precedence relations and by cutting the
clock supply to the unused peripherals at all the time when it
is not functioning. The simulation results validate the
performance enhancement of Ec-A algorithm to reduce the
number of processors required and also to minimize the
energy consumption while scheduling the tasks. The future
work intends to implement the Ec-A algorithm in a real time
application and perform a hardware validation.

REFERENCES
[1] S. H. Edwin Hou, Nirwan Ansari, Hong Ren, “A genetic algorithm for

multiprocessor scheduling”, IEEE Trans. on Parallel and Distributed
Systems, vol. 5, no. 2, February 1994.

[2] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for Multi
programming in a hard-real-time environment”, Journal of ACM, vol.
20, no. 1, pp. 4661, 1973.

[4] G. Buttazzo, “Rate monotonic vs. EDF: Judgment day”, in Proceedings
of 3rd ACM International Conference on Embedded Software,
Philadephia, USA, Oct 2003.

[5] Moreshet, Tali and Bahar, R. Iris and Herlihy, Maurice. “Energy
reduction in multiprocessor systems using transactional memory”,

ISLPED, editor(s) Roy, Kaushik and Tiwari, Vivek. 331-
334, ACM, 2005.

[6] Wei, T., Mishra, P., Wu, K., Liang, H., "Fixed-Priority Allocation and
Scheduling for Energy-Efficient Fault Tolerance in Hard Real-Time
Multiprocessor Systems", IEEE Transactions on Parallel and
Distributed Systems, On page(s): 1511 - 1526, Volume: 19 Issue: 11,
Nov. 2008.

[7] Sung I. Park, “The Design of Power Aware Embedded Systems,” PhD
Thesis, University of California, Los Angeleles, 2003.

[8] Padmanabhan Pillai and Kang G. Shin,“Real-Time Dynamic Voltage
Scaling for Low Power Embedded Operating Systems”, Symposium on
Operating Systems Principles’01, 2001.

[9] Woonseok Kim; Jihong Kim; Sang Lyul-Min, "Dynamic voltage scaling
algorithm for fixed-priority real-time systems using work-demand
analysis," ISLPED '03. Proceedings of the 2003 International
Symposium on Low Power Electronics and Design, vol., no., pp. 396-
401, 25-27 Aug. 2003.

[10] J. Goossens, S. Funk, and S. Baruah. “Priority-driven scheduling of
periodic tasks systems on multiprocessors”, Real-Time Systems, 25(2-
3):187–205, 2003.

[11] S.K. Baruah, N.K. Cohen, C.G. Plaxton, D.A. Varel, “Proportionate
progress: a notion of fairness in resource allocation”, Algorithmica 15
(6), 600–625., 1996.

[12] S.K. Baruah, J. Gehrke, C.G. Plaxton, “Fast scheduling of periodic tasks
on multiple resources”, Proc. of The International Parallel Processing
Symposium, pp. 280–288, Apr. 1995.

[13] J.H. Anderson, A. Srinivasan, “Mixed pfair/erfair scheduling of
asynchronous periodic tasks”, Proc. of the 13th Euromicro Conference
on Real-Time Systems, pp. 76–85, Jun. 2001,

[14] J.H. Anderson, A. Srinivasan, “Early-release fair scheduling”, Proc. of
the 12th Euromicro Conference on Real-Time Systems, pp. 35–43, Jun.
2000.

[15] J.H. Anderson, A. Srinivasan, “Pfair scheduling: Beyond periodic task
systems”, Proc. of the 7th Int’l Workshop on Real-Time Computing
Systems and Applications, pp. 297–306., Dec. 2000

[16] Dakai Zhu, Xuan Qi, Daniel Mosse, Rami Melham, “An optimal
boundary fair algorithm scheduling algorithm for multiprocessor real
time systems”, Journal of parallel and Distributed Computing, pp.
1411-1425, Jun. 2011.

[17] H. Aydin, D. Zhu, “Reliability-aware energy management for periodic
real-time tasks”, IEEE Transactions on Computers, 58:10, 1382–1397,
Jun. 2011.

[18] L. Huang, Q. Xu, “Energy-efficient task allocation and scheduling for
multimode MPSoCs under lifetime reliability constraint”, in: IEEE
Conference on Design, Automation and Test in Europe, 2010.

[19] A. Das, A. Kumar, B. Veeravalli, “Energy-aware communication and
remapping of tasks for reliable multimedia multiprocessor systems”, in:
International Conference on Parallel and Distributed Systems, ICPADS,
2012.

[20] Chang, Po-Chun and Wu, I-Wei and Shann, Jean Jyh-Jiun and Chung,
Chung-Ping.” ETAHM: an energy-aware task allocation algorithm for
heterogeneous multiprocessor”, DAC. editor(s) Fix, Limor. 776-
779, ACM, 2008.

[21] Apodaca, Jonathan and Young, Bobby Dalton and Briceno, Luis Diego
and Smith, Jay and Pasricha, Sudeep and Maciejewski, Anthony A. and
Siegel, Howard Jay and Bahirat, Shirish and Khemka, Bhavesh and
Ramirez, Adrian and Zou, Yong. “Stochastically robust static resource
allocation for energy minimization with a makespan constraint in a
heterogeneous computing environment”, AICCSA. editor(s) Siegel,
Howard Jay and El-Kadi, Amr. 22-31, IEEE, 2011.

[22] Karimi, Hamid and Kargahi, Mehdi and Yazdani, Nasser. “On the
Handling of Node Failures: Energy-Efficient Job Allocation Algorithm
for Real-time Sensor Networks”, In JIPS, (6) 3: 413-434, 2010.

[23] Mohsen Sharifi, and Morteza Okhovvat, "Scate: A Scalable Time and
Energy Aware Actor Task Allocation Algorithm in Wireless Sensor and
Actor Networks," ETRI Journal, vol. 34, no. 3, pp. 330-340, Jun. 2011.

[24] Tarek A. AlEnawy, Hakan Aydin, "Energy-Aware Task Allocation for
Rate Monotonic Scheduling", IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 213-223, 2013.

[25] Paterna, Francesco and Acquaviva, Andrea and Caprara, Alberto and
Papariello, Francesco and Desoli, Giuseppe and Benini, Luca. “An
efficient on-line task allocation algorithm for QoS and energy efficiency
in multicore multimedia platforms”, pp.100-105, IEEE, 2011.

[26] Shinpei Kato and Nobuyuki Yamasaki, “Real Time Scheduling with
Task Splitting on Multiprocessors,” in 8th IEEE International

0

100

200

300

400

500

600

700

800

900

1000

10 11 12 13 14 15 16 17 18 19 20

Ec‐A
Next‐fit
Bin‐packing
Utilization balancing

Number of Tasks

En
er
gy
 C
on

su
m
pt
io
n
(µ
J)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

7

conference on Embedded and Real-Time computing systems and
Applications, RTCSA 2007.

[27] M. Joseph, P.Pandya, “Finding response times in a real time system”,
BCS Computer Journal, vol. 29, no. 5, pp. 390-395, Oct. 1986.

[28] E., Bini, G., C., Buttazzo, “Biasing Effects in Schedulability Measures”,
IEEE Proceedings of the 16th Euromicro Conference on Real-Time
Systems, Aatania, Italy, July 2004.

