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Dynamics of a Discrete Three Species Food Chain
System

Kejun Zhuang, Zhaohui Wen

Abstract—The main purpose of this paper is to investigate a
discrete time three–species food chain system with ratio dependence.
By employing coincidence degree theory and analysis techniques,
sufficient conditions for existence of periodic solutions are estab-
lished.

Keywords—Food chain; ratio–dependent; coincidence degree; pe-
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I. INTRODUCTION

IN the past decade, the food chain systems in population
dynamics have attracted new attraction because of their

complex dynamical properties [1–7]. Many researchers fo-
cused on the the global stability, chaos, Hopf bifurcation,
periodic solutions and permanence of those models governed
by differential and difference equations.

Recently, Wang and Pang proposed the following three
species food chain model with Holling II–type function re-
sponse in [7]:⎧⎪⎨

⎪⎩
ẋ(t) = r1x(t) − a1x

2(t) − a2x(t)y(t),
ẏ(t) = r2y(t) − d1y2(t)

x(t) − by(t)z(t)
δ+y(t) ,

ż(t) = kby(t)z(t)
δ+y(t) − d2z(t),

(1)

where all the coefficients are positive constants. The second
species predate on the first species and the top species predate
on the middle species. The detailed ecological meanings of
this system can be found in [7].

Taking account of environmental periodic variation and time
delay effect, the modification of (1) is the non–autonomous
differential equations⎧⎪⎨

⎪⎩
ẋ(t) = r1(t)x(t) − a1(t)x2(t) − a2(t)x(t)y(t),
ẏ(t) = r2(t)y(t) − d1(t)y(t)y(t−τ)

x(t−τ) − b(t)y(t)z(t)
δ(t)+y(t) ,

ż(t) = k(t)b(t)y(t−τ)z(t)
δ(t)+y(t−τ) − d2(t)z(t).

However, it is known that the discrete time model are more
appropriate than the continuous ones when the populations
have non–overlapping generations. Discrete time models can
also provide efficient computational models of continuous
for numerical simulations. Following the method in [8], we
consider the following discrete analogue with the help of
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differential equations with piecewise constant arguments⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(k + 1) = x(k) exp{r1(k) − a1(k)x(k) − a2(k)y(k)},
y(k + 1) = y(k) exp{r2(k) −∑m

l=0
d1l(k)y(k−l)

x(k−l)

− b(k)z(k)
δ(k)+y(k)},

z(k + 1) = z(k) exp{∑m
l=0

hl(k)y(k−l)
δl(k)+y(k−l) − d2(k)},

(2)
where all the coefficients are positive ω−periodic sequences
and k is an integer. In the following, we shall explore the
existence of periodic solutions for system (2).

II. PRELIMINARIES

For simplicity, we use the following notations throughout
this paper,

Iω = {0, 1, 2, . . . , ω − 1}, f̄ =
1
ω

ω−1∑
k=0

f(k).

According to the Theorem 2.1 in [9], we can easily obtain
the following special case.
Lemma 2.1 ([9]). Let k1, k2 ∈ Iω and k ∈ Z. If g : Z → R

is ω−periodic, then

g(k) ≤ g(k1) +
1
2

ω−1∑
s=0

|g(s + 1) − g(s)|

and

g(k) ≥ g(k2) − 1
2

ω−1∑
s=0

|g(s + 1) − g(s)|,

the constant factor 1
2 is the best possible.

Now, we introduce some concepts and a useful result from
[10].

Let X, Z be normed vector spaces, L : Dom L ⊂ X → Z
be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimker L = codim Im L < +∞ and Im L is closed in
Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such that
Im P = ker L, Im L = ker Q = Im(I − Q), then it follows
that L|Dom L ∩ ker P : (I − P )X → Im L is invertible.
We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact
on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact. Since Im Q is isomorphic to ker L, there exists an
isomorphism J : Im Q → ker L.

Next, we state the Mawhin’s continuation theorem, which
is a main tool in the proof of our theorem.
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Lemma 2.2 (Continuation Theorem). Let L be a Fredholm
mapping of index zero and N be L-compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is

such that u /∈ ∂Ω;
(b) QNu 	= 0 for each u ∈ ∂Ω ∩ ker L and the Brouwer

degree deg{JQN, Ω ∩ ker L, 0} 	= 0.
Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. MAIN RESULTS

We now prove our results on the existence of positive
periodic solutions of system (2).
Theorem 3.1. Assume that

r̄2ωeL1 > eM2

ω−1∑
k=0

m∑
l=0

d1l(k),

where M2 = ln r̄1
ā2

+ r̄2ω, L1 = ln
∑ω−1

k=0

∑m
l=0 d1l(k)eL2

r̄2ω − r̄1ω

and L2 = ln d̄2ω∑ω−1
k=0

∑m
l=0

hl(k)
δl(k)

− r̄2ω. Then system (2) has at

least one positive ω−periodic solution.
Proof Let x(k) = eu1(k), y(k) = eu2(k) and z(k) = eu3(k),
then system (2) is equivalent to the following form,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1(k + 1) − u1(k) = r1(k) − a1(k)eu1(k) − a2(k)eu2(k),

u2(k + 1) − u2(k) = r2(k) −∑m
l=0

d1l(k)eu2(k−l)

eu1(k−l)

− b(k)eu3(k)

δ(k)+eu2(k) ,

u3(k + 1) − u3(k) =
∑m

l=0
hl(k)eu2(k−l)

δl(k)+eu2(k−l) − d2(k),
(3)

and we only need to establish the existence of ω−periodic
solutions for system (3).

To apply Lemma 2.2, we define

X = Z = {(u1(k), u2(k), u3(k))T ∈ R3, ui(k+ω) = ui(k)},

‖(u1, u2, u3)T ‖ =

(
3∑

i=1

max
k∈Iω

|ui(k)|2
) 1

2

.

Denote u(k) = (u1(k), u2(k), u3(k))T , then X and Z are
both Banach spaces when they are endowed with the above
norm ‖ · ‖.

Let

Nu = N

⎡
⎣u1

u2

u3

⎤
⎦ =

⎡
⎢⎢⎣

r1(k) − a1(k)eu1(k) − a2(k)eu2(k)

r2(k) −∑m
l=0

d1l(k)eu2(k−l)

eu1(k−l) − b(k)eu3(k)

δ(k)+eu2(k)∑m
l=0

hl(k)eu2(k−l)

δl(k)+eu2(k−l) − d2(k)

⎤
⎥⎥⎦ ,

Lu = u(k + 1) − u(k),

Pu = Qu =
1
ω

ω−1∑
k=0

u(k).

Obviously, ker L = R
3, Im L =

{
(u1, u2, u3)T ∈ Z : ū1 =

ū2 = ū3 = 0, t ∈ T
}
, dimkerL = 3 = codim Im L.

Since Im L is closed in Z, then L is a Fredholm mapping
of index zero. It is easy to show that P and Q are continuous
projections such that Im P = kerL and Im L = ker Q =

Im(I −Q). Furthermore, the generalized inverse (of L) KP :
Im L → ker P ∩ Dom L exists and is given by

Kp(u) =
k−1∑
s=1

u(s) − 1
ω

ω−1∑
s=0

u(s)(ω − s).

Clearly, QN and KP (I − Q)N are continuous. According
to the Arzela-Ascoli theorem, it is not difficulty to prove that
KP (I−Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X .
In addition, QN(Ω̄) is bounded. Therefore, N is L-compact
on Ω̄ with any open bounded set Ω ⊂ X .

Now, we shall search an appropriate open bounded subset
Ω for the application of the continuation theorem, Lemma 2.2.
For the operator equation Lu = λNu, where λ ∈ (0, 1), we
have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1(k + 1) − u1(k) = λ
[
r1(k) − a1(k)eu1(k) − a2(k)eu2(k)

]
,

u2(k + 1) − u2(k) = λ
[
r2(k) −∑m

l=0
d1l(k)eu2(k−l)

eu1(k−l)

− b(k)eu3(k)

δ(k)+eu2(k)

]
,

u3(k + 1) − u3(k) = λ
[∑m

l=0
hl(k)eu2(k−l)

δl(k)+eu2(k−l) − d2(k)
]
.

(4)
Assume that (u1(k), u2(k), u3(k))T ∈ X is a solution of

(4) for some λ ∈ (0, 1). Summing on both sides of system (5)
over Iω with respect to k, we can derive⎧⎪⎪⎨
⎪⎪⎩

r̄1ω =
∑ω−1

k=0 a1(k)eu1(k) +
∑ω−1

k=0 a2(k)eu2(k),

r̄2ω =
∑ω−1

k=0

∑m
l=0

d1l(k)eu2(k−l)

eu1(k−l) +
∑ω−1

k=0
b(k)eu3(k)

δ(k)+eu2(k) ,

d̄2ω =
∑ω−1

k=0

∑m
l=0

hl(k)eu2(k−l)

δl(k)+eu2(k−l) .

(5)
Since (u1(k), u2(k), u3(k))T ∈ X , there exist ξi, ηi ∈ Iω, i =
1, 2, 3, such that

ui(ξi) = min
k∈Iω

{ui(k)}, ui(ηi) = max
k∈Iω

{ui(k)}. (6)

In view of (5) and (6), we have
ω−1∑
k=0

|u1(k + 1) − u(k)| < 2r̄1ω,

ω−1∑
k=0

|u2(k + 1) − u(k)| < 2r̄2ω,

ω−1∑
k=0

|u3(k + 1) − u(k)| < 2d̄2ω.

From (6) and the first equation of (5), we have

u1(ξ1) < ln
r̄1

ā1

and
u2(ξ2) < ln

r̄1

āa
,

then

u1(k) ≤ u1(ξ1) +
1
2

ω−1∑
k=0

|u1(k + 1) − u1(k)|

< ln
r̄1

ā1
+ r̄1ω := M1,
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u2(k) ≤ u2(ξ2) +
1
2

ω−1∑
k=0

|u2(k + 1) − u2(k)|

< ln
r̄1

ā2
+ r̄2ω := M2.

From (6) and the second equation of (5), we have

u3(ξ3) < ln
r̄2ω∑ω−1

k=0
b(k)

δ(k)+eM2

,

and

u3(k) ≤ u3(ξ3) +
1
2

ω−1∑
k=0

|u3(k + 1) − u3(k)|

< ln
r̄2ω∑ω−1

k=0
b(k)

δ(k)+eM2

+ d̄2ω := M3.

From (6) and the third equation of (5), we have

u2(η2) > ln
d̄2ω∑ω−1

k=0

∑m
l=0

hl(k)
δl(k)

and

u2(k) ≥ u2(η2) − 1
2

ω−1∑
k=0

|u2(k + 1) − u2(k)|

> ln
d̄2ω∑ω−1

k=0

∑m
l=0

hl(k)
δl(k)

− r̄2ω := L2.

Similarly, we can also get

u1(k) ≥ u1(η1) − 1
2

ω−1∑
k=0

|u1(k + 1) − u1(k)|

> ln
∑ω−1

k=0

∑m
l=0 d1l(k)eL2

r̄2ω
− r̄1ω := L1.

By the assumption of theorem, we can obtain

u3(k) ≥ u3(η3) − 1
2

ω−1∑
k=0

|u3(k + 1) − u3(k)|

> ln
r̄2ωeL1 − eM2

∑ω−1
k=0

∑m
l=0 d1l(k)∑ω−1

k=0
b(k)
δ(k)

− d̄2ω := L3.

From above, we have maxk∈Iω |ui(k)| ≤ max{|Mi|, |Li|} :=
Ri, i = 1, 2, 3 and Ri is independent of λ. Let R = R1 +
R2 + R3 + R0, where R0 is taken sufficiently large such that
every solution ‖(x∗, y∗, z∗)T ‖ of the algebraic equations⎧⎪⎨

⎪⎩
r̄1 − ā1e

x − ā2e
y = 0,

r̄2ω − ω
∑m

l=0 d1le
y−x −∑ω−1

k=0
b(k)ez

δ(k)+ey = 0,

d̄2ω −∑ω−1
k=0

hl(k)ey

δ(k)+ey = 0

satisfies ‖(x∗, y∗, z∗)T ‖ < R. Now, we define Ω =
{(u1, u2, u3)T ∈ X}, ‖(u1, u2, u3)T < R. Then it is
clear that Ω verifies the requirement (a) of Lemma 2.2. If
(u1, u2, u3)T ∈ ∂Ω ∩ ker L = ∂Ω ∩ R

3, then (u1, u2, u3)T is
a constant vector in R

3 with ‖(u1, u2, u3)T ‖ = |u1| + |u2| +
|u3| = R, so we have QNu 	= 0.

By the invariance property of homotopy, direct calculation
produces deg(JQN,Ω ∩ ker L, 0) = 1 	= 0. Now, we have
proved that Ω satisfies all conditions of Lemma 2.2. Thus,
system (2) has at least one positive ω−periodic solution. This
completes the proof.
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