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 
Abstract—Elastomeric dielectric material has recently become a 

new alternative for actuator technology. The characteristics of 
dielectric elastomers placed between two electrodes to withstand 
large strain when electrodes are charged has attracted the attention of 
many researcher to study this material for actuator technology. Thus, 
in the past few years Danfoss Ventures A/S has established their own 
dielectric electro-active polymer (DEAP), which was called 
PolyPower. 

The main objective of this work was to investigate the dynamic 
characteristics for vibration control of a PolyPower actuator folded in 
‘pull’ configuration. A range of experiments was carried out on the 
folded actuator including passive (without electrical load) and active 
(with electrical load) testing. For both categories static and dynamic 
testing have been done to determine the behavior of folded DEAP 
actuator.  

Voltage-Strain experiments show that the DEAP folded actuator is 
a non-linear system. It is also shown that the voltage supplied has no 
effect on the natural frequency. Finally, varying AC voltage with 
different amplitude and frequency shows the parameters that 
influence the performance of DEAP folded actuator. As a result, the 
actuator performance dominated by the frequency dependence of the 
elastic response and was less influenced by dielectric properties. 

 
Keywords—Dielectric Electro-active Polymer, Pull Actuator, 

Static, Dynamic, Electromechanical.  

I. INTRODUCTION 

material that has human muscle characteristics potentially 
could provide an effective alternative to conventional 

actuator technology. Energy density, strain, actuation pressure, 
response time and efficiency are the important elements of an 
actuator material that need to be considered. In addition, the 
environmental tolerance, fabrication complexity, and 
reliability also need to be considered [1]. Thus, rapid 
developments and researches of so called artificial muscle led 
to the design of electro active polymers (EAPs). These 
materials can undergo large deformation, respond quickly and 
have high energy density hence they are also called artificial 
muscles [2]. Other attributes of dielectric elastomer include 
fast response, no noise, lightweight and low cost [3].  

The ability of dielectric electro active polymers (DEAP) to 
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deform by applying voltage is similar to the deformation 
shown by any dielectric material subjected to electric field. 
However, the corresponding deformation is markedly 
enhanced by the softness of polymer itself, as well as 
compliance of the electrodes. These two key-features 
distinguish actuating devices made of dielectric elastomer 
from those based on different electric-field-driven electrics, 
such as piezoelectric and electrostrictive materials [4]. Ronald 
and Kornbluh suggested that, the dielectric elastomer shows 
the promising potential for being used not only as actuator but 
as well as sensor and generator, or it may be used to replace 
existing impractical technologies [5].  

The unique features of DEAP, led Danfoss Ventures A/S to 
develop their own DEAP called PolyPower. PolyPower has 
improved actuator efficiency by solve the problem of previous 
DEAP, which elongated in two directions. A corrugated 
profile and metallic electrodes have been applied to enable the 
PolyPower to actuate in one direction only. The details 
specification of DEAP PolyPower actuator has been explained 
by [6]. PolyPower actuators are designed to act in a push or 
pull configuration. Previous studies focused on push actuators 
[7]. PolyPower folded pull actuator uses similar material as 
their previous push actuators. There are no changes in the 
material properties such as dielectric constant and elastic 
modulus. However, with different geometry it can lead to 
different actuator performance. 

The purpose of the present study is to investigate the 
dynamic characteristics of folded PolyPower pull actuator. 
Experimental works have been done to determine the 
mechanical properties as well as electromechanical 
characteristics. The experiments reveal the nonlinearity in the 
folded PolyPower pull actuator and the parameters that 
dominate its performance. 

II. PULL ACTUATOR 

The DEAP material in a push actuator configuration is 
generally under compression when it is not actuated. Actuator 
produces force to lift the mass or load by pushing up. In the 
pull configuration the DEAP material is generally under 
extension. The actuator is stretched down as mass or force is 
hanging. The force produced by the actuator lifts up the mass 
by pulling up. 

Fig. 1 shows a single degree of freedom model of the DEAP 
actuator to illustrate the differences between push and pull 
DEAP actuators. The ideal spring has an equilibrium length. 
At equilibrium, in Fig. 1 (a) spring is compressed. On the 
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Fig. 22 Magnitude displacement and phase angle for 2000 V at varies 
frequency 

 

 

Fig. 23 Amplitude-Frequency graph plotted for first harmonic 
response of DEAP PolyPower pull actuator 

V. CONCLUSION 

The main objective of this work was to investigate the 
characterization of PolyPower folded actuator as a ‘pull’ 
actuator for vibration control. A range of experiment was 
carried out on folded actuator including passive (without 
electrical stimulation) and active (with electrical stimulation) 
testing. For both categories static and dynamic testing have 
been done to determine the behavior of folded DEAP 
PolyPower actuator.  

The Force-Strain experiment has been conducted to 
estimate the stiffness of the actuator. In this work Hooke 
model has been used with good approximation. As a result 
natural frequency of the actuator can be calculated based on 
vibration theory. Thus, dynamic testing has been conducted to 
determine natural frequency and loss factor of actuator. The 
mass effect to this characteristic also has been investigated 
which is in line with vibration theory. This experiment has 

been done without any voltage stimuli (passive). This result is 
important to determine the range of bandwidth for DEAP 
PolyPower folded actuator working.  

On the other hand, Voltage-Strain experiment determines 
that DEAP PolyPower pull actuator is non-linear system. The 
voltage supplied has no effect on natural frequency that shows 
by active dynamic testing. Finally, varying amplitude and 
frequency of the AC voltage highlighted the parameters that 
influence the performance of DEAP pull actuator. As a result, 
the actuator performance is dominated by the frequency 
dependence of the elastic response and less influenced by 
dielectric properties.  

Since this DEAP folded will be used as pull actuator, the 
hysteresis and Force-Voltage need to be examined. This 
experiment will look the efficiency and the force that can be 
produced by this actuator as voltage applied. Also, the 
mathematical modeling for active testing need to be considers 
in future for better understanding. In addition, the ability of 
this actuator as active control needs to be studied to determine 
the effectiveness of DEAP folded actuator as pull actuator in 
vibration control system. There are also some modifications to 
be done to the experimental rig in order to increase accuracy, 
especially a stable area for the mass to be attached. 

APPENDIX 

List of Devices 
Accelerometer  PCB Piezotonics 352C22 (serial n. 652), PCB 
Piezotonics 352C22 (serial n. 657) 
Actuator     DEAP PolyPower (serial n. 1098) 
Amplifier     Sky Tronic Mini AV Digital Surround Amplifier 
(serial n. 103100)  Analyzer Dp Physics connected with a DELL 
Core Two 
Force Transducer  PCB Piezotonics ICP – 208 C 01 (serial n. 651) 
Oscilloscope    Gold Star OS 9020 A 
Shaker      LDS Model NV 201 (serial n. 71520-1) 
CCd Laser Displacement Sensor-Lk-G series –Keyence 
High-voltage power dc amplifier- model (P0621N)-Trek  
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