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Dynamical behaviors in a discrete predator–prey
model with a prey refuge

Kejun Zhuang, Zhaohui Wen

Abstract—By incorporating a prey refuge, this paper proposes new
discrete Leslie–Gower predator–prey systems with and without Allee
effect. The existence of fixed points are established and the stability of
fixed points are discussed by analyzing the modulus of characteristic
roots.
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I. INTRODUCTION

THE dynamical relationship between predators and their
preys has long been and will continue to be one of the

dominant themes in both ecology and mathematical ecology
due to its universal existence and importance [1]. There have
been plenty of papers about the dynamics on the predator–
prey system with and without different kinds of functional
responses. It is worth mentioning that the consequences of
hiding behavior of prey on the dynamics of predator–prey
interactions can be recognized significant.

In fact, the effects of prey refuges on the population dynam-
ics are very complex in nature, but for modelling purposes, it
can be considered as constituted by two components [2]: the
first effects, which affect positively the growth of prey and
negatively that of predators, comprise the reduction of prey
mortality due to decrease in predation success. The second one
may be the trad–offs and by–products of the hiding behavior
of prey which could be advantageous or detrimental for all the
interacting populations.

As far as we know, most of the works on predator–prey
system with a prey refuge are only the continuous models
governed by differential equations without time delay [3], [4].
However, many authors have argued that the discrete time
models governed by difference equations are more appropriate
than the continuous ones when the populations have nonover-
lapping generations [5], [6]. Discrete time models can also
provide efficient computational models of continuous models
for numerical simulations. For example, the stability of a
discrete–time predator–prey system with and without Allee
effect was studied [7]. And no such work has been done for
the discrete Leslie–Gower predator–prey model with a prey
refuge.

As a result, the main purpose of this paper is to construct
the discrete predator–prey system incorporating a prey refuge
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with the help of forward Euler scheme. The paper is organized
as follows: in Section 2, the discrete predator–prey model
without Allee effect is formulated. In Section 3, the existence
and stability of fixed points are investigated. In Section 4, the
discrete model with Allee effect is formulated and analyzed.
Finally, Section 5 draws the conclusion.

II. THE MATHEMATICAL MODEL

In [8], [9], Leslie introduced the following predator–prey
model where the ”carrying capacity” of the predator’s envi-
ronment is proportional to the number of prey:

{ dH
dt = (r1 − a1P − b1H)H,
dP
dt =

(
r2 − a2

P
H

)
P,

(1)

where H , P represent the prey and predator density, respec-
tively. r1, a1, b1, r2, a2 are positive constants. The parameters
r1 and r2 are the intrinsic growth rates of the prey and the
predator, respectively. The value r1/b1 denotes the carrying
capacity of the prey and r2H/a2 takes on the role of a prey-
dependent carrying capacity for the predator. There have been
many important and interesting results about system (1), such
as the global stability, permanence, periodic solutions, almost
periodic solutions and so on.

Stimulated by the works of [10], [11], [12], Chen extended
system (1) by incorporating a refuge protecting mH of the
prey as follows,⎧⎨

⎩
dH
dt = (r1 − b1H)H − a1(1 −m)HP,
dP
dt =

(
r2 − a2

P
(1−m)H

)
P,

(2)

where m ∈ [0, 1). This leaves (1−m)H of the prey available
to the predator. For system (2), the stability property of the
positive equilibrium was studied and the influence of the
refuge was explicitly discussed.

In the present work, applying the forward Euler scheme to
system (2), we obtain the discrete–time predator–prey system
with a prey refuge as follows:{

Hn+1 = Hn + δHn[r1 − b1Hn − a1(1 −m)Pn],
Pn+1 = Pn + δPn

(
r2 − a2

Pn

(1−m)Hn

)
,

(3)

where δ is the step size and all the coefficients are positive
constants. Notice that if the predator density disappears in this
model, then the prey density satisfies the discrete logistic–type
model.
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III. EXISTENCE AND STABILITY OF FIXED POINTS

In this section, we first determine the existence of fixed
points of (3), then investigate their stability by calculating the
eigenvalues for the variational matrix of (3) at each fixed point.

Solving the following nonlinear equations{
H(r1 − b1H − a1(1 −m)P ) = 0,
P
(
r2 − a2

P
(1−m)H

)
= 0,

we can get the two fixed points: E1(r1/b1, 0) and E2(H∗, P ∗),
where H∗ = r1a2

a1r2(1−m)2+a2b2
, P ∗ = r1r2(1−m)

a1r2(1−m)2+a2b1
. Obvi-

ously, E2 is the only positive fixed point for all parameter
values.

To study the stability of the fixed points of the model, we
first give the useful lemma, which can be easily proved by the
relations between roots and coefficients of a quadratic equation
[13].
Lemma 3.1. Let F (λ) = λ2−Bλ+C. Suppose that F (1) >
0, λ1 and λ2 are the two roots of F (λ) = 0. Then
(i) |λ1| < 1 and |λ2| < 1 if and only if F (−1) > 0 and
C < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1 ) if and
only if F (−1) < 0;
(iii) |λ1| > 1 and |λ2| > 1 if and only if F (−1) > 0 and
C > 1;
(iv) λ1 = −1 and |λ2| �= 1 if and only if F (−1) = 0 and
B �= 0, 2;
(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1 if and only if
B2 − 4AC < 0 and C = 1.

Let λ1 and λ2 are two eigenvalues of the fixed point. We
recall some definitions of topological types for a fixed point
(x, y). (x, y) is called a sink if |λ1| < 1 and |λ2| < 1. A
sink is locally asymptotically stable. (x, y) is called a source
if |λ1| > 1 and |λ2| > 1. A source is locally unstable. (x, y)
is called a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1
and |λ2| > 1). And (x, y) is called non-hyperbolic if either
|λ1| = 1 or |λ2| = 1.

A. Stability of fixed point E1

The Jacobian matrix of (3) at E1 is given by

J1 =
[

1 − δr1 −a1r1δ(1−m)
b1

0 1 + δr2

]
.

The corresponding characteristic equation can be written as

λ2 − (trJ1)λ+ detJ1 = 0, (4)

where trJ1 is the trace and detJ1 is the determinant of the
Jacobian matrix J1. Hence the two eigenvalues of Jacobian
matrix J1 are λ1 = 1− r1δ and λ2 = 1+ r2δ > 1. According
to Lemma 3.1, we can obtain that there are only two different
topological types of E1 for all permissible parameter values.
Proposition 3.2. The fixed point E1 is a saddle if r1δ > 1;
E1 is a source if r1δ < 1.

B. Stability of interior fixed point E2
Now, we shall discuss the stability of positive fixed point

E2. The Jacobian matrix of (3) at E2 is in the form of

J2 =
[

1 − δb1H
∗ −a1δ(1 −m)H∗

r22δ(1 −m)/a2 1 − r2δ

]
.

Then the characteristic equation is

λ2 + pλ+ q = 0, (5)

where p = 2 − δ(r2 + b1H
∗), q = (1 − δb1H

∗)(1 − δr2) +
a1δ

2r22(1 −m)2H∗/a2.
Proposition 3.3. If r2δ + b1δH

∗ < 4, then there exist at
least four different topological types of E2(H∗, P ∗) for all
parameter values.
(i) E2 is a sink if and only if both the following conditions
hold:

(i.1) a1 > a2
δ2r22(1−m)2H∗ (2r2δ+ 2b1δH∗ − r2b1δ

2H∗ − 4);
(i.2) a1 < a2

δ2r22(1−m)2H∗ (b1δH∗ + r2δ − b1r2δ
2H∗).

(ii) E2 is a saddle if and only if
a1 <

a2
δ2r22(1−m)2H∗ (2r2δ + 2b1δH∗ − r2b1δ

2H∗ − 4).
(iii) E2 is a source if and only if
a1 >

a2
δ2r22(1−m)2H∗ (b1δH∗ + r2δ − b1r2δ

2H∗).
(iv) E2 is not hyperbolic if one of the following conditions
holds:

(iv.1) a1 = a2
δ2r22(1−m)2H∗ (2r2δ+2b1δH∗−r2b1δ2H∗−4);

(iv.2) a1 = a2
δ2r22(1−m)2H∗ (b1δH∗ + r2δ − b1r2δ

2H∗).
Proof: Let F (λ) = λ2 + pλ+ q. Then

F (1) = r2b1δ
2H∗ +

a1r
2
2δ
2(1 −m)2H∗

a2

is always positive. By direct computation, we have F (−1) > 0
if and only if

a1 > L =
a2

δ2r22(1 −m)2H∗ (2r2δ+2b1δH∗−r2b1δ2H∗−4),

and q < 1 if and only if

a1 < M =
a2

δ2r22(1 −m)2H∗ (b1δH∗ + r2δ − b1r2δ
2H∗).

According to the assumption r2δ + b1δH
∗ < 4, it can be

concluded that L < M .
Due to Lemma 3.1, it is easy to see that, E2 is a sink

if a1 > a2
δ2r22(1−m)2H∗ (2r2δ + 2b1δH∗ − r2b1δ

2H∗ − 4) and
a1 <

a2
δ2r22(1−m)2H∗ (b1δH∗+r2δ−b1r2δ2H∗); E2 is a saddle

if a1 < a2
δ2r22(1−m)2H∗ (2r2δ + 2b1δH∗ − r2b1δ

2H∗ − 4); E2
is a source if a1 > a2

δ2r22(1−m)2H∗ (b1δH∗ + r2δ − b1r2δ
2H∗)

and E2 is non–hyperbolic for the other parameter values.
From Proposition 3.3, we can find that periodic oscillations

may occur at some critical values.

IV. ALLEE EFFECT ON PREY POPULATION

In this section, we consider the predator prey system (3)
as subject to an Allee effect on prey population and have the
following system:⎧⎨
⎩

Hn+1 = Hn + δHn

[
(r1 − b1Hn) Hn

u+Hn
− a1(1 −m)Pn

]
,

Pn+1 = Pn + δPn

(
r2 − a2

Pn

(1−m)Hn

)
,

(6)
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where we take Hn/(u+Hn) as the Allee effect function and
u as the Allee constant satisfying the assumption

a2r1 − a1r2u+ 2a1mr2u− a1m
2r2u

a2b1 + a1r2 − 2a1mr2 + a1m2r2
> 0. (7)

If we choose the Allee constant u = 0 (i.e., if there is no Allee
effect on the prey population),then system (6) reduces to (3)
immediately. System (6) has two fixed points: E3(H∗

1 , P
∗
1 )

and E4(r1/b1, 0), where

H∗
1 =

a2r1 − a1r2u+ 2a1mr2u− a1m
2r2u

a2b1 + a1r2 − 2a1mr2 + a1m2r2
,

P ∗
1 =

r2(1 −m)H∗
1

a2
.

Next, we shall discuss the stability of positive fixed point
E3(H∗

1 , P
∗
1 ). After some simple calculations, the Jacobian

matrix of (6) at E3 is

J3 =
[

α −a1δH∗
1 (1 −m)

r22δ(1 −m)/a2 1 − r2δ

]
,

where α = 1 + δH∗
1 (r1−2b1H∗

1 )
u+H∗

1
+ δH∗3

1 (b1H
∗
1−r1)

(u+H∗
1 )

2 . Then the
characteristic equation is

F1(λ) = λ2 − (trJ3)λ+ detJ3 = 0, (8)

where
trJ3 = α+ 1 − r2δ

and
detJ3 = α(1 − r2δ) +

a1r
2
2δ
2(1 −m)2H∗

1

a2
.

Again by using Lemma 3.1, we obtain that the modulus of two
roots of (8) is less than 1 (i.e., the positive fixed point J3 is
asymptotically stable) if and only if F1(1) > 0, F1(−1) > 0
and detJ3 < 1.

We observe that F1(1) > 0 holds if and only if r2δ(1−α)+
a1r

2
2δ
2(1 −m)2H∗

1/a2 > 0 holds. If α < 1, then F1(1) > 0.
Then we investigate the condition F1(−1) > 0 when α < 1.

It implies that F(−1) > 0 holds if and only if 2+α−r2δ(1+
α) + a1r

2
2δ

2(1−m)2H∗
1

a2
> 0 holds. For simplicity, if r2δ < 1,

then F1(−1) > 0.
Now, we can get the conclusions on the stability of fixed

point E3.
Proposition 4.1. By assumption (7), the positive fixed
point E3 of system (6) is asymptotically stable if the follows
conditions are satisfied:

(i) α < 1;
(ii) r2δ < 1;
(iii) α(1 − r2δ) + a1r

2
2δ

2(1−m)2H∗
1

a2
< 1.

V. CONCLUSION

In this paper, the new discrete Leslie–Gower predator–prey
model with a prey refuge was proposed. Existence and stability
of fixed points were investigated. Afterwards, the predator–
prey model with Allee effect was considered. By mathematical
analysis, we have shown the stability of the positive fixed
point. However, it may be very complicated structure when
our system is delayed and the predator population is subject
to an Allee effect. Thus it would be very interesting to improve
such structure in the future.

REFERENCES

[1] Yongli Song, Sanling Yuan, Jianming Zhang. Bifurcation analysis in the
delayed Leslie-Gower predator-prey system. Appl. Math. Modelling 33
(2009), 4049–4061.

[2] Eduardo González-Olivares, Rodrigo Ramos-Jiliberto. Dynamic conse-
quences of prey refuges in a simple model system: more prey, fewer
predators and enhanced stability. Ecological Modelling 166 (2003), 135–
146.

[3] Liujuan Chen, Fengde Chen, Lijuan Chen. Qualitative analysis of a
predator–prey model with Holling type II functional response incorporat-
ing a constant prey refuge. Nonlinear Analysis: RWA 11 (2010), 246–252.
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