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 
Abstract—This study involves the modeling and monitoring of 

an ammonia synthesis fixed-bed reactor using partial least squares 
(PLS) and its variants. The process exhibits complex dynamic 
behavior due to the presence of heat recycling and feed quench. One 
limitation of static PLS model in this situation is that it does not take 
account of the process dynamics and hence dynamic PLS was used. 
Although it showed, superior performance to static PLS in terms of 
prediction, the monitoring scheme was inappropriate hence adaptive 
PLS was considered. A limitation of adaptive PLS is that non-
conforming observations also contribute to the model, therefore, a 
new adaptive approach was developed, robust adaptive dynamic PLS. 
This approach updates a dynamic PLS model and is robust to non-
representative data. The developed methodology showed a clear 
improvement over existing approaches in terms of the modeling of 
the reactor and the detection of faults. 

 
Keywords—Ammonia synthesis fixed-bed reactor, dynamic 

partial least squares modeling, recursive partial least squares, robust 
modeling. 

I. INTRODUCTION 

HE continual drive to improve process safety and ensure 
the manufacture of high quality consistent product has led 

to an increased demand for the implementation of process 
monitoring schemes in the chemical industry. Process 
monitoring schemes can be developed using data generated 
from first principle models (i.e. a model built based on the 
physical and chemical relationships between variables) [1]. 
However, the development of a first principle model is time 
consuming and challenging for a complex process. Therefore, 
data driven methods, namely multivariate statistical projection 
techniques are favored. They are considered as the most 
effective analytical tools for the monitoring of industrial 
processes. The aim of this family of methodologies is to 
project the high dimensional process data down onto a lower 
dimensional sub-space that captures most of the process 
information. The new sub-space comprising latent variables is 
used for the monitoring and prediction of the behavior of the 
process. 
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Partial Least Squares (PLS) is one of the most widely 
applied multivariate statistical projection techniques due to its 
ability to extract information from ill-conditioned data, for 
example missing data and collinear data. An overview of the 
application of PLS for industrial process analysis, control and 
monitoring are available in [2]-[5].  

PLS is also known as projection to latent structures as the 
high dimensional data is projected down onto a low 
dimensional sub-space by extracting latent variables that are a 
linear combination of the original variables. The latent 
variables monitoring statistics namely Hotelling’s T² and the 
squared prediction error (SPEሻ for the input and output spaces; 
SPEଡ଼ and SPEଢ଼, respectively, can be developed. These metrics 
allow the detection of the changes in the process operation and 
hence, corrective action can be taken by the process operator. 
The industrial application of PLS to batch and continuous 
processes has been widely reported [6]-[9]. One limitation of 
PLS is that the basic configuration was proposed to model 
steady state processes and this is not the case for the most 
industrial process and hence extensions to PLS have been 
proposed.  

During the last two decades, a number of extensions have 
been put forward to handle different types of industrial 
systems. For example, various dynamic PLS algorithms were 
developed to model dynamic process behavior [10], [11]. 
Different versions of recursive PLS were proposed to adapt to 
changes in process operating conditions [12]-[15]. Multiblock 
PLS algorithms were proposed to handle processes with large 
number of variables that could be naturally blocked or which 
comprised multiple unit operations [16]-[20]. More recently 
Total PLS was proposed to enhance the detection ability of a 
monitoring scheme [21]. 

Most modern industrial processes are time varying [22] and 
hence a static parameter PLS model is inappropriate. One 
solution proposed was recursive PLS which can be considered 
as a model correction, since it aims to update the reference 
model to account for changes in the process operating 
conditions while still having the ability to detect abnormal 
behavior. The very first recursive PLS model was proposed by 
Helland, et al. [23]. It updates the PLS model by incorporating 
the new data onto the loading matrix. One limitation of this 
approach is the slow computations comparing to other 
recursive PLS approaches. 

Wold [13] developed the exponentially weighted moving 
average PLS (EWMA-PLS) algorithm in which more recent 
observations are given larger weights than the previous ones. 
He also proposed retaining the old PLS model to avoid the 
unnecessary PLS updating as in recursive PLS. Two 
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limitations of the Wold approach were discussed by Wang 
[15]. First, the original PLS model does not necessarily 
represent the current relationship between variables, secondly, 
since the EWMA-PLS algorithm is based on parameters such 
as the forgetting factor its sensitivity to the detection of 
abnormal behavior could be impacted. 

Qin [12]-[14] proposed two variants of recursive PLS; a 
block wise PLS algorithm that is based on a moving window 
approach and sample wise PLS. The objective is to recursively 
update the PLS model so that it can reflect changes in the 
process operating conditions. The monitoring results will 
differ based on window size but this issue can potentially be 
addressed by using process understanding of dynamics 
response rates to select the window size. Another issue is that 
older data, which is representative of the process, is 
discounted in favor of a new sample that might not be 
representative. More specifically, in recursive PLS, three types 
of observation might be generated; a sample representing 
normal operating conditions, a statistical outlier or a sample 
which represents abnormal behavior. The effectiveness of a 
PLS model is dependent on the data used for model 
development. Therefore, it is important to ensure that only the 
data that represents normal operating condition are included in 
the development/updating of a PLS model [24], [25] 

Wang et al. [15] introduced adaptive confidence limits for 
the recursive PLS statistics utilizing the sample wise recursive 
PLS algorithm of Qin [12] and termed it recursive PLS with 
adaptive confidence limits (APLS). They applied it for the 
modeling and monitoring of an industrial distillation process 
and fluid catalytic cracking unit. Issues that may arise 
included the fact that since the PLS model is updated 
whenever a new sample becomes available, statistical outliers 
or abnormal samples may contribute to the PLS model and 
secondly the confidence limits of the monitoring statistics are 
allowed to adapt to abnormal process behavior, which 
statistically should be indicated as an out of statistical control 
signal. 

Lee, Lee et al. [25] proposed robust adaptive PLS which 
was based on the block wise recursive PLS algorithm and they 
applied it to a waste water treatment process. The main 
advantage of this approach is that they proposed a threshold to 
differentiate between outlying samples and nominal samples. 
If the sample was confirmed to be an outlying sample, they 
weighted it appropriately and included it in the model update. 
By weighting the outlying samples, the high leverage outliers 
can be changed to a normal observation and hence the 
robustness of the PLS model is sustained during model update 
[25]. They confirmed whether a sample is an outlier using the 
combined index (1) proposed by Qin et al. [26] which is based 
on the metrics of Hotelling’s T² and the square prediction error 
ሺܵܲܧ௑ሻ. 

 

߰௧ ൌ 	
T୲ଶ

ߜ
୘౪
మ
ሺଵିఈሻ ൅

SPEଡ଼୲
ୗ୔୉౔౪ߜ
ሺଵିఈሻ (1)

where ݐ is the sample number, T୲ଶ, SPEଡ଼୲	are the value of the 
Hotelling’s Tଶ and the squared prediction error statistics of 

sample ߜ ,ݐ
୘౪
మ
ሺଵିఈሻ, ߜୗ୔୉౔౪

ሺଵିఈሻ are the corresponding confidence 

limits for Hotelling’s Tଶ and Squared prediction error statistics 
respectively. The detailed descriptions of the formula of the 
monitoring statistics are given in [26], [27]. The weight 
function is calculated based on the weight function proposed 
by Pell, however, the combined index was used instead of 
cross validated residual used by Pell [25], [28]. 

Qin et al. [26] noted that Hotelling’s T² and ܵܲܧ௑ behave in 
a complementary manner and used the combined index to 
simplify the fault detection task, i.e. if the combined index 
detects a sample as out of statistical control, it can be 
considered either as a statistical outlier or a fault. By 
weighting those samples which violate the confidence limits, 
the proposed scheme gives abnormal samples an opportunity 
to contribute to the PLS model. Therefore, a secondary test 
needs to be implemented to distinguish between the two types 
of samples. Within this paper a robust adaptive dynamic PLS 
algorithm is proposed that addresses the issues described and 
its performance demonstrated by applying it to an ammonia 
synthesis fixed-bed reactor. 

II. PROCESS DESCRIPTION 

Ammonia synthesis is performed in a fixed-bed reactor 
(Fig. 1), which consists of two key unit operations; three 
consecutive fixed-beds in which the reaction is carried out and 
a heat exchanger where the heat is exchanged between the 
inlet stream and the outlet stream and hence the heat is 
recycled within the process. Additionally, fresh feed is used to 
quench the system at various quenching points. The ammonia 
reactor is thus considered a complex dynamic system due to 
heat recycling and quenching [29]. The ammonia produced 
exits the reactor at the bottom of the third bed with product 
quality being defined in terms of concentration of ammonia. 
Fig. 1 shows a schematic diagram of the ammonia synthesis 
reactor. 

Two faults which result in the reactor becoming unstable 
and resulting in the temperature oscillating rapidly (Fig. 2) are 
reviewed and since they lead to the same situation, only the 
first is considered in this paper. The first occurs when the 
overall pressure falls below 170 ܾܽݎ and the total fresh feed 
temperature is kept at a steady state. The second occurs when 
the total fresh feed temperature falls below 235°ܥ and the 
overall pressure is maintained at a steady state. The resulting 
oscillations associated with the temperature damage the 
catalyst in the reactor [29]. The unstable behavior of the 
ammonia fixed-bed reactor has been widely researched in the 
field of control engineering [29], [30]. The simulation study 
used and the initial operating conditions and start up values 
were those published in [29]. 
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Fig. 1 Schematic representation of the ammonia fixed-bed reactor 
 

The response and predictor variables are listed in Table I. 
Three data sets were generated for the analysis with the 
samples taken every 10 sec under open loop with the sampling 
time selected with knowledge of the appropriate process time 
constant. The first comprised 400 data points and formed the 
reference data-set that was used for building the calibration 

model. The second set contained 1000 data points and formed 
the validation data set. The fault occurred at the beginning of 
the third data set and normal operating conditions were 
restored after 320 points of the recorded data. The time of 
which the fault condition exists has been chosen to allow 
sufficient time for observations of the consequence. 
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Fig. 2 Temperature oscillation as a result of pressure falls to 150 ࢘ࢇ࢈ 
in the ammonia synthesis fixed-bed reactor 

 
TABLE I 

THE RESPONSE AND PREDICTOR VARIABLES OF THE AMMONIA SYNTHESIS 

REACTOR 

Type name Tag Description 

Response ܥଷ ݕ Concentration of the ammonia 

Predictors 
 

௜ܶ ݔଵ Inlet temperature 

௙ܶ ݔଶ Temperature of total fresh feed flow

 ଷ Total fresh feedݔ ௘ܨ

ܳଵ ݔସ First quench flow rate 

ܳଶ ݔହ Second quench flow rate 

ܳଷ ݔ଺ Third quench flow rate 

ொܶଵ ݔ଻ Temperature of the first quench 

ொܶଶ ଼ݔ Temperature of the second quench 

ொܶଷ ݔଽ Temperature of the third quench 

 ଵ଴ Operating pressureݔ ܲ

III. METHODS AND TECHNIQUES 

A. Dynamic PLS 

In most industrial applications, process behavior is dynamic 
and hence, a dynamic model is appropriate. A number of 
approaches have been proposed for dynamic PLS modeling 
including; modification of the PLS inner relation, 
augmentation of time lagged measurements and filter 
approaches [10], [11], [31]. A widely accepted approach is to 
include lagged measurements in the input matrix (i.e. 
incorporation of a time series) thereby considering both static 
and dynamic relationships. If the input matrix includes only 
lagged values of the input variables, it is called a Finite 
Impulse Response (FIR) model whilst a multivariate Auto-
Regressive with eXogenous inputs (ARX) model is built if 
both input and output values are included in the input matrix 
[31], [32]. Although the use of time series is widely adopted, 
care is required in term of the number of lags to include since 
a large number of lagged values will contribute to the noise in 
the PLS model and the computational burden. Dynamic PLS 
(DPLS) modeling has been reported by a number of 
researchers [10], [33]. Like PLS, process monitoring can be 
based on Hotelling’s T² and the squared prediction error 
 ,௒ܧܲܵ ௑ andܧܲܵ ;ሻ for the input and output spacesܧܲܵ)
respectively. 

B. Robust Adaptive Dynamic PLS (RADPLS) 

Of the various recursive PLS approaches, the recursive PLS 
algorithm with adaptive confidence limits proposed by Wang 
et al. [15] is used as a basis of a revised methodology, the 
Robust Adaptive DPLS (RADPLS). The revised algorithm is 
based on a dynamic PLS model as opposed to a static PLS 
model and make use of historical reference data for the 
calculation of the monitoring statistics and confidence limits. 
For simplicity the following notation is used 

 

ሼࢄ, ሽࢅ
஽௉௅ௌ
ሱۛ ሮۛ ሼࢀ, ,ࡼ ,ࡽ ,ࢁ  ሽ (2)࡮

 
where ࢄ and ࢅ are the input and output matrices ࡼ and ࡽ are 
the loadings ࢀ and ࢁ are the scores of the input and output 
matrices respectively and ࡮ is a matrix of inner regression 
coefficients. 

When a new sample,	ݐ, becomes available, the monitoring 
statistics and updated limits are calculated. The combined 
index, ߰௧, is also calculated according to (1) with ߜట౪

ሺଵିఈሻ 

denoting the corresponding confidence limit [27]. If the 
combined index of the new sample violates its limit, a 
secondary test needs to be conducted.  

The outlying sample generated from process failure or 
disturbance is likely to occur consecutively whilst the 
statistical outlier is unlikely to do so. Therefore, similar to the 
Western Electrical rule [34] for the detection of out of 
statistical control signals in monitoring charts, three or more 
consecutive values of the combined index are required to lie 
outside the control limits when determining a process 
abnormality and hence, the PLS model should not be updated. 
Once the combined index of an incoming sample violates the 
limits, the parameter update should be suspended and the 
status of the surrounding samples checked according to the 
above test.  

IV. RESULTS AND DISCUSSION 

A. Dynamic PLS Analysis 

The first data set comprising 400 samples was used to 
identify the reference model for the ammonia fixed-bed 
reactor. Static PLS showed unsatisfactory performance and 
failed to model the behavior of the ammonia synthesis fixed-
bed reactor (results not presented) due to neglecting the 
dynamic characteristics of the process. Consequently, a 
dynamic PLS (DPLS) model was developed based on an 
AutoRegressive with eXogenous inputs (ܴܺܣ) time series 
representation. The structure of the ܴܺܣ representation was 
determined through the Akaike information criterion (ܥܫܣሻ, 
which is an information measurement approach used to 
identify the most appropriate model amongst a class of 
competing models developed from recorded data [35]. 
Different structures, as shown in Table II, are used under 
different pre-processing approaches and the structure is 
selected based on the lowest ܥܫܣ value for each pre-
processing method. The selected structure of each pre-
processing approach is then used for PLS modeling. 
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Fig. 3 Workflow of the Robust Adaptive Dynamic PLS (RADPLS) algorithm 
 

TABLE II 
THE MOST APPROPRIATE ARX STRUCTURE FOR DIFFERENT PRE-PROCESSING 

METHODS 

Pre-processing method ܴܺܣ 
structure 

Normalized data ܴܺܣሺ1,1,20ሻ* 

Centred data ܴܺܣሺ1,1,3ሻ* 

Centred input ܴܺܣሺ3,3,1ሻ* 
No pre-processing ܴܺܣሺ10,10,1ሻ* 

,ሺܴ݅ܺܣ* ݆, ݇ሻ, ݅ represents the number of lagged output, ݆ represents the 
number of lagged input and ݇ represents the time delay between the input and 
output used to form the regressor matrix 

 

A critical issue to be addressed was whether to scale the 
data and if so how as it is known to have an impact on model 
development. Of the four approaches considered (Table III), 
no scaling, mean centering the input only, mean centering the 

input and output and normalization, the latter approach was 
found to be the most appropriate scaling method as it 
considered the differences in the measurements ranges. The 
selection was based on the statistical metrics of Root Mean 
Squared Error (RMSE) and the coefficient of determination 
(Rଶ), which are used to measure the performance of the 
regression model. 

The number of latent variables to include in the model was 
selected using cross validation. Four latent variables 
corresponded to 94.63% of the total amount of variance 
explained in the X-block and 96.32% of the variance 
explained in the output. The root mean squared error for the 
calibration model (RMSEC) was 0.0003. The model was then 
validated on the validation data set (RMSEV= 0.0009) and 
model performance was in general acceptable.  
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(c) 
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(f) 

Fig. 4 (a) Hotelling Tଶ for the reference data set, (b)	SPE୶ for the 
reference data set, (c) SPE୷ for the reference data set, (d) Hotelling 
Tଶ for the validation data set, (e) SPE୶ for the validation data set, (f) 

SPE୷ for the validation data set 
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TABLE III 
ROOT MEAN SQUARED ERROR AND COEFFICIENT OF DETERMINATION OF PLS 

MODEL BASED ON DIFFERENT PRE-PROCESSING APPROACHES FOR 

CALIBRATION AND VALIDATION DATA SETS. 

Pre-processing RMSEC RMSEV ܀૛۱ܔ܉   ܔ܉܄૛܀
Normalization 0.0003 0.0009 0.9632 0.9346 

Centring input and output 0.0006 0.00235 0.8787 0.77.27 

Centring input 0.0006 0.00032 0.8706 0.5143 

No pre-processing 0.0004 0.0019 0.9297 0.8493 

 
The performance of the monitoring charts for the model 

developed using dynamic PLS for the calibration data shows 
statistically acceptable monitoring charts, where the calculated 
false alarm rate (Table IV, Appendix) does not exceed 5% and 
1% for the 95% and 99% confidence limits respectively (Figs. 
4 (a)-(c)). However, the monitoring charts for the validation 
data representing normal operations showed some evidence 
that dynamic PLS is unable to monitor the behavior of the 
ammonia synthesis reactor as shown in Figs. 4 (d)-(f) with the 
monitoring charts specifically ܵܲܧ௑, ܵܲܧ௒, continuously 
violating the confidence limits. The false alarm rates of the 
monitoring charts for the validation data set were much higher 
than the acceptable rate (Table IV, Appendix). Therefore, 
dynamic PLS was concluded to be inappropriate to construct a 
monitoring scheme for the application under normal operating 
conditions and hence, the results of the testing data where a 
fault occurred is not presented. 

B. Robust Adaptive Dynamic PLS 

The limitation of the monitoring charts observed in the 
implementation of dynamic PLS, where the monitoring charts 
produced high false alarm rates whilst the process ran within 
normal operating conditions, was addressed by applying 
RADPLS. The reference model developed in Section IV-A 
was used as the reference model for RADPLS. The next step 
was to update this model once a new sample became available. 
The results from the application of RADPLS for the validation 
data set indicate that model performance is significantly 
improved with RMSEV = 0.00057.  

The monitoring results from the application of RADPLS for 
the validation data set are presented in Figs. 5 (a)-(d). It can be 
seen that the process is within statistical control with the 
statistical indices (i.e. Hotelling Tଶ, ܵܲܧ௑ and ܵܲܧ௒) 
remaining within the statistical confidence limits. This is 
expected as the data represents normal operating conditions 
with a few samples lying outside of the 99% and 95% 
confidence limits expected. The false alarm rates of the 
monitoring charts for the validation data, which do not exceed 
5% and 1% for 95% and 99% confidence limits, verified that 
the approach is an efficient monitoring technique (Table V. 
Appendix) 

The control chart of the combined index shows that it 
remains within statistical control and only a few violations 
were observed but these were defined to be statistical outliers 
by the RADPLS algorithm. These results are improvements 
over the adaptive PLS approach [14], which did not take into 
account the process dynamics or the presence of statistical 
outliers. 
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(d) 

Fig. 5 (a) Hotelling Tଶ for the validation data set by RADPLS, (b) 
 for the	௒ܧܲܵ ௑for the validation data set by RADPLS, (c)ܧܲܵ
validation data set by RADPLS, (d) Combined index for the 

validation data 
 
When the RADPLS algorithm was applied to the third data 

set (i.e. data set with fault occurring over a period of 320 
samples), the statistical indices are affected by the fault as 
observed in Figs. 6 (a)-(c). The monitoring indices clearly 
indicate that the process has deviated from the previous 
operating conditions. The Hotelling ܶଶstatistic indicated the 
fault after two samples, whilst the ܵܲܧ௑ statistic identified a 
fault after five samples and ܵܲܧ௒ indicated it after two 
samples. These monitoring charts show the process is out of 
statistical control for approximately 180 data points with a few 
points lying in statistical control during this period. However, 
it was known that 320 samples were affected by the fault as 
this was when normal operating conditions were restored. This 
occurred for the following reasons: 
 The model parameters update incorrectly when the fault 

occurs. During process oscillation, when the signal passes 
through the region of normal operation, it causes the 
model to update. However, at this time the dynamic 
characteristics of the process are not representative of 
normal operations. This situation becomes more severe 
the longer the fault persists as the magnitude and 
frequency of the oscillation both increases as shown in 
Fig. 2. 

 Rapid oscillations resulting from the fault (the fast 
dynamic behaviour of the signal) has an impact on the 
statistical indices because the T2 and ܵܲܧ௑ are calculated 
as a function of the measured value of the current sample 
and the parameters of the previous PLS model. 

 Additionally, the combined index was calculated as 
function of the two statistics (T2 and ܵܲܧ௑), their limits 
and previous PLS model. Once an observation is 
identified as a statistical outlier, the observation itself is 
weighted prior to model update. However, the adaptive 
limits are allowed to adapt the statistical outlier. Hence 

the limits of the statistical outlier are used to calculate the 
combined index and its limit. This could have an impact 
on the functionality of the combined index as seen in Fig. 
6 (d) where an outlier was identified at time t=500. 
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(d) 

Fig. 6 (a) Hotelling Tଶ for RADPLS on test data, (b) SPEx for 
RADPLS on test data, (c). SPEy for RADPLS on test data, (d) 

Combined index for RADPLS on test data 
 

 

(a) 
 

 

(b) 

 

(c) 
 

 

(d) 

Fig. 7 (a) Hotelling Tଶ for RADPLS on test data (fault100 samples, 
(b) SPEx for RADPLS on test data (fault100 samples), (c) SPEy for 
RADPLS on test data (fault 100 samples), (d) Combined index for 

RADPLS on test data (fault 100 samples) 
 

From trying a different fault duration (i.e. the pressure falls 
to 150 bar for 100 recorded samples), it can be seen from Figs. 
7 (a)–(d) that the fault was detected well. 

The advantages of implementing RADPLS include the fact 
that the PLS model represents the nominal behavior 
throughout the duration of the process and hence, is sensitive 
to any changes in the process, including following the 
progression of a fault. Unlike the adaptive PLS algorithm 
proposed in Wang et al. [15], the model will not be affected by 
the fault. Furthermore, abnormal process behavior is indicated 
as out of statistical control and consequently the confidence 
limits will not adapt to the monitoring statistics 

V. CONCLUSIONS  

In this paper, a new approach, robust adaptive dynamic 
PLS, has been proposed. It was demonstrated that it can 
overcome the limitations of dynamic PLS and adaptive PLS 
through its application to an ammonia synthesis fixed-bed 
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reactor which exhibited complex dynamics. Static PLS 
showed limited performance and failed to predict the process 
behavior whilst dynamic PLS improved the process 
predictions on the validation data. However, the monitoring 
statistics showed that dynamic PLS produced a large number 
of false alarms. Application of adaptive PLS improved the 
model predictions capturing the changes in operating 
conditions. In practice these changes in the operating 
conditions are considered to be a process fault since the rapid 
and large oscillations damage the catalyst and hence these 
conditions should not be used in updating of the PLS model. 
Robust Adaptive Dynamic PLS improved the model 
performance and indicated when the process was out of 
statistical control by distinguishing between outliers and 
faults. This is a significant improvement for the monitoring of 
dynamic processes in that false alarms can be detected. This 
clearly seen from the comparison between false alarm rates 
produced from both approaches. Even though the proposed 
method shows some limitations in detection the full period of 
the fault for the aforementioned reasons, it significantly 
reduces the false alarm rate. 

APPENDIX 
TABLE IV 

FALSE ALARM RATE OF MONITORING CHARTS FOR CALIBRATION AND 

VALIDATION DATA SETS USING DYNAMIC PLS 

Chart 
False alarm rate 95% 

confidence limits 
False alarm rate 99% 

confidence limits 
Calibration data set 

Hotelling T² 5%  1% 

SPEଡ଼ 5%  0.75% 

SPEଢ଼ 2.25%  1.75% 

 Validation data set 

Hotelling T² 12%  8% 

SPEଡ଼ 92%  75.1% 

SPEଢ଼ 24.5%  9.5% 

 
TABLE V 

FALSE ALARM RATE OF MONITORING CHARTS FOR THE VALIDATION DATA 

SET AND FAULT DETECTION RATE FOR THE TEST DATA SET USING ROBUST 

ADAPTIVE DYNAMIC PLS 

Chart 
False alarm rate 95% 

confidence limits 
False alarm rate 99% 

confidence limits 
Validation data set 

Hotelling T² 4.85%  1.11% 

SPEଡ଼ 4.509%  0.90% 

SPEଢ଼ 3.1031%  0.80% 

 
Fault detection rate 95% 

confidence limits 
Fault detectionrate 

99% confidence limits 
test data set 

Hotelling T² 59.68%  56.25% 

SPEଡ଼ 58.12%  54.68% 

SPEଢ଼ 62.18%  59.37% 
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