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Abstract—In this paper, we probe into the traffic assignment 

problem by the chromosome-learning-based path finding method in 

simulation, which is to model the driver' behavior in the with-in-a-day 

process. By simply making a combination and a change of the traffic 

route chromosomes, the driver at the intersection chooses his next 

route. The various crossover and mutation rules are proposed with 

extensive examples. 

Keywords—Chromosome learning, crossover, mutation, traffic 

path finding 

I. INTRODUCTION

he dynamic in this paper is a within-a-day process, not a 

day-to-day process [1-2]. For example, after a special event 

like earthquake, there are some lanes closed and people 

worriedly drive back to home. The driver listen to the traffic 

information over the radio, and the driver could also change 

their choices of roads. This forms a within-a-day transient 

process, typically not repetitive. The purpose of studying the 

with-in-a-day dynamics is to provide the scenarios so that the 

people who need it can make decision based on it. For example, 

after earthquake, the ambulance may try to reach the patients as 

soon as possible. This would put them into an advantageous 

situation that the driver foresee the traffic congest in advance 

and deploy their emergency vehicles to avoid the most severe 

congestion. 

Clearly, the mathematical static user equilibrium (UE) 

method [3] cannot be used here, neither does the dynamic user 

equilibrium method, which solves the dynamic traffic 

assignment problem using calculation variations along the time 

horizon [4-5]. However, this method is too time-consuming. 

Up to now, it looks that the most applicable and acceptable 

solution is the simulation. There are already a lot of simulation 

tools in the past 20 years. Typical software includes ATIS, 

TRABSYT, INTRAS, TEXAS, TRANSIMS, PASSER, 

CONTRAM, SATURN, INTEGRATION, and 

DYNASMART. However, they only provide the day-to-day 

dynamics for the driver’s behavior [2, 6-9]. 

Since the chromosome-learning-based (CL-based) path 
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finding method employs the probability in choosing the routes, 

it is very similar to the stochastic user equilibrium (SUE) 

method. The differences are (1) in the CL the formation of 

probabilities is based on "the-shortest-time-path produces more 

children than other paths", while the SUE uses the probability 

based on a logit model; (2) the CL uses simple arc exchanges 

among shortest paths (not exhausting all the possible routes) by 

the idea of route chromosome crossover, hence saving 

simulation time, while the SUE does not incorporate the short 

path information in determining probabilities. 

The CL has 3 operations: reproduction, crossover and 

mutation [10]. In the reproduction, the path with shortest time 

gets the most proportion in the next generation (i.e., more the 

driver use the path). This means, if at the current time a driver 

takes that path, the driver is expected to use the least time 

among the others. The reproduction operation will permit and 

encourage more the driver in the next generation to go along 

that path. But it is not necessary that all of the driver in next 

generation will take the best path since (1) the reproduction 

operation will produce every kind of descendents based on their 

parent proportion, (2) the result by the reproduction operation 

will experience crossover and mutation before the driver are 

put in use. In the mutation, some drivers may take a complete a 

new arc with a very small probability. 

II. WITHIN-A-DAY DYNAMIC TRAFFIC PATH FINDING MODEL

Suppose the traffic network is given. Each length of the arc 

p~q is also known as 
p~ql . Vehicle birth and death is given by 

the Origin-Destination (O-D) pairs. Vehicle initial path 

assignment is given by the shortest time path method [11]. 

Vehicle location (count from the end of each arc) is 
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v Free(A),  is the aggregated speed for the free traffic 

flow, 
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v Free(A),  is the aggregated minimum speed, k is the 

density, is a user-defined parameter. Number of vehicles in arc 
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 is the number of the vehicles newly 

generated in arc p~q at time t, )(
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 is the number of 

the vehicles newly entered arc p~q from other arc q'~p at time t,

and 1~' pq  is q’ is directly connected with p, or 0 otherwise. 

Suppose at starting point, we have n vehicles heading to both 

directions. The n vehicles start their journey one by one. The 

starting time interval is k minute(s). Our simulation time length 

is l minutes even some of the vehicle may not arrive at their 

destinations. After a driver approaches an intersection, the 

driver examines the travel time for each past ancestor's route. 

Tending to choose the shortest time route with the biggest 

probability [12], the driver does not refrain himself from a 

combination of the best shortest time routes (crossover), neither 

from a suddenly invention of taking a new arc (mutation). 

III. DYNAMIC TRAFFIC NETWORK ROUTING BASED ON 

CHROMOSOME LEARNING

We use the California South Bay Area as an example (see 

Figure 1). 
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Figure 1. The California South Bay Area traffic network. After a special event, half of the lanes are closed in dashed arcs. 

Gene set G contains all the arcs. A gene is an arc. Since this 

is a directed arc (both sides have different traffic flow, thus 

leading to different travel time on that arc), we may just 

mention the ending node of the gene when referring this gene. 

This is to say, you may think both arc p~q and node q are the 

same gene if your the driver in simulation is driving from p to q;

or you may think both arc p~q and node p are the same gene if 

your the driver in simulation is driving from q to p. Throughout 

this paper, we use both equivalent notations (see Table 1). 

Table 1. The number of vehicles in arc p~q at time t, and travel 

time. The time formula is T p~q(N(p, q, t)). 
p q # of vehicles in 

p~q in + direction 

# of vehicles in 

p~q in – direction 

Time, + 

direction

Time, - 

direction

0 1 130 151 4.9 5.0 

0 3 120 200 4.8 5.3 

1 2 100 150 4.6 5.0 

1 4 201 312 5.3 5.7 

2 5 120 152 4.8 5.0 

2 3 67 83 4.2 4.4 

3 6 128 38 4.9 3.6 

4 5 20 34 3.0 3.5 

4 7 179 200 5.2 5.3 

5 6 124 198 4.8 5.3 

5 8 256 283 5.5 5.6 

6 11 302 298 5.7 5.7 

7 8 35 63 3.6 4.1 

7 9 120 230 4.8 5.4 

8 10 300 384 5.7 6.0 

9 10 120 321 4.8 5.8 

9 12 87 41 4.5 3.7 

10 11 139 210 4.9 5.3 

10 13 325 279 5.8 5.6 

11 14 421 394 6.0 6.0 

12 13 201 176 5.3 5.2 
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12 15 235 203 5.5 5.3 

13 14 104 96 4.6 4.6 

13 16 236 271 5.5 5.6 

14 17 230 202 5.4 5.3 

15 16 67 72 4.2 4.3 

16 17 205 238 5.3 5.5 

Route pools Zrs (r R; s S) is classified by origin-destination 

pair (r, s), is composed of paths  rsi
k  = {ordered arc p~q series} 

for driver irs, irs {1, 2, … , # of  driver with (r, s)}. Obviously, 

any arc p~q  in rsi
k must be in G, i.e., p~q G.

Throughout the process, the number of members in route 

population Z rs  is always equal to the # of the driver with (r, s),

including those who are on the road (living chromosomes) and 

those who are out of the road (died chromosomes), but not 

including those who will start their journey from r towards s

(unborn chromosomes). That is, there is a one-to-one 

corresponding between the current and past the driver with (r,

s) and the members of route population Z rs at any time t. Each 

driver has his own (different or same) chromosome or string in 

Z rs.

The obvious relationship between the gene set and route 

population is that the members in route population Z rs (r R,

s S) must be composed by the connectable elements in the 

gene set. For example, a driver i starts from the arc 15~12, to 

his destination 6~3. The driver may take the route {15~12, 

12~9, 9~7, 7~4, 4~5, 5~6, 6~3}. This string is a chromosome or 

a member in route population Z rs. Obviously, the chromosomes 

thus defined in the route population Z rs may have different 

lengths of genes. 

Chromosomes are produced in the birth process of new the 

driver. When a new the driver is about to start his journey, the 

driver is given a shortest route based on solving the current UE. 

The fittest produces the most. Gene crossover is performed at 

the sites located at or after the current intersection node, and 

performed at all time t, but only to the driver at an intersection. 

Thus, it improves the simulation speed. Note that the size of the 

population is always increasing. Descendants take all the 

advantages of their precedents. Mutation is performed on a 

gene-by-gene basis. We may assume the probability of 

mutation is pm (a user-defined probability). For each gene, if it 

should be mutated, all the genes including and after this gene 

should be removed and a randomly chosen (connectable) 

chromosome from G is attached to the cut place of the mutating 

chromosome. 

IV. GENE OPERATORS

A. Rules of Crossover 

Conservation rule. The past arcs are the same between two 

chromosomes  then simply match the past portion of 

chromosomes, then randomly choose any (sub)strings of the 

remaining ones to crossover. 
1-4-7-9-12-13-14

1-4-7-8-10-11-14  

     a     b

By two simple loop node matching searching, the program 

can find that there are two sites that can crossover: site a with 

node 4, site b with node 7. By a (biased-)coin flipping, the 

driver may choose one route to continue his journey (exhibiting 

as go to the first arc of that route). 

Crossover with different lengths is like 
1-4-5-6-11-14  

1-2-5-4-7-8-10-9-12-13-14 

Randomly choose any (sub)strings of the remaining ones to 

crossover as long as nodes are matched. (Note that crossover 

does not mean that only the old chromosomes exchange their 

genes. The driver do may result in completely new routes.) 

Regret rule. Suppose that the driver started from 1 and took 

arc 1~4 and route

1-4-5-6-11-14 

at that time (since the first arc is determined by "shortest time" 

 a universal rule to the driver). After the driver approach 

intersection 4, the driver deletes all the connections with node 1 

since it is finished (we can see that by deleting all the row 

containing node 1, we eliminate the possibility that the driver 

comes back to a node which the driver has used). 

There is another chromosome chosen randomly from its 

"brothers" and "parents" to be crossovered. 

1-2-5-4-7-8-10-9-12-13-14 

Suppose the driver is already at intersection 4. By randomly 

choosing crossover sites 6 in the first chromosome and 10 in the 

second, we obtain one temporary string (not necessary a 

chromosome if it is not disconnect). The process is like this: 

(original route)        4-5-6-11-14 

                                4-7-8-10-9-12-13-14 

(crossovered string) 4-7-8-10-11 – 14 

Thus we obtain a new route for this the driver, and the 

simulation program puts him on his new way until the next 

intersection. 

Mostly, the crossover string is not a connectable route. For 

example, if we choose 7 and 6 to crossover. 

(original route)               4-5-6-11-14 

                                       4-7-8-10-9-12-13-14 

(crossovered string)       4-7-11-14. 

This is not feasible between 7 and 11. 

The regret rule says that the driver will want to connect back 

to his original route as soon as possible at the crossover point 

(i.e., disconnected point). Thus, the driver builds circles 

alternatively with the centers at the two disconnected points 7 

and 11, with radii 1 Hamming distance (that is, one arc away 

from 7 or 11), starting from the current route to connecting his 

original route. In our instance, write C7, 0 = {7}, C11, 0 = {11}. 

We know C7, 0 C11, 0 =  . This is the starting point of the 

regret rule. 

(1) The driver starts with 7, builds a circle C7, 1 = {4, 8, 9} 

with center 7, deleting 4 and have C7, 1 = {8, 9}. 

(2) Since C7, 1 C11, 0 =  , the driver builds the circle  C11, 1 = 

{6, 10} with the center 11. 

(3) Since  C7, 1 C11, 1 = , we continue to build the circle  
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C7, 2 = {1, 5, 5, 10, 10, 12}, deleting one 1, one 5, one 10 and 

have C7, 2 = {5, 10, 12}. 

(4) Since C7, 2 C11, 1 = { 10 }, the driver finds a connecting 

way by retracing the bridge of 10 to both sides: 

C11, 1 = {6, 10} C11, 0 = {11} 

C 7, 2  = {5, 10, 12} C7, 1 = {8, 9} C7, 0 = {7}. 

There is no difference from the pure network point of view. 

However, to hold a direct reasonability, the driver compares the 

travel time 3.6+5.7=9.3 and 4.8+4.8=9.6 between 7-8-10 and 

7-9-10, and decides to use 7-8-10 for connection. In summary, 

his new route is 

(fixed crossover string) 4-7-8-10-11-14 (a new 

chromosome) 

Nearsighted meticulous calculation rule. Suppose that a 

meticulously the driver meets the following case after 

crossover operation, 4-7-11-14. 

The nearsighted meticulous calculation rule says that this the 

driver will calculate the time the driver will use to connect his 

crossovered route and the original route. 

We also use C as our circles but this time C represents travel 

time. The Hamming distance will not be calculated. Instead, 

concrete travel time on that arc is used. In our instance, we 

write C7, 0 = {7(0)}, C11, 0 = {11(0)}. 0 means the driver is there. 

We know C7, 0 C11, 0 = . Then 

(1) The driver starts with 7, builds a circle C7,1 = {4, 8, 9} 

with center 7, deletes 4 and has C7,1 = {8(3.6), 9(4.8)}. 

(2) Since C7, 1 C11, 0 =  , the driver builds the circle  C11, 1 = 

{6(5.7), 10(4.9) } with the center 11. 

(3) Since  C7, 1 C11, 1 = , we continue to build circle  C7, 2

= {1, 5, 5, 10, 10, 12}, deleting one 1, one 5, one 10 and have 

C7, 2 = {5(9.2), 10(9.3), 12(8.5)}, where 9.2 = 8(3.6)+5(5.6), 9.3 

= min {8(3.6)+10(5.7), 9(4.8)+10(4.8)}, and delete the 

memory of arc connection 7-9-10 (that is, only record the 

shortest time path, and forget the useless path before finding a 

bridge), 8.5 = 9(4.8)+12(3.7). 

(4) Since C7, 2 C11, 1 = {10}, the driver finds a connecting 

bridge 10 and by retracing this bridge to both sides: 

C11, 1 = {6(5.7), 10(4.9)} C11, 0 = {11} 

C7, 2  =  {5(9.2), 10(9.3), 12(8.5)} C7, 1 = {8(gives 9.3), 

9(gives larger number)} C7, 0 = {7}. 

The driver finds a new route (fixed crossover string) 

4-7-8-10-11-14 (a new chromosome). 

The only difference between the nearsighted meticulous 

calculation rule and the regret rule is that the nearsighted 

meticulous calculation rule has to continue since the above 

route may not be the best one in time. This is to accomplish by 

further expand the radii of circles until the Hamming distance 

reaches min{H*, H1} where H* is a user-defined number, H1 is 

the shortest Hamming distance between to two disconnected 

points 7 and 11. 

(5) Further expanding the radius of 11, the driver finds 5, 8, 

9, and 13. Then the driver calculates the respective time to 

arrive those points. Again, further expanding the radius of 7, 

the driver finds 11. Then the driver terminates his searching. 

Since in the operation of one generation, we do not have to 

mend the chromosome immediately after crossover since the 

mutation is the next step. We would normally first let it go 

through mutation. 

If it is not chosen, we go back and mend the disconnected 

part using the above rules. If it is chosen but the mutation 

makes another gene disconnected, we also go back and mend 

the disconnected part using the above rules. Otherwise, we wait 

it mutated first and then repair the genes. 

B. Rules of Mutation 

Mutation of a route is with a small probability. 

Mathematically, if a node p is chosen to mutate, we extract a 

subset Mp from the gene set with one end of p. Suppose q is its 

leading node. Then our target set to choose for mutation is 

Mp\{q-p}. With equal probability, we choose one of the nodes 

in set Mp\{q-p}. After mutation, the following rules are for 

making them feasible. 

Stubbornness rule. If the probability chooses one gene to 

mutate, it has to choose at least one more gene that is 

neighboring it in the other end of the new gene. By searching in 

set G, we may find a new series of genes (subchromosome) that 

leads the driver back to his route or to his destination. 

When searching this subchromosome, always choose the 

gene, which is able to immediately go back to the original route 

if this gene exists. This can be done by simply search G. For 

example, a driver is driving on the route 16-13-14-11-6. At 

intersection 13, a mutation operation changes the gene of 14 to 

the gene of 10. We start search our gene set G. We find that 

there are 4 genes connecting to node 10: 10~13, 10~9, 10~8, 

10~11. It is not difficult for the computer itself to recognize that 

the 10~13 is his past arc. Among the other 3 arcs, 10~11 leads 

him immediately back to his original route. Hence we use 

10~11 and our mutation operation ends with two new genes of 

13~10 and 10~11. 

From the connection point of view, a mutation fixation is a 

projection from one point to the discrete set. Although this 

projection does not demand the perpendicularity, it does 

demand the shortest length. For example, suppose a the driver 

is at intersection 4, by mutation the driver is driven to node 7. 

Now, the driver wants to project himself back to his original 

route with the shortest time (excluding his coming arc). We 

formulate it as follows. 

Point: 7  Projected set: {5, 6, 11, 14} 

This time, the driver only uses radius method on one side that 

is node 7. Then the driver finds 

7-8-5:  3.6 + 5.6 = 9.2 

7-8-10-11:  3.6 + 5.7 + 4.9 > 9.2 (note that we already know 

7-8-10 < 7-9-10, we omit 7-9-10 here.) 

7-8-10-13-14: 3.6 + 5.7 + 5.8 + ( ) > 9.2 

Hence the driver takes the route 7-8-5 and gets back to his 

original route. 

Global eyesight rule. Sometimes the stubbornness rule is not 

intelligent enough since there exist better new routes leading 

the driver to his destination. The global eyesight rule says that 

when a the driver is driven by mutation to a new point not on 

his original route, the driver joins in the group whose origin is 
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the point the driver is on. If this group does not exist, the driver 

himself forms a group. That is, the driver has to use the UE 

method and starts his journey there as if newly starting. In the 

above example, his new origin is node 7, and his destination is 

still node 14. 

V. A COMPLETE EXAMPLE

Say we have a population of routes, which starts from the 

same origin 1 and ends with the same destination 14. The 

population consists of 5 chromosomes 

1-4-7-9-12-13-14  

1-3-6-11-14 

1-2-5-8-7-9-10-13-14 

1-4-7-8-10-11-14 

1-2-5-4-7-8-10-9-12-13-14 

Step 1. Start with 1. Find the route through where the shortest 

time is expected. Say it is 1-4-5-6-11-14. 

Step 2. When the driver approach node 4, the driver must 

judge the route to continue. 

1-4-5-6-11-14  

1-4-7-9-12-13-14  

1-3-6-11-14 

1-2-5-8-7-9-10-13-14  

1-4-7-8-10-11-14  

1-2-5-4-7-8-10-9-12-13-14 

Since the crossover occurs only at or after node 4, only 4 of 6 

chromosomes are feasible (in which the host chromosome must 

be included). Then we have 

1-4-5-6-11-14  (host chromosome) 

1-4-7-9-12-13-14  

1-4-7-8-10-11-14  

 1-2-5-4-7-8-10-9-12-13-14 

Crossover occurs at the places between 4 and 14. There are 

many combinations, but not all of them are feasible. Actually, 

only a small portion of them is feasible. The crossover rules can 

make the route feasible. 

Suppose the host chromosome chooses the chromosome 

1-4-7-8-10-11-14 to crossover, and crossover sites are 6 to the 

host chromosome and 10 to the spouse chromosome. The next 

generation of the host chromosome is 1-4-5-6~11-14  (host 

chromosome), where ~ denotes the place which needs 

examination. In the meantime, we put {1-4-5-6} into the 

population pool  Z1,6. Since 11-14  is a simple arc, we don't need 

to have a pool  Z11,14  and put it into it. Also we put the 

handicapped chromosome 1-4-5-6~11-14  into pool Z1,14 .

Step 3. Mutation. Suppose the host chromosome meets a 

mutation signal, which asks it to mutate 11 to 10. By 

Stubbornness Rule, it projects 10 onto "discrete 

one-dimensional space" 1-4-5-6~11-14 (host chromosome) and 

find the shortest path to get to this space is through 10-13-14. 

Hence, we have 1-4-5-6 ~ 10-13-14 (host chromosome). 

Step 4. Keeping all the repairing rules in mind, we examine 

the handicapped part 6~10. By Regret Rule, we connect 6~10 

by 6-11-10. Therefore, we finally finish the operation of this 

generation by the following chromosome (mutation should be 

kept to a small level), 1-4-5-6-11-10-13-14 (host chromosome). 

VI. SIMULATION

We write the above operations by C++.  After a special 

event, half of the lanes on roads 4-5, 10-11 and 13-14 are 

closed. W simulate 2 hours for the transient process, and find 

the total cars leaving the origins are among them, 928 are still in 

the half-way back to their home, and 1983 cars arrives to home. 

Examples are given in Table 2.

Table 2. Examples of route changes. 

Origin Destination Route (t) Route (t+1) Route (t+2) 

6 7 6-5-4-7 6-5-8-7  

6 12 6-5-4-7-9-12 6-5-8-7-9-12

6 16 6-5-4-7-9- 

12-15-16

6-5-8-7-9-

12-15-16 

6 17 6-11-14-17   

9 1 9-7-4-1   

9 3 9-7-4-5-2-3 9-7-8-5-2-3

9 8 9-7-8   

9 13 9-12-13   

9 14 9-10-11-14 9-10-13-14 9-10-13-16 

-17-14 

9 16 9-12-15-16   

9 17 9-10-11-14-17 9-10-13-14-17

From the examples, we can see that the drivers keep 

changing the routes according to the road information they get 

on their way back home. 

VII. CONCLUDING REMARKS

The traffic information is already summarized inexplicitly as 

a sort of condensed information in chromosome and its 

reproduction. As a result, the chromosome learning employs 

the probability incorporated with all past route traffic 

inexplicitly. Its probabilities are simply based on the past 

information its precedents provide. 
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APPENDIX

The model is as follows: 

a

x

a
x

a

dt
0

)(min

s.t. 

srqf rs

k

rs

k ,,

srkf rs

k ,,,0

afx
r s

rs

ka

k

rs

ka ,,

where 

R Set of origin nodes; R N

S Set of destination nodes; S N

K rs Set of paths connecting origin-destination (O-D) pair 

r-s, r R, s S

xa Flow on arc a; x=(…, xa, …) 

ta Travel time on arc a; t=(…, ta, …) 

fk
rs Flow on path k connecting origin-destination pair r-s,

r R, s S; crs=(…, ck
rs, …); c=(…, crs, … )   where (.)

is the transpose of (.). 

ck
rs Travel time on path k connecting origin-destination 

pair r-s, r R, s S; crs=(…, ck
rs, …); c=(…, crs, … )

where (.) is the transpose of (.). 

q rs
Trip rate between O-D pair r-s, r R, s S; (q)rs = q rs

rs

ka ,
Indicator variable: 

otherwise,0

pairDObetweenpathonislinkif,1
,

r-s-ka
rs

ka

Steps of minimizing process: 

(0) Initialization. Set counter n=0.

(1) Perform calculation of all-or-nothing assignment based on 

axtt
n

a

n

a

n

a ),(
)()()(

. This requires solving the 

sub-problem for each r-s pair. 

a

rs

k

rs

k
x

gcmin

s.t. 

srqg rs

k

rs

k ,, srkg rs

k ,,,0

The solving of this programming is equivalent to finding a 

direction 
)()( n

x
n

y  where vector 
)(n

x  is composed of 

)(n

ax ’s and vector 
)(n

y  is composed of 
)(n

ay ’s, which is 

implemented by performing all-or-nothing assignment based 

on }{
)(n

at . Hence, a set of auxiliary flow }{
)(n

ay  is 

introduced, agy
r s

rs

ka

k

rs

k

n

a ,,

)( . The direction 

finding is accomplished by the shortest path method. Steps are 

1) Initialize every node by label T where T represents the 

calculation for this node has not been finished. Initialize 

every node by index (-1) in I, where I  records the index 

for the shortest coming-way connecting node. 

2) Start with the origin node r. Let P(r)=0, L=L-{0}. Let vi

=r.

3) Consider the nodes vj with label T and also connecting to 

a node vi with label P.

4) Assign nodes vj with label T(vj) = min { T(vj), P(vi)+tij }.

Assign the node with the smallest T(vj) among j’s as 

P(vj)= T(vj) , where label P means that its shortest length 

for node vj has been determined. I(vj)={i: P(vj) = min {

T(vj)+ tij }, i S-L } where S is the index set for all nodes, 

and L is index set for the nodes with label T. L=L-{i}

5) If L= , stop. Otherwise, go back to step 3). 

(2) Line search. Find 
)(n
 that solves 

a

xyx

a

n
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n
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n
a

dt
)(

010
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)(min

Differentiating it w.r.t. to  leads to: 
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Hence, (n) =  can be obtained by solving it. 

(3) Set a
n

ax
n

ay
nn

ax
n

ax ),
)()(

(
)()()1( .

(4) Calculate axtt
n

aa

n

a ),(
)()1( .
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