
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1217

Abstract—In this paper, we probe into the traffic assignment

problem by the chromosome-learning-based path finding method in

simulation, which is to model the driver' behavior in the with-in-a-day

process. By simply making a combination and a change of the traffic

route chromosomes, the driver at the intersection chooses his next

route. The various crossover and mutation rules are proposed with

extensive examples.

Keywords—Chromosome learning, crossover, mutation, traffic

path finding

I. INTRODUCTION

he dynamic in this paper is a within-a-day process, not a

day-to-day process [1-2]. For example, after a special event

like earthquake, there are some lanes closed and people

worriedly drive back to home. The driver listen to the traffic

information over the radio, and the driver could also change

their choices of roads. This forms a within-a-day transient

process, typically not repetitive. The purpose of studying the

with-in-a-day dynamics is to provide the scenarios so that the

people who need it can make decision based on it. For example,

after earthquake, the ambulance may try to reach the patients as

soon as possible. This would put them into an advantageous

situation that the driver foresee the traffic congest in advance

and deploy their emergency vehicles to avoid the most severe

congestion.

Clearly, the mathematical static user equilibrium (UE)

method [3] cannot be used here, neither does the dynamic user

equilibrium method, which solves the dynamic traffic

assignment problem using calculation variations along the time

horizon [4-5]. However, this method is too time-consuming.

Up to now, it looks that the most applicable and acceptable

solution is the simulation. There are already a lot of simulation

tools in the past 20 years. Typical software includes ATIS,

TRABSYT, INTRAS, TEXAS, TRANSIMS, PASSER,

CONTRAM, SATURN, INTEGRATION, and

DYNASMART. However, they only provide the day-to-day

dynamics for the driver’s behavior [2, 6-9].

Since the chromosome-learning-based (CL-based) path

Manuscript received December 10, 2003. The project was sponsored by the

Scientific Research Foundation for ROCS, SEM.

Xun Liang is with the Institute of Computer Science and Technology,

Peking University, Beijing 100871, China, and the Department of Management

Science and Engineering, Stanford University, CA 95035, USA (phone:

+86-10-8252 9988-5228; fax: +86-10-82529207; e-mail: liangxun@icst.pku.

edu.cn).

finding method employs the probability in choosing the routes,

it is very similar to the stochastic user equilibrium (SUE)

method. The differences are (1) in the CL the formation of

probabilities is based on "the-shortest-time-path produces more

children than other paths", while the SUE uses the probability

based on a logit model; (2) the CL uses simple arc exchanges

among shortest paths (not exhausting all the possible routes) by

the idea of route chromosome crossover, hence saving

simulation time, while the SUE does not incorporate the short

path information in determining probabilities.

The CL has 3 operations: reproduction, crossover and

mutation [10]. In the reproduction, the path with shortest time

gets the most proportion in the next generation (i.e., more the

driver use the path). This means, if at the current time a driver

takes that path, the driver is expected to use the least time

among the others. The reproduction operation will permit and

encourage more the driver in the next generation to go along

that path. But it is not necessary that all of the driver in next

generation will take the best path since (1) the reproduction

operation will produce every kind of descendents based on their

parent proportion, (2) the result by the reproduction operation

will experience crossover and mutation before the driver are

put in use. In the mutation, some drivers may take a complete a

new arc with a very small probability.

II. WITHIN-A-DAY DYNAMIC TRAFFIC PATH FINDING MODEL

Suppose the traffic network is given. Each length of the arc

p~q is also known as
p~ql . Vehicle birth and death is given by

the Origin-Destination (O-D) pairs. Vehicle initial path

assignment is given by the shortest time path method [11].

Vehicle location (count from the end of each arc) is

0,)()(max)(ttvtxtx
p~q

i

p~q

i

p~q

i
 where)(tx

p~q

i is

the location of the vehicle i at time t counted from the end of the

arc p~q the vehicle i is in,)(tv
p~q

i is the speed of the vehicle

i at time t in arc p~q. Vehicle velocity is given by

p~qp~q

p~qp~q

i

vv

vtv

Min(A),Free(A),

Min(A),)(
p~q

p~q

k

k

Jam(A),

(A)
1

where
p~q

v Free(A), is the aggregated speed for the free traffic

flow,
p~q

v Free(A), is the aggregated minimum speed, k is the

density, is a user-defined parameter. Number of vehicles in arc

Dynamic Network Routing Method

Based on Chromosome Learning

Xun Liang

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1218

p-q at time t is),(,min)(
~

NewlyGen(A),

vehicle

~
~

(A) tn
l

l
tn

qp
qp

qp

Nq

pqpq
ttn

'

~'~'

In(A),)()(where
qpl ~

 is the length of the arc

p~q, vehiclel is the length occupied by an average vehicle,

)(
~

NewlyGen(A), tn
qp

 is the number of the vehicles newly

generated in arc p~q at time t,)(
~'

In(A), tn
pq

 is the number of

the vehicles newly entered arc p~q from other arc q'~p at time t,

and 1~' pq is q’ is directly connected with p, or 0 otherwise.

Suppose at starting point, we have n vehicles heading to both

directions. The n vehicles start their journey one by one. The

starting time interval is k minute(s). Our simulation time length

is l minutes even some of the vehicle may not arrive at their

destinations. After a driver approaches an intersection, the

driver examines the travel time for each past ancestor's route.

Tending to choose the shortest time route with the biggest

probability [12], the driver does not refrain himself from a

combination of the best shortest time routes (crossover), neither

from a suddenly invention of taking a new arc (mutation).

III. DYNAMIC TRAFFIC NETWORK ROUTING BASED ON

CHROMOSOME LEARNING

We use the California South Bay Area as an example (see

Figure 1).

 0

1 7

 3

1 1

1 6

1 5

1 4

1 3

1 2

 1 0

98

7
 6

5

 2
 4

 1

Figure 1. The California South Bay Area traffic network. After a special event, half of the lanes are closed in dashed arcs.

Gene set G contains all the arcs. A gene is an arc. Since this

is a directed arc (both sides have different traffic flow, thus

leading to different travel time on that arc), we may just

mention the ending node of the gene when referring this gene.

This is to say, you may think both arc p~q and node q are the

same gene if your the driver in simulation is driving from p to q;

or you may think both arc p~q and node p are the same gene if

your the driver in simulation is driving from q to p. Throughout

this paper, we use both equivalent notations (see Table 1).

Table 1. The number of vehicles in arc p~q at time t, and travel

time. The time formula is T p~q(N(p, q, t)).
p q # of vehicles in

p~q in + direction

of vehicles in

p~q in – direction

Time, +

direction

Time, -

direction

0 1 130 151 4.9 5.0

0 3 120 200 4.8 5.3

1 2 100 150 4.6 5.0

1 4 201 312 5.3 5.7

2 5 120 152 4.8 5.0

2 3 67 83 4.2 4.4

3 6 128 38 4.9 3.6

4 5 20 34 3.0 3.5

4 7 179 200 5.2 5.3

5 6 124 198 4.8 5.3

5 8 256 283 5.5 5.6

6 11 302 298 5.7 5.7

7 8 35 63 3.6 4.1

7 9 120 230 4.8 5.4

8 10 300 384 5.7 6.0

9 10 120 321 4.8 5.8

9 12 87 41 4.5 3.7

10 11 139 210 4.9 5.3

10 13 325 279 5.8 5.6

11 14 421 394 6.0 6.0

12 13 201 176 5.3 5.2

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1219

12 15 235 203 5.5 5.3

13 14 104 96 4.6 4.6

13 16 236 271 5.5 5.6

14 17 230 202 5.4 5.3

15 16 67 72 4.2 4.3

16 17 205 238 5.3 5.5

Route pools Zrs (r R; s S) is classified by origin-destination

pair (r, s), is composed of paths rsi
k = {ordered arc p~q series}

for driver irs, irs {1, 2, … , # of driver with (r, s)}. Obviously,

any arc p~q in rsi
k must be in G, i.e., p~q G.

Throughout the process, the number of members in route

population Z rs is always equal to the # of the driver with (r, s),

including those who are on the road (living chromosomes) and

those who are out of the road (died chromosomes), but not

including those who will start their journey from r towards s

(unborn chromosomes). That is, there is a one-to-one

corresponding between the current and past the driver with (r,

s) and the members of route population Z rs at any time t. Each

driver has his own (different or same) chromosome or string in

Z rs.

The obvious relationship between the gene set and route

population is that the members in route population Z rs (r R,

s S) must be composed by the connectable elements in the

gene set. For example, a driver i starts from the arc 15~12, to

his destination 6~3. The driver may take the route {15~12,

12~9, 9~7, 7~4, 4~5, 5~6, 6~3}. This string is a chromosome or

a member in route population Z rs. Obviously, the chromosomes

thus defined in the route population Z rs may have different

lengths of genes.

Chromosomes are produced in the birth process of new the

driver. When a new the driver is about to start his journey, the

driver is given a shortest route based on solving the current UE.

The fittest produces the most. Gene crossover is performed at

the sites located at or after the current intersection node, and

performed at all time t, but only to the driver at an intersection.

Thus, it improves the simulation speed. Note that the size of the

population is always increasing. Descendants take all the

advantages of their precedents. Mutation is performed on a

gene-by-gene basis. We may assume the probability of

mutation is pm (a user-defined probability). For each gene, if it

should be mutated, all the genes including and after this gene

should be removed and a randomly chosen (connectable)

chromosome from G is attached to the cut place of the mutating

chromosome.

IV. GENE OPERATORS

A. Rules of Crossover

Conservation rule. The past arcs are the same between two

chromosomes then simply match the past portion of

chromosomes, then randomly choose any (sub)strings of the

remaining ones to crossover.
1-4-7-9-12-13-14

1-4-7-8-10-11-14

 a b

By two simple loop node matching searching, the program

can find that there are two sites that can crossover: site a with

node 4, site b with node 7. By a (biased-)coin flipping, the

driver may choose one route to continue his journey (exhibiting

as go to the first arc of that route).

Crossover with different lengths is like
1-4-5-6-11-14

1-2-5-4-7-8-10-9-12-13-14

Randomly choose any (sub)strings of the remaining ones to

crossover as long as nodes are matched. (Note that crossover

does not mean that only the old chromosomes exchange their

genes. The driver do may result in completely new routes.)

Regret rule. Suppose that the driver started from 1 and took

arc 1~4 and route

1-4-5-6-11-14

at that time (since the first arc is determined by "shortest time"

 a universal rule to the driver). After the driver approach

intersection 4, the driver deletes all the connections with node 1

since it is finished (we can see that by deleting all the row

containing node 1, we eliminate the possibility that the driver

comes back to a node which the driver has used).

There is another chromosome chosen randomly from its

"brothers" and "parents" to be crossovered.

1-2-5-4-7-8-10-9-12-13-14

Suppose the driver is already at intersection 4. By randomly

choosing crossover sites 6 in the first chromosome and 10 in the

second, we obtain one temporary string (not necessary a

chromosome if it is not disconnect). The process is like this:

(original route) 4-5-6-11-14

 4-7-8-10-9-12-13-14

(crossovered string) 4-7-8-10-11 – 14

Thus we obtain a new route for this the driver, and the

simulation program puts him on his new way until the next

intersection.

Mostly, the crossover string is not a connectable route. For

example, if we choose 7 and 6 to crossover.

(original route) 4-5-6-11-14

 4-7-8-10-9-12-13-14

(crossovered string) 4-7-11-14.

This is not feasible between 7 and 11.

The regret rule says that the driver will want to connect back

to his original route as soon as possible at the crossover point

(i.e., disconnected point). Thus, the driver builds circles

alternatively with the centers at the two disconnected points 7

and 11, with radii 1 Hamming distance (that is, one arc away

from 7 or 11), starting from the current route to connecting his

original route. In our instance, write C7, 0 = {7}, C11, 0 = {11}.

We know C7, 0 C11, 0 = . This is the starting point of the

regret rule.

(1) The driver starts with 7, builds a circle C7, 1 = {4, 8, 9}

with center 7, deleting 4 and have C7, 1 = {8, 9}.

(2) Since C7, 1 C11, 0 = , the driver builds the circle C11, 1 =

{6, 10} with the center 11.

(3) Since C7, 1 C11, 1 = , we continue to build the circle

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1220

C7, 2 = {1, 5, 5, 10, 10, 12}, deleting one 1, one 5, one 10 and

have C7, 2 = {5, 10, 12}.

(4) Since C7, 2 C11, 1 = { 10 }, the driver finds a connecting

way by retracing the bridge of 10 to both sides:

C11, 1 = {6, 10} C11, 0 = {11}

C 7, 2 = {5, 10, 12} C7, 1 = {8, 9} C7, 0 = {7}.

There is no difference from the pure network point of view.

However, to hold a direct reasonability, the driver compares the

travel time 3.6+5.7=9.3 and 4.8+4.8=9.6 between 7-8-10 and

7-9-10, and decides to use 7-8-10 for connection. In summary,

his new route is

(fixed crossover string) 4-7-8-10-11-14 (a new

chromosome)

Nearsighted meticulous calculation rule. Suppose that a

meticulously the driver meets the following case after

crossover operation, 4-7-11-14.

The nearsighted meticulous calculation rule says that this the

driver will calculate the time the driver will use to connect his

crossovered route and the original route.

We also use C as our circles but this time C represents travel

time. The Hamming distance will not be calculated. Instead,

concrete travel time on that arc is used. In our instance, we

write C7, 0 = {7(0)}, C11, 0 = {11(0)}. 0 means the driver is there.

We know C7, 0 C11, 0 = . Then

(1) The driver starts with 7, builds a circle C7,1 = {4, 8, 9}

with center 7, deletes 4 and has C7,1 = {8(3.6), 9(4.8)}.

(2) Since C7, 1 C11, 0 = , the driver builds the circle C11, 1 =

{6(5.7), 10(4.9) } with the center 11.

(3) Since C7, 1 C11, 1 = , we continue to build circle C7, 2

= {1, 5, 5, 10, 10, 12}, deleting one 1, one 5, one 10 and have

C7, 2 = {5(9.2), 10(9.3), 12(8.5)}, where 9.2 = 8(3.6)+5(5.6), 9.3

= min {8(3.6)+10(5.7), 9(4.8)+10(4.8)}, and delete the

memory of arc connection 7-9-10 (that is, only record the

shortest time path, and forget the useless path before finding a

bridge), 8.5 = 9(4.8)+12(3.7).

(4) Since C7, 2 C11, 1 = {10}, the driver finds a connecting

bridge 10 and by retracing this bridge to both sides:

C11, 1 = {6(5.7), 10(4.9)} C11, 0 = {11}

C7, 2 = {5(9.2), 10(9.3), 12(8.5)} C7, 1 = {8(gives 9.3),

9(gives larger number)} C7, 0 = {7}.

The driver finds a new route (fixed crossover string)

4-7-8-10-11-14 (a new chromosome).

The only difference between the nearsighted meticulous

calculation rule and the regret rule is that the nearsighted

meticulous calculation rule has to continue since the above

route may not be the best one in time. This is to accomplish by

further expand the radii of circles until the Hamming distance

reaches min{H*, H1} where H* is a user-defined number, H1 is

the shortest Hamming distance between to two disconnected

points 7 and 11.

(5) Further expanding the radius of 11, the driver finds 5, 8,

9, and 13. Then the driver calculates the respective time to

arrive those points. Again, further expanding the radius of 7,

the driver finds 11. Then the driver terminates his searching.

Since in the operation of one generation, we do not have to

mend the chromosome immediately after crossover since the

mutation is the next step. We would normally first let it go

through mutation.

If it is not chosen, we go back and mend the disconnected

part using the above rules. If it is chosen but the mutation

makes another gene disconnected, we also go back and mend

the disconnected part using the above rules. Otherwise, we wait

it mutated first and then repair the genes.

B. Rules of Mutation

Mutation of a route is with a small probability.

Mathematically, if a node p is chosen to mutate, we extract a

subset Mp from the gene set with one end of p. Suppose q is its

leading node. Then our target set to choose for mutation is

Mp\{q-p}. With equal probability, we choose one of the nodes

in set Mp\{q-p}. After mutation, the following rules are for

making them feasible.

Stubbornness rule. If the probability chooses one gene to

mutate, it has to choose at least one more gene that is

neighboring it in the other end of the new gene. By searching in

set G, we may find a new series of genes (subchromosome) that

leads the driver back to his route or to his destination.

When searching this subchromosome, always choose the

gene, which is able to immediately go back to the original route

if this gene exists. This can be done by simply search G. For

example, a driver is driving on the route 16-13-14-11-6. At

intersection 13, a mutation operation changes the gene of 14 to

the gene of 10. We start search our gene set G. We find that

there are 4 genes connecting to node 10: 10~13, 10~9, 10~8,

10~11. It is not difficult for the computer itself to recognize that

the 10~13 is his past arc. Among the other 3 arcs, 10~11 leads

him immediately back to his original route. Hence we use

10~11 and our mutation operation ends with two new genes of

13~10 and 10~11.

From the connection point of view, a mutation fixation is a

projection from one point to the discrete set. Although this

projection does not demand the perpendicularity, it does

demand the shortest length. For example, suppose a the driver

is at intersection 4, by mutation the driver is driven to node 7.

Now, the driver wants to project himself back to his original

route with the shortest time (excluding his coming arc). We

formulate it as follows.

Point: 7 Projected set: {5, 6, 11, 14}

This time, the driver only uses radius method on one side that

is node 7. Then the driver finds

7-8-5: 3.6 + 5.6 = 9.2

7-8-10-11: 3.6 + 5.7 + 4.9 > 9.2 (note that we already know

7-8-10 < 7-9-10, we omit 7-9-10 here.)

7-8-10-13-14: 3.6 + 5.7 + 5.8 + () > 9.2

Hence the driver takes the route 7-8-5 and gets back to his

original route.

Global eyesight rule. Sometimes the stubbornness rule is not

intelligent enough since there exist better new routes leading

the driver to his destination. The global eyesight rule says that

when a the driver is driven by mutation to a new point not on

his original route, the driver joins in the group whose origin is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1221

the point the driver is on. If this group does not exist, the driver

himself forms a group. That is, the driver has to use the UE

method and starts his journey there as if newly starting. In the

above example, his new origin is node 7, and his destination is

still node 14.

V. A COMPLETE EXAMPLE

Say we have a population of routes, which starts from the

same origin 1 and ends with the same destination 14. The

population consists of 5 chromosomes

1-4-7-9-12-13-14

1-3-6-11-14

1-2-5-8-7-9-10-13-14

1-4-7-8-10-11-14

1-2-5-4-7-8-10-9-12-13-14

Step 1. Start with 1. Find the route through where the shortest

time is expected. Say it is 1-4-5-6-11-14.

Step 2. When the driver approach node 4, the driver must

judge the route to continue.

1-4-5-6-11-14

1-4-7-9-12-13-14

1-3-6-11-14

1-2-5-8-7-9-10-13-14

1-4-7-8-10-11-14

1-2-5-4-7-8-10-9-12-13-14

Since the crossover occurs only at or after node 4, only 4 of 6

chromosomes are feasible (in which the host chromosome must

be included). Then we have

1-4-5-6-11-14 (host chromosome)

1-4-7-9-12-13-14

1-4-7-8-10-11-14

 1-2-5-4-7-8-10-9-12-13-14

Crossover occurs at the places between 4 and 14. There are

many combinations, but not all of them are feasible. Actually,

only a small portion of them is feasible. The crossover rules can

make the route feasible.

Suppose the host chromosome chooses the chromosome

1-4-7-8-10-11-14 to crossover, and crossover sites are 6 to the

host chromosome and 10 to the spouse chromosome. The next

generation of the host chromosome is 1-4-5-6~11-14 (host

chromosome), where ~ denotes the place which needs

examination. In the meantime, we put {1-4-5-6} into the

population pool Z1,6. Since 11-14 is a simple arc, we don't need

to have a pool Z11,14 and put it into it. Also we put the

handicapped chromosome 1-4-5-6~11-14 into pool Z1,14 .

Step 3. Mutation. Suppose the host chromosome meets a

mutation signal, which asks it to mutate 11 to 10. By

Stubbornness Rule, it projects 10 onto "discrete

one-dimensional space" 1-4-5-6~11-14 (host chromosome) and

find the shortest path to get to this space is through 10-13-14.

Hence, we have 1-4-5-6 ~ 10-13-14 (host chromosome).

Step 4. Keeping all the repairing rules in mind, we examine

the handicapped part 6~10. By Regret Rule, we connect 6~10

by 6-11-10. Therefore, we finally finish the operation of this

generation by the following chromosome (mutation should be

kept to a small level), 1-4-5-6-11-10-13-14 (host chromosome).

VI. SIMULATION

We write the above operations by C++. After a special

event, half of the lanes on roads 4-5, 10-11 and 13-14 are

closed. W simulate 2 hours for the transient process, and find

the total cars leaving the origins are among them, 928 are still in

the half-way back to their home, and 1983 cars arrives to home.

Examples are given in Table 2.

Table 2. Examples of route changes.

Origin Destination Route (t) Route (t+1) Route (t+2)

6 7 6-5-4-7 6-5-8-7

6 12 6-5-4-7-9-12 6-5-8-7-9-12

6 16 6-5-4-7-9-

12-15-16

6-5-8-7-9-

12-15-16

6 17 6-11-14-17

9 1 9-7-4-1

9 3 9-7-4-5-2-3 9-7-8-5-2-3

9 8 9-7-8

9 13 9-12-13

9 14 9-10-11-14 9-10-13-14 9-10-13-16

-17-14

9 16 9-12-15-16

9 17 9-10-11-14-17 9-10-13-14-17

From the examples, we can see that the drivers keep

changing the routes according to the road information they get

on their way back home.

VII. CONCLUDING REMARKS

The traffic information is already summarized inexplicitly as

a sort of condensed information in chromosome and its

reproduction. As a result, the chromosome learning employs

the probability incorporated with all past route traffic

inexplicitly. Its probabilities are simply based on the past

information its precedents provide.

REFERENCES

[1] T. Y. Hu & H. S. Mahmassani, Evolution of network flows under

real-time information: day-to-day dynamic simulation assignment

framework, Transportation Research Record, 1990, 1493, 46-56.

[2] M. L. Hazelton, Day-to-day variation in Markovian traffic assignment

models, Transportation Research, 2002, 36B, 637-648.

[3] Y. Sheffi, Urban transportation networks: equilibrium analysis with

mathematical programming methods, New Jersey: Prentice-Hall, 1985.

[4] H. N. Koutsopoulos, A. Polydoropoulou & M. Ben-Akiva, Travel

simulators for data collection on the driver behavior in the presence of

information, Transportation Research C, 1995, 3, 143-159.

[5] D. E. Glodberg, Genetic Algorithms in Search, Optimization and Machine

Learning, New York: Addison-Wesley, 1989.

[6] V. Astarita, Node and link models for network traffic flow simulation,

Mathematical and Computer Modelling, 2002, 35, 643-656.

[7] D. Boyce & D. H. Lee, B. Ran, Analytical models of the dynamic traffic

assignment problem, Networks and Spatial Economics, 2001, 1, 377-390.

[8] M. Carey, & E. Subrahmanian, An approach to modelling time-varying

flows on congested networks, Transportation Research, 2000, 34B,

157-183.

[9] A. Faghri, R. Nanda, & K, Hamad, Development of a dynamic traffic

simulation model in a near system optimal route guidance system, Civil

Engineering and Environmental Systems, 2002, 19, 141-167.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1222

[10] S. Nakayama, & R. Kitamura, Route choice model with inductive

learning, Transportation Research Record, 2000, 1725, 63-70.

[11] S. Nakayama, R. Kitamura, & S. Fujii, Drivers' route choice rules and

network behavior - Do drivers become rational and homogeneous through

learning, Transportation Research Record, 2001, 1752, 62-68.

[12] M. Rickert, & K Nagel, Dynamic traffic assignment on parallel computers

in TRANSIMS, Future Generation Computer Systems, 2001 17, 637-648.

APPENDIX

The model is as follows:

a

x

a
x

a

dt
0

)(min

s.t.

srqf rs

k

rs

k ,,

srkf rs

k ,,,0

afx
r s

rs

ka

k

rs

ka ,,

where

R Set of origin nodes; R N

S Set of destination nodes; S N

K rs Set of paths connecting origin-destination (O-D) pair

r-s, r R, s S

xa Flow on arc a; x=(…, xa, …)

ta Travel time on arc a; t=(…, ta, …)

fk
rs Flow on path k connecting origin-destination pair r-s,

r R, s S; crs=(…, ck
rs, …); c=(…, crs, …) where (.)

is the transpose of (.).

ck
rs Travel time on path k connecting origin-destination

pair r-s, r R, s S; crs=(…, ck
rs, …); c=(…, crs, …)

where (.) is the transpose of (.).

q rs
Trip rate between O-D pair r-s, r R, s S; (q)rs = q rs

rs

ka ,
Indicator variable:

otherwise,0

pairDObetweenpathonislinkif,1
,

r-s-ka
rs

ka

Steps of minimizing process:

(0) Initialization. Set counter n=0.

(1) Perform calculation of all-or-nothing assignment based on

axtt
n

a

n

a

n

a),(
)()()(

. This requires solving the

sub-problem for each r-s pair.

a

rs

k

rs

k
x

gcmin

s.t.

srqg rs

k

rs

k ,, srkg rs

k ,,,0

The solving of this programming is equivalent to finding a

direction
)()(n

x
n

y where vector
)(n

x is composed of

)(n

ax ’s and vector
)(n

y is composed of
)(n

ay ’s, which is

implemented by performing all-or-nothing assignment based

on }{
)(n

at . Hence, a set of auxiliary flow }{
)(n

ay is

introduced, agy
r s

rs

ka

k

rs

k

n

a ,,

)(. The direction

finding is accomplished by the shortest path method. Steps are

1) Initialize every node by label T where T represents the

calculation for this node has not been finished. Initialize

every node by index (-1) in I, where I records the index

for the shortest coming-way connecting node.

2) Start with the origin node r. Let P(r)=0, L=L-{0}. Let vi

=r.

3) Consider the nodes vj with label T and also connecting to

a node vi with label P.

4) Assign nodes vj with label T(vj) = min { T(vj), P(vi)+tij }.

Assign the node with the smallest T(vj) among j’s as

P(vj)= T(vj) , where label P means that its shortest length

for node vj has been determined. I(vj)={i: P(vj) = min {

T(vj)+ tij }, i S-L } where S is the index set for all nodes,

and L is index set for the nodes with label T. L=L-{i}

5) If L= , stop. Otherwise, go back to step 3).

(2) Line search. Find
)(n
 that solves

a

xyx

a

n
a

n
a

n
a

dt
)(

010

)()()(

)(min

Differentiating it w.r.t. to leads to:

a

n

a

n

a

n

aa

n

a

n

a xyxtxy 0))(()(
)()()()()(

Hence, (n) = can be obtained by solving it.

(3) Set a
n

ax
n

ay
nn

ax
n

ax),
)()(

(
)()()1(.

(4) Calculate axtt
n

aa

n

a),(
)()1(.

Xun Liang (M’04) received his BS and PhD degrees in computer engineering

from Tsinghua University, Beijing, China, in 1989 and 1993 respectively, and

an MBA from Stanford University, California, USA, in 1999.

 He was a PostDoc research fellow, in Peking University, from 1993 to 1995,

and in the University of New Brunswick, from 1995 to 1997, respectively. He

worked as a Senior Software Engineer, System Architect respectively, from

1997 to 2003 in the high-tech IT corporations in Silicon Valley. He is currently

an Associate Professor at Peking University, Beijing 100871, China. He has

published over 60 papers and two books eFinance - Theory and Applications,

Web Financial Information Mining. His research interests include internet-

based financial information systems, data mining, neural networks and genetic

algorithms.

 Dr. Liang is a member of International Neural Networks Society, IEEE

Neural Networks Society, and IJIT.

