
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

970

Abstract—Metrics is the process by which numbers or symbols

are assigned to attributes of entities in the real world in such a way as
to describe them according to clearly defined rules. Software metrics
are instruments or ways to measuring all the aspect of software
product. These metrics are used throughout a software project to
assist in estimation, quality control, productivity assessment, and
project control. Object oriented software metrics focus on
measurements that are applied to the class and other characteristics.
These measurements convey the software engineer to the behavior of
the software and how changes can be made that will reduce
complexity and improve the continuing capability of the software.
Object oriented software metric can be classified in two types static
and dynamic. Static metrics are concerned with all the aspects of
measuring by static analysis of software and dynamic metrics are
concerned with all the measuring aspect of the software at run time.
Major work done before, was focusing on static metric. Also some
work has been done in the field of dynamic nature of the software
measurements. But research in this area is demanding for more work.
In this paper we give a set of dynamic metrics specifically for
polymorphism in object oriented system.

Keywords—Metrics, Software, Quality, Object oriented system,
Polymorphism.

I. INTRODUCTION

OFTWARE metrics are an integral part of the state-of-the-
practice in software engineering. Software metrics defines

as the continuous application of measurement-based
techniques to the software development process and its
products to supply meaningful and timely management
information [4] , together with the use of those techniques to
improve that process and its products [3]. If the metric is to
provide useful information, everyone involved in designing,
implementing, collecting data for and utilizing a software
metrics must understand its definition and purpose.

Basic problems encountered when trying to accurately and
reasonably measure dynamic properties of a program are
determining and assessing specifications, desirable metric
qualities, technical limitations on data collection etc. Software
metrics [8][9] measure different aspects of software product
and therefore play an important role in analyzing and

Parvinder S. Sandhu is with Computer Science &
Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali, Punjab, 140104, India (phone: +91-
98555-32004; e-mail: parvinder.sandhu@gmail.com).

Gurdev Singh is Lecturer with Rayat & Bahra Group of Institutes, Rail
Majra (Punjab)-India.

improving software quality. Most of the metrics are based on
criteria such as number of classes, number of links, number of
inheritance and composition relationships, ratios attributes and
operations in each class, depth of inheritance hierarchies etc.

The field of metric in the object oriented system has many
characteristics. In [1] had already 100 metrics are given to find
out the complexity in software code. And in the field of object
oriented system, in [2] there were more than 150 proposed
metrics are given. But most of the metrics are based on the
individual model and also of static nature.

In this paper we focus on polymorphism in object oriented
system. And give a set of 11 dynamic metrics for
polymorphism in object oriented system.

This paper is organized as follows:
Section 2 defines the various steps to design a metric,

Section 3 defines the properties on which metrics are
designed, Section 4 define the way to classifying the metrics,
section 5 defines the set of polymorphic metrics to measure
dynamic nature, Section 6 defines the experimental details,
Section 7 illustrate the analysis of results and finally
conclusion and references are given in Section 8 and Section 9
respectively.

II. DESIGNING STEPS
This section will discuss some steps to documenting the

design of object oriented software metrics in order to insure
understanding:

a) Objective Statement: The objective for each metric can be
formally defined in terms of one of the following functions, the
attribute of the entity being measured and the goal for the
measurement.

• Understand: Metrics can help us to understand more
about our software products, processes and services.

• Evaluate: Metrics can be used to evaluate our
software products, processes and services against
established standards and goals.

• Control: Metrics can provide the information that we
need to Control resources and processes used to
produce our software.

• Predict: Metrics can be used to predict attributes of
software entities in the future.

b) Clear Definitions: The second step in designing a metric is
to agree to a standard definition for the entities and their
attributes being measured. When we use terms like defect,
problem report, size and even project, other people will

Dynamic Metrics for Polymorphism in
Object Oriented Systems

Parvinder Singh Sandhu, and Gurdev Singh

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

971

interpret these words in their own context with meanings that
may differ from our intended definition. These interpretation
differences increase when more ambiguous terms like quality,
maintainability and user-friendliness are used.

c) Define the Model: The model defines how we are going
to calculate the metric. Some metrics called metric primitives
that are measured directly and their model typically consists
of a single variable. Other more complex metrics are modeled
using mathematical combinations of metrics primitives or
other complex metrics. Most modeling includes an element of
simplification. When we create a software measurement
model we need to be pragmatic. If we try to include all of the
elements that affect the attribute or characterize the entity our
model can become so complicated that it’s useless. Being
pragmatic means not trying to create the perfect model. Pick
the aspects that are the most important. Remember that the
model can always be modified to include additional levels of
detail in the future.

d) Establish Counting Criteria: The next step in designing a
metric is to break the model down into its lowest level metric
primitives and define the counting criteria used to measure
each primitive. This defines the mapping system for the
measurement of each metric primitive.

e) Decide what is Good: The fifth step in designing a metric
is defining what is good. Once you have decided what to
measure and how to measure it, you have to decide what to
do with the results. Is 10 too few or 100 too many? Should
the trend be up or down? What do the metrics say about
whether or not the product is ready to ship?

f) Metrics Reporting: The next step is to decide how to report
the metric. This includes defining the report format, data
extraction and reporting cycle, reporting mechanisms and
distribution and availability.

g) Additional Qualifiers: The final step in designing a metric
is determining the additional metric qualifiers. A good metric
is a generic metric. That means that the metric is valid for an
entire hierarchy of additional extraction qualifiers. The
additional qualifiers provide the demographic information
needed for various views of the metric. The main reason that
the additional qualifiers need to be defined as part of the
metrics design is that they determine the second level of data
collection requirements.

III. DESIGNING PROPERTIES
Designing new dynamic metrics [7] must ensure that they

effectively capture the aspect of software behavior that they
are intended to measure. New metrics [5] must also render
clear and comparable numbers for any kind of program.
Therefore, we discuss some general requirements for dynamic
metrics, which address some of the most important factors,
which may impact their usefulness. These properties not only
helpful in designing the metrics, but can also be used in the
evaluation of the applicability of a particular metric to specific

purposes. These desirable properties [14] are only presented
informally; it may not be possible to realistically achieve all of
them for every metric.

a) Dynamic: A metric should measure an aspect of a program
that can only be obtained by actually executing it. The
dynamic nature of a metric makes it unaffected by the addition
of unexecuted code to the program, because code that is never
executed will obviously never contribute to the measured
value.

b) Robust: A robust metric should not be overly sensitive to
the size of a program’s input. Using dynamic metrics the
measures are heavily influenced by program behavior. A
dynamic metric is robust if a “small” change in program
behavior results in a correspondingly small change in the
measured value.

c) Discriminating: A metric is discriminating if a large change
in behavior causes a correspondingly large change in the
resulting metric.

d) Unambiguous: It is crucial to provide a clear, precise and
unambiguous definition of all dynamic metrics.

e) Platform Independent: Metrics pertain to program behavior,
they should not change if the measurement takes place on a
different platform. While it may seem like platform-
independence is easily achieved in any languages.

IV. CLASSIFICATION
Classification of the metrics into four basic categories is

presented here. These categories correspond to the ubiquitous
value metrics such as average, hot spot detection metrics and
metrics based on discrete categorization.

a) Value Metric: The value metric is the most commonly used
kind of dynamic metric and corresponds to typical one value
answers. Many data gatherers for instance will present a
statistic like average or maximum as a rough indicator of some
quantity; the idea being that a single value is sufficiently
accurate. Typically this is intended to allow one to easily
compare results for different benchmarks, since the values
form an intuitive totally ordered set. It may also be used to
allow one to observe differences in behavior before and after
some transformation.

b) Percentile Metric: Percentile metrics are similar to value
metrics but additionally have an associated threshold value
which indicates the proportion of the program entities which
are to be considered in the computation of the metric i.e. the
hotness level that is measured by the metric. A higher
threshold is used when looking for more pronounced hotspots,
and is thus associated with a higher hotness level.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

972

c) Bin Metric: Compiler optimization is often based on
identifying specific categories of measurements, with the goal
of applying different optimization strategies to different cases.
A call-site optimization, for instance, may use one approach
for monomorphic sites, a more complex system for
polymorphic sites of degree 2, and may be unable to handle
sites with a higher degree of polymorphism. In such a situation
single value metrics do not measure the situation well, e.g.,
computing an average number of types or targets per call site
may not give a good impression of the optimization
opportunities for de-virtualization. An appropriate metric for
this example would be to give a relative or absolute value for
each of the categories of interest, namely 1, 2, or _3 target
types. These kinds of metrics are referred to as bin metrics,
since the measurement task is to appropriately divide elements
of the sample space into a few categories or bins.

d) Continuous Metrics: All three kinds of dynamic metrics
have continuous analogues, where the calculations are
performed at various partial stages of execution rather than
once at the end of the execution. Motivation for continuous
metrics arises from the inherent inaccuracy of a single
summary metric value in many situations.

V. DYNAMIC METRICS
Dynamic polymorphic metrics measure the various aspect

of the polymorphism behavior in the programs.

a) CSPV: Call Site Polymorphic Value metric count total
number of different call sites executed. This measurement
does not include static invoke instructions, but does count
virtual method calls with a single receiver.

b) IDVP: Invoke Density Polymorphic Value metric count
number of invoke Virtual and invoke Interface calls per kbc
executed. This metric estimates the importance of invoke byte
codes relative to other instructions in the program, indicating
the relevance of optimizing invokes.

c) RPB: Receiver Polymorphic Bin metric shows the
percentage of all call sites that have one, two and more than
two different receiver types. The metric is dynamic, since we
measure the number of different types that actually occur in
the execution of the program

d) RCPB: Receiver Call Polymorphic Bin metric shows the
percentage of all calls that occur from a call site with one, two
and more than two different receiver types. This metric
measures the importance of polymorphic calls

e) RCMRV: Receiver Cache Miss Rate polymorphic Value
metric shows as a percentage how often a call site switches
between receiver types. This is the most dynamic
measurement of receiver polymorphism, and it represents the
miss rate of a true inline cache.

f) TPB: Target Polymorphic Bin metric shows the percentage
of all call sites that have one, two and more than two different
target methods. This metric is dynamic, but does not reflect
the run time importance of call sites.

g) TCPB: Target Call Polymorphic Bin metric shows the
percentage of all calls that occur from a call site with one, two
and more than two different target methods.

h) TCMRV: Target Cache Miss Rate polymorphic Value
metric shows as a percentage how often a call site switches
between target methods. It represents the miss rate of an
idealized branch target buffer. It is always lower than the
corresponding inline cache miss rate since targets can be equal
for different receiver types. Accordingly, this metric can also
be heavily influenced by the order in which target methods
occur.

i) DPA: Dynamic polymorphism in ancestors is the sum of
number of dynamic polymorphism function members in
ancestor that appears in the different classes.

j) DPD: Dynamic Polymorphism in Descendants is the sum of
number of dynamic polymorphism function members in
descendant that appears in the different classes.

k) ACRV: Average Changing Rate of Virtual methods are used
to check the efficiency by using run time method resolution.

VI. EXPERIMENTAL DETAILS
The following five criteria are used for the comparative

analysis:

a) Program Selection: Selection of programs was based on the
key concept of dynamic polymorphism. We focus on the run
time behavior of the program. We choose c++ language for
the practical experiments. But the given metrics are not limited
to any particular language.

b) Length of Program: Design of the metric are based on the
concept of dynamics so the focus of run time properties of the
program, not much focus on the program length and size.

c) Complexity: The experimental studies are much influenced
by the complexity of the program. The testing of the dynamic
metrics are done on the simple to complex program. As the
virtual functions increases the complexity of the program in
object-oriented system automatically increases.

d) Metrics: The selection of the metrics are done on the basis
of dynamic behavior of the program specifically
polymorphism in object oriented system. Therefore focuses on
the dynamic nature of the metric are considered and calculate
the results by running the programs.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

973

VII. ANALYSIS OF RESULTS
Polymorphism [11] is a salient feature of object-oriented

languages. A polymorphic call in object oriented system [12]
takes the form of invoke virtual or invoke interface.

TABLE I

EXPERIMENTAL RESULTS
Metric I II III IV V
CSPV 1 2 3 4 5
IDPV 5 14 11 11 23
RPB 20% 7.14% 9.09% 9.09% 4.35%

RCPB 20% 57.14% 54.55% 63.64% 60.87%

RCMRV 0% 28.57% 27.27% 36.36% 17.39%

TPB 20% 85.71% 75% 100% 76.92%

TCPB 20% 80% 75% 100% 77.78%

TCMRV 0% 16.67% 16.67% 0.14% 0.1%

DPA 1 2 2 1 1
DPD 1 1 1 1 1

ACRV 0.33 0.29 0.5 0.29 0.33

This paper is presenting eleven dynamic metrics as a means

of assessing the actual runtime behavior of a program by
providing a high-level overview of several of its key aspects.
This dynamic information can be more relevant than the more
common static measures. These metrics are designed with the
goals of being unambiguous, dynamic, robust, discriminating,
and platform-independent. These metrics are also classified in
four categories value, percentile, and bin and continuous. The
utility of the metrics is evaluating by applying them to five
specific dynamic polymorphic problems, and determining to
which extent they provided useful information for each task.
We furthermore want to establish the preciseness of using
dynamic metrics as helping tools for exploratory program
understanding in object oriented system.

 Implementation of dynamic metrics is given in this section
on the set of five different polymorphic programs. The results
are mentioned in Table I.

VIII. CONCLUSION
Fuzzy–GA hybrid algorithm is proved to be best as

compared to the other algorithms considered in this work. In
such data search application the design and developed fuzzy
GA code has shown its superiority because it includes the
advantages of fuzzy as well as genetic algorithms. Fuzzy
provides a robust inference mechanism with no learning and
adaptability while on the other hand, the genetic algorithms
provide an efficient data modification in the wake of
optimization objectives of given application. Neuro-fuzzy
algorithm is definitely superior to fuzzy algorithm as it inherits
adaptability and learning but seriously lacks optimal nature.
From the simulation and the result obtained, it has been shown

that the percentage average error is least in the case of fuzzy-
GA algorithms and maximum in the case of fuzzy algorithms.
Neuro-fuzzy algorithm has yielded accuracy lying between the
accuracy levels as in the case of fuzzy and fuzzy-GA
algorithms. It is concluded that for non linear and complex
engineering applications involving control, inference and
analysis by and large fuzzy-GA is an efficient technique.

REFERENCES
[1] H. Zuse, Software Complexity – Measure and Methods, Berlin: Walter

de Gruyter, 1991.
[2] T. Fetcke, Software Metrics in Object Oriented ProgrammingI, in

Institute of Methods. Berlin: Technischen University Berlin, 1195, pp
161.

[3] Goodman, Paul. Practical Implementation of Software Metrics. London:
McGraw Hill, 1993.

[4] F. B. Abreu, Metrics in Management of Information System
Development Projects, Proceeding of 6th Conference on Quality of
Software, APQ, Lisbon Portugal, 1992.

[5] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A Practical
Guide. Prentice-Hall, 1994. pp 1-22.

[6] R. Pressman, Software Engineering: A Practitioner's Approach 5th
Edition, McGraw-Hill Science / Engineering / Math, 2001.

[7] Thomas Ball. The concept of dynamic analysis. In Proceedings of the 7th
European software engineering conference held jointly with the 7th
ACM SIGSOFT international symposium on Foundations of software
engineering, Toulouse, France, 1999, pp 216–234.

[8] S. R. Chidamber and C. F. Kemerer. A metric suite for object-oriented
design. IEEE Transactions on Software Engineering, 20(6): Jun. 1994,
pp. 476–493.

[9] Neville I. Churcher and Martin J. Shepperd. Comments on a metrics suite
for object oriented design. IEEE Transactions on Software Engineering,
21(3):, Mar. 1995,pp 263–265.

[10] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor,
Ganesh Sittampalam, and Clark Verbrugge. Measuring the dynamic
behaviour of AspectJ programs. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), Victoria, British Columbia, Canada, Oct. 2004.

[11] Karel Driesen. Efficient Polymorphic Calls. The Kluwer International
Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2001.

[12] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis, May 9, 2003,
pages 24–27.

[13] Norman E. Fenton. Software measurement: a necessary scientific basis.
IEEE Transactions on Software Engineering, 20(3): Mar. 1994, pp 199–
206.

[14] Norman E. Fenton and Martin Neil. Software metrics: successes, failures
and new directions. Journal of Systems and Software, 47(2–3): Jul. 1999,
pp 149–157.

[15] Norman E. Fenton and Martin Neil. Software metrics: roadmap. In
Proceedings of the Conference on the Future of Software Engineering,
Limerick, Ireland, 2000, ACM Press. pages 357–370.

[16] Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: a
rigorous and practical approach. PWS Publishing Company, 1997.

[17] G. Caldiera and V. R. Basili, Identifying and Qualifying Reusable
Software Components, IEEE Computer, (1991), pp. 61-70.

[18] Maurice H. Halstead, Elements of Software Science (Elsevier North-
Holland, New York, 1977).

