
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1376

Dynamic Load Balancing in PVM

Using Intelligent Application

Kashif Bilal, Tassawar Iqbal, Asad Ali Safi and Nadeem Daudpota

 Abstract--- This paper deals with dynamic load balancing
using PVM. In distributed environment Load Balancing and
Heterogeneity are very critical issues and needed to drill down
in order to achieve the optimal results and efficiency. Various
techniques are being used in order to distribute the load
dynamically among different nodes and to deal with
heterogeneity. These techniques are using different approaches
where Process Migration is basic concept with different
optimal flavors. But Process Migration is not an easy job, it
impose lot of burden and processing effort in order to track
each process in nodes. We will propose a dynamic load
balancing technique in which application will intelligently
balance the load among different nodes, resulting in efficient
use of system and have no overheads of process migration. It
would also provide a simple solution to problem of load
balancing in heterogeneous environment.

 Keywords—PVM, Load Balancing, Task Allocation,
Intelligent Application.

I. INTRODUCTION

VM provide a platform for the distributed and parallel
computing, and enables users to write parallel and

distributed applications [1, 13]. Lot of work has been done
already in PVM environment. Where two major things are
focused regarding efficiency and throughput, these are
Heterogeneity and Load Balancing. These are very important
and critical areas needed to be focused while achieving the
optimal results in distributed environment. [14] In load
balancing different approaches were used where Process
Migration is basic concept with different optimal flavors.
Different techniques were adopted to accomplish task of load
balancing e.g. Central Algorithm [2, 3,4], The Rendez-Vous
Algorithm [5, 6], The Random Algorithm [7], The Rake
Algorithm [6] etc.

 Kashif Bilal is with the COMSATS Institute of Information Technology
Abbottabad, NWFP, Pakistan. (e-mail: kashifbilal@ciit.net.pk & phone: 0092
300 5613174).
 Tassawar Iqbal is with the COMSATS Institute of Information
Technology Abbottabad, NWFP, Pakistan. (e-mail: tassawar@ciit.net.pk &
phone: 0092 300 5137071).
 Asad Ali Safi is with the COMSATS Institute of Information Technology
Abbottabad, NWFP, Pakistan. (e-mail: safi@ciit.net.pk & phone: 0092 300
5912660).
 Nadeem Daudpota is with the COMSATS Institute of Information
Technology Abbottabad, NWFP, Pakistan. (e-mail: daudpota@ciit.net.pk &
phone: 0092 992 383591).

Most of these existing load balancing techniques use process
migration between nodes. But Process Migration is not an
easy task; it imposes a lot of burden and processing effort in
order to track each process in nodes. Mostly check point-
restart mechanism is used [8, 9], where check pointing of a
process basically boils down to writing the address space of a
process to a file and then receiving its contents afterwards
(mapping it to memory). This includes the shared libraries,
[15] which may be used by the process. In addition, the
contents of (some of the) processor registers have to be taken
care of, such as the program-counter and the stack pointer.
[10]. If a running task is migrated, special care has to be taken
regarding messages routed towards that task, i.e. Routing
information should also be updated in nodes [8]. Most of the
dynamic loads balancing techniques are restricted for
homogeneous systems. Processes running in a heterogeneous
environment can not be migrated with ease, and in, most cases
processor architecture and operating system should be same
[10]. Also processes using external resources e.g. sockets, are
difficult to migrate even in homogenous environment and
needs special techniques handle external resource references at
receiver node e.g. using a virtual operating system [11]. Our
proposed strategy is to make intelligent decision before
spawning the slave processes in a Master Slave model, so that
process of task assignment becomes automatically balanced
and there would be no need for process migration and
handling heterogeneity problems.

II. INTELLIGENT LOAD BALANCER

Our proposed load balancing scheme has intelligence at
application level. This scheme can be divided into 3 major
parts,

i) Getting information about processor’s current
load status and processor power from slave
nodes and sending that information to Master
node.

ii) Collecting information sent from slave node and
making intelligent decision based on collected
information for task assignment for each node.

iii) Spawning new tasks at nodes, based on decision
made by scheduler algorithm.

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1377

 A Status Agent

A simple daemon program would be running at each node
responsible for providing current status of processor and
power of processor, and sending it to master node, so that
scheduler running at master node can take decision about
load assignment to nodes. Different techniques can be
used to collect information form local processor, e.g. we
can use vmstat command. There are numerous approaches
for determining the load of a computer under a valid login
without root privileges. For simplicity and portability, we
chose the vmstat command which provides the percentage
of CPU time for all processes decomposed into user,
system, and idle time. The user time is the percentage of
CPU utilization observed at the application level during a
specified time interval. The system time is the percentage
of CPU utilization by kernel during a specified time
interval. The idle time is percentage of time CPU is
observed to be idle during a specified time interval. [12].

B Intelligent Scheduler

A scheduler would be running at master node. In PVM we
have a Master process that is initiated manually at some
node. When this process would be initiated, it would
spawn status agent processes at slave nodes to collect the
local information regarding each node. These status
agents will send their information to scheduler running on
master node and would be terminated, because we don’t
need them after provision of local node statistic. After
receiving the status from each slave node, now scheduler
will decide that how much workload should be assigned
to individual node.
This calculation of load distribution is critical and varies
from homogeneous (same Processing Power) to
heterogeneous (different processing power). Intelligent
scheduler performs these mathematical calculations as
follows;

1) Mathematical Calculations for Homogeneous
Environment

In this environment the intelligent Scheduler, collects the
idleness of each processor at node through the Status
Agent and mathematically calculates the relative idleness
of each node. On basis of these calculations assign work
load to each node as per its capabilities.

Let we have four nodes in the environment each having
same processor frequency. Status Agent on request
returns the idleness of each node, e.g. 1st node has 20%
idleness, 2nd has 70% idleness, 3rd has 50% idleness and
4th has 90% idleness. After these statistics the Intelligent
Scheduler calculates the relative idleness of each node.

Total Idleness = 1st + 2nd + 3rd + 4th

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1378

230 = 20 + 70 + 50 + 90

Relative Idleness of 1st node would be = (20 / 230) * 100
= 8.69 (approx 9%).
Relative Idleness of 2nd node would be = (70 / 230) * 100
= 30.43 (approx 30 %).
Relative Idleness of 3rd node would be = (50 / 230) * 100
= 21.73 (approx 22%).
Relative Idleness of 4th node would be = (90 / 230) * 100
= 39.13 (approx 39%).

These results will be handed over to the Task Allocator.
Let 1000 records are available to be processed. On the
basis of these results, the Task Allocator will assign the
90 records to 1st node for processing, 300 records to 2nd
node for processing, 220 records to 3rd node for
processing and 390 records to 4th node for processing.
This assignment is shown in Graph 1.
On the basis of these mathematical results our application
intelligently distributed the work load among the nodes.
As a consequence now all the nodes will finish their
assigned task almost at same time. This is the actual
beauty of our application. Where no need to migrate the
task once they are executed to balance the load as load
would be already balanced.

Graph 1
Homogenous Processor Frequency

4th
390,90

3rd
300,70

2nd
220,50

1st
90,200

20

40

60

80

100

90 220 300 390Task

A
ct

ua
l I

dl
en

es
s

2) Mathematical Calculations for Heterogeneous
Environment
In this environment where the each node has different
Processor Frequency but all nodes have same idleness,
here the Intelligent Scheduler will collect the Frequency
of each processor at node through the Status Agent and
mathematically calculates the relative Frequency of each
node. On basis of these calculations assign work load to
each node as per its capabilities.
Assume that we have four nodes in the environment each
node has same idleness in percentage. Status Agent on
request returns the Processor Frequency of each node. Let
1st node has 500MHz, 2nd has 400MHz, 3rd has 1000MHz
and 4th has 900MHz. After these statistics the Intelligent
Scheduler calculates the relative Processing Power of
each node.

Total Power = 1st + 2nd + 3rd + 4th

2800 = 500 + 400 + 1000 + 900

Relative Power of 1st node would be = (500 / 2800) * 100
= 17.85 (approx 18%).
Relative Power of 2nd node would be = (400 / 2800) *
100 = 14.28 (approx 14%).
Relative Power of 3rd node would be = (1000 / 2800) *
100 = 35.71 (approx 36%).
Relative Power of 4th node would be = (900 / 2800) *
100 = 32.14 (approx 32%).

Likewise these results will be handed over to the Task
Allocator. Let 1000 records are available to be processed.
On the basis of these results, the Task Allocator will
assign the 180 records to 1st node for processing, 140
records to 2nd node for processing, 360 records to 3rd
node for processing and 320 records to 4th node for
processing. This assignment is shown in Graph 2.

Using these mathematical results our application
intelligently distributed the work load among the nodes.
As a consequence now all the nodes will finish their
assigned task almost at same time.

Graph 2
Heterogeneous Processor Frequency

3rd
360, 10004th

320, 900

1st
190, 5002nd

140, 400

0

200

400

600

800

1000

1200

140 190 320 360Task

Ac
tu

al
 P

ro
ce

ss
or

Po

w
er

C Task Allocator

Now tasks would be spawned at each slave node based on

decision made by scheduler and that would be balance
automatically.

III. INTELLIGENT APPLICATION OPERATION

In order to explain the working of proposed idea, let we have
image recognition example. In this scenario we are asked to
match a particular thumb expression with the records being
stored in the database in order to identify the authentication of
a person. For the simplicity we assume that database is
populated with the 10000 records. First of all the Intelligent
Scheduler at Master Node would spawn status agent processes
at slave nodes to collect the local information regarding each
node. Status Agent at each node collects the necessary status
of that node that is Idleness in percentage. However the status
agent not only take the value at single instant of time using
vmstat command but it take status information for ten
instances of time (ten seconds). Then it takes the average of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1379

these ten status values and returns a single value to Intelligent
Scheduler. Reason to take the multiple status values is, to
precise the results. Every Status Agent performs this
operation on each node and hand over the results to the
Intelligent Scheduler. On the basis of these results the
scheduler makes the decision about the load distribution so
that each node is given the task as per node’s capabilities. This
decision making process is very critical. Intelligent Scheduler
would perform this through an algorithm. That is a bit
complex in nature. If we have the each node with the same
idleness or if we have the same processing power, its decision
could be done very simply but this never happens practically
because each node has in practical environment has different
idleness status as per its workload and also posses the different
processing powers, e.g.; one node has processor of 1000MHz
with idleness of 70%, other has 500MHz with idleness of 90%
and so forth. In this decision making becomes very critical and
difficult. Keeping in mind all these demands, algorithm makes
the distribution of the task and sends the results to the Task
Allocator. On the basis of these results the Task Allocator
performs the task distribution. In this example we have 10000
records and we assume that we have 10 nodes in environment.
The Task Allocator divides the data in chunks as per load
capabilities of the each node, and assigns the load to the
respective nodes, whole mechanism is shown in Figure 1.

IV. CONCLUSION

Concluding, the concept of load balancing is achieved without
migration of the processes among the node instead intelligent
task assignment is being done automatically in order to
balance the workload and there would be no need for process
migration and handling heterogeneity problems. In past
approaches of load balancing, there were some drawbacks and
shortcomings. Few of them are discussed; Most of time waste
in check-point restart mechanism and in migration of
processes among the nodes. As our proposed system
performing load balancing without the migration hence the
problems of migrating a process in heterogeneous
environment heterogeneity are removed automatically. Also if
any external resource is required like socket there is no need to
deal with them as there would be no process migration. It
make possible to achieve the load balancing without having
the need to maintain tables for the process migration at each
node as a result lot of processing efforts are saved.

REFERENCES

[1] V. S. Sunderam, “PVM A framework for parallel distributed
computing”, Concurrency, Practice and Experience by John Wiley
& Sons Vol. 2(4), pages 315--339, December, 1990.

[2] A. Osman, H. Ammar, “Dynamic Load Balancing Strategies for
Parallel Computers”, International Symposium on Parallel and
Distributed Computing (ISPDC), Romania, July 2002.

[3] Hillis, W.D. “The Connection Machine” MIT press, Cambridge,
1985.

[4] Powley, C., Ferguson, C. and Korf, R. E. “Depth-First Heuristic
Search on a SIMD Machine”, Artificial Intelligence, vol. 60,
pages.199-242, 1993.

[5] Fonlupt, C., Marquet, P. and Dekeyser, J. “Data-parallel load-
balancing strategies”, Parallel Computing, pages1665-1684, 1998.

[6] Dekeyser, J. L., Fonlupt, C. and Marquet, P. “Analysis of
Synchronous Dynamic Load Balancing algorithms, Parallel
Computing”, State-of-the Art Perspective (ParCo'95), vol. 11 of
Advances in Parallel Computing, pages 455--462, Gent, Belgium,
September 1995.

[7] Subramanian, R. and Scherson, “An Analysis of Diffusive Load
Balancing”. Proceedings of Sixth Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 220—225, June
1994.

[8] Leen Dikken, Frank van Der Linden, Joep Vesseur and Peter Sloot,
“Dynamic PVM”, Parallel Scientific Computing and Simulation
Group, Springer Verlag, April 1994.

[9] M.J Litzkow, M.Livny. “Condor – A hunter of idle workstation”,
8th International Conference on Distributed Computing Systems,
San Jose, California, June 1988.

[10] K.A. Iskra, Z.W. Hendrikse, G. D. van Albada, B.J. Overeinder,
P.M.A Sloot, “Experiments with Migration of PVM Tasks”,
Proceedings of the sixth annual conference of the Advanced school
for Computing and Imaging ASCI , June, 2000.

[11] Ravikanth Nasika Partha Dasgupta “Transparent Migration of
Distributed Communicating Processes”, 13th ISCA International
Conference of Parallel and Distributed Computing Systems, Aug,
2000.

[12] David J. Jackson Chris W. Humphres, “A Simple Yet Effective
Load Balancing Extension to the PVM Software System”, Parallel
Computing, Volume 22, pages 1647-1660, February, 1997.

[13] A.I Geis, “Building a Foundation for the Next PVM”, Petascale
Virtual Machines, Springer-Verlag, London, 2001

[14] Dennis Guster, Abdullah Al-Hamamah, Paul Safonov, Elizabeth
Bachman, “Computing and network Performance of a distributed
parallel processing environment using MPI and PVM
communication methods”, Journal of Computing Sciences in
Colleges USA April 2003

[15] Arthur Trey, Nelson Michael L. “Intel NX to PVM3.2 Message
Passing Conversion Library”, NASA Langley Technical Report
Server, October 2003.

