International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

Dynamic Inverted Index Maintenance

Leo Galambos
Department of Software Engineering
Charles University in Prague, Czech republic
Email: leo.galambos@mff.cuni.cz

Abstract— The majority of today’s IR systems base the IR task on
two main processes: indexing and searching. There exists a special
group of dynamic IR systems where both processes (indexing and
searching) happen simultaneously; such a system discards obsolete
information, simultaneously dealing with the insertion of new in-
formation, while still answering user queries. In these dynamic, time
critical text document databases, it is often important to modify index
structures quickly, as documents arrive. This paper presents a method
for dynamization which may be used for this task. Experimental
results show that the dynamization process is possible and that it
guarantees the response time for the query operation and index
actualization.

Keywords— Search engine, inverted file, index management.

I. INTRODUCTION

Many algorithms for actualization of indices in place often
disable new additions unless the actualization is finished.
Unfortunately, this lock may be active for several minutes, for
a small collection of documents, and in the case of terabyte-
sized collections, it may be active for hours. Therefore, our
goal is the algorithm which will minimize this delay, while
keeping the data structure (index) in good shape. What is
meant by ”good shape” is that the data structure is not
significantly slower than the fully-optimized index structure.

A. This paper

The method of this paper addresses how to incrementally
update an index in place while still guaranteeing the response
time for querying and index actualization. Second, the method
uses a native solution which can be easily implemented
without complex data structures or extra data space. Therefore,
the method can be used in cases where it is not possible to
use new advanced methods (see Chapter 2).

This paper is organized as follows. The current methods are
summarized in Chapter 2. The actualization algorithm, based
on the dynamization, is presented and discussed in Chapter
3. Chapter 4 presents the extension for batch processing. The
impact on searching phase is discussed in Chapter 5. Issues
related to the Web are discussed in Chapter 6.

B. Theory, Background

The results presented in this paper were achieved with the
EGOTHOR engine [8]. At its core, it uses the vector model
with implementation of inverted lists [7].

In the Vector space model [15], [16], the query (@) and doc-
ument (D) are represented as vectors. The vectors are indexed
by terms (¢;), or rather, by their numbers (i = 1...terms).

A document vector is defined as 5; = (w;,j)j=1...m» Where
wj ; is the weight of the j-th term in the i-th document and m
is the number of different terms in a corpus. Generally, terms
that are absent from a document are given zero weight. A
query vector is defined in the same way (Q = (¢;)j=1..m =
(wq,j)j=1..m). The document-term matrix DT = (wi,j)iﬁj
represents the index. The columns of that matrix (without zero-
cells) represent the inverted lists. The number of rows (number
of indexed documents) is also termed “the size of the index”.
The index may contain other values, for instance, positions of
words (tokens) in documents. For purposes of this paper an
item in an inverted list is termed a “tuple”.

We will assume that inverted lists are stored in one file
(inverted file) in an order that reflects the order of their terms.
That is, the inverted list of term ¢ is stored before the lists
of terms ¢} ...¢,, if and only if the term ¢ is (alphabetically)
lower than any of ¢} ...t, terms. This format ensures that
two inverted files 7" and U can be merged by reading them
sequentially. Assuming that the inverted file X is built up for
the document collection C'x, and its length is Lx, the merge
operation then produces a new inverted file V/, and it holds:
Cy = Cr UCy, Ly = Ly + Ly, with the operation taking
O(Ly) instructions. When a set of inverted files is merged, the
process uses O(Ly . . u) instructions, where u is the number
of merged files.

Index actualization can be reduced to inverted file actu-
alization. Therefore (for simplicity’s sake) the inverted file
represents the index in this paper.

II. EXISTING SOLUTIONS

In this section, the methods for modification of inverted
indices are discussed briefly. We will assume that the indexed
collection of documents has the same properties as WWW,
where the number of inserted or deleted documents is smaller
than the number of modified documents [9]. Moreover, the
number of changes is rather small when held against the whole
collection of documents.

Rebuild. This method replaces an obsolete index with a
new one which is built from scratch. Obviously, this way
is not effective because it always re-scans all documents in
a collection. The method could be improved by distributed
processing, but it does not change the fact that this method is
wasteful for the document collection assumed herein.

Delta change-append only. Some improvement is achieved
when just the modified documents are processed. This can
be implemented effectively using the standard indexing tech-
nique (known as merging [2], pp 198). For this, the index

3393

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

is merged with an index built for new documents. When a
document should be removed, it is only denoted as “deleted”.
Modification of a document is then realized via Delete+Insert
operations. This implementation is very popular and can be
found, for instance, in the Lucene engine [1].

Unfortunately, one serious drawback exists - if we exe-
cute many Delete operations (also part of the Modification
operation), the index structure stops working effectively, and
what is more important, it is not possible to easily detect this
situation. Therefore, from time to time one must optimize
the index. Such an optimize phase may take a lot of time,
which again makes this method less effective. The issue was
studied by many researchers, for instance [5]. Unfortunately,
their solution was demonstrated with simplified conditions; it
would be interesting to see whether these conditions hold in
a heavy load system.

Forward index. Another method was proposed by Brin
and Page for the Google search engine [3]. This method
constructs an auxiliary data structure (forward index) which
speeds up the modifications in the main (inverted) index. The
term “modifications” means the real changes of the existing
values stored in the index. Other modifications (insertion or
removal of values to/from the index) are realized using other
approaches, e.g. Btree [6].

Landmark. Research in this area continues and new ap-
proaches are still developed, for instance, a landmark method
[10] which introduces special marks in the index. The marks
are used as initial points from which some values in the index
are derived. Therefore, if one modifies the mark, all values
dependent on the mark are also shifted. It was shown in the
cited paper that such a case often happens in an index built
for WWW and, as a result, the landmark method was faster
than the forward index.

Other approaches. Our summary misses some methods,
which were developed in past decade, i.e. [4], [17].

This paper. We will try a straightforward way that is based
on the dynamization of a static index structure. The method
solves the issue (where the index structure can stop working
effectively) of the “Delta change-append only” approach.
Moreover, the method does not need extra data space (as does
a “Forward index”), and even works when the inverted lists
are compressed and not based on the index structure supposed
for the “landmark” method, i.e., when positions of words in a
document are not stored. Last, but not least, the method saves
a file system structure, because it may keep all the index files
defragmented.

III. DYNAMIZATION

The dynamization we use is inspired by Mehlhorn’s algo-
rithm [12]-[14] for common data structures, e.g., hash tables.
The algorithm will be modified and reformulated for an IR
system. Let us agree upon the following terminology: a Barrel
is an autonomous index that is often static (it represents the
inverted file above); a Tanker is an index that is decomposed
to smaller barrels, and it disposes of dynamization as the
actualization algorithm. The term (Barrel) was used in many
previous papers, i.e. [3], but it is used in a different meaning
in this paper.

Example: One can build a simple index (of size 1) for any
document. These indices are always barrels, because the index
is static (for a given document). Moreover, the index can be
searched, therefore it is also autonomous. Later we will show
how these simple barrels are organized into tankers, and how
the larger barrels are constructed.

We already know that a document can be easily transformed
to a simple barrel, thus barrels are considered instead of doc-
uments in this paper. Firstly, let us agree upon the following
notation:

Notation 1: Let B be the barrel that is built for the collec-
tion of documents C'p. The barrel B offers the query operation
searchp(q,Cpg) (for a query ¢). It does not matter how the
search is implemented. If n is the number of documents in
the collection Cp, then the size of barrel B is B.size() = n;
the time we need to build B over |Cg| is Tip(n); the space
we need for the structure B is Spp(n); the time we need to
compute searchp(q,Cpg) is denoted Qp(n).

The document removal operation is implemented using a
bit array which sets the bit related to the document to 1,
if and only if the document is removed from the collection.
Obviously, such documents must be also filtered out of the
hit lists prepared by searchp. This operation can be easily
implemented, however.

Notation 2: Let B be the barrel. The number of documents
denoted as removed in the barrel is B.deleted(). The num-
ber of live documents in the barrel is |B| = B.size() —
B.deleted)().

Similarly, we define the notation in the case of tanker 7'
— Tip(n), Spr(n) and Qr(n). Moreover, we must require a
condition which is described in the following definition:

Definition 1: Let T be the tanker containing barrels
By, By, ... B, (also accessed as 7" i in the algorithm below).
Next, let C; be a short form of C'z,. We request that Vi # j :
C; N C; = . If and only if a position j is not occupied in
the tanker, we define: B; = (), C; = (). When the position j
is not occupied, we define searchg,(q,C;) = 0.

Let us denote the tanker collection C'p = 1-":0 C;. Tanker
T is able to solve the query operation (for a query g) as
searchr(q, Cr) = searchp,(q, Co)®searchp, (q,C1)®- - -®
searchp, (q,C,), where @ denotes the composition of partial
results. This operation is computable in constant time because
we only compute hit lists of limited length.

Moreover, we request:

Vi:B; #0:273 < |By| <20 and 1 < |By] 6)

This condition ensures that no part of a tanker is degenerated
after a number of Delete operations. If such a situation did
happen, we would execute a reorganization which would repair
the tanker structure (see below). After this operation, the
condition would again hold.

The actualization in a tanker after barrel insertion can be
achieved by Alg. 1. The algorithm ensures that the tanker will
reorganize its inner structure and that the condition (1) always
holds.

Obviously, it is not effective to work with small barrels on
a disk. That is why the EGOTHOR engine introduces barrels
implemented in memory. They can be used as a replacement

3394

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

Algorithm 1 Algorithm of dynamization — Tanker, routine
insert(B:barrel)

ko= Az|Bl+ o |Bi|l <27}

S = {Bi;i< k‘/\Bi #@}U{B},

Vi< k:B;:=0;

By = Merge(S);{Merge barrels of set S; values of

removed docs are left out}

Indexing in 1712 runs of 2000 documents
2500 5000

- 4500

2000 4000

- 3500

1500 3000

2500

time (sec)
I
space (MB)

1000 2000

- 1500

500 1000

P

N ‘
0
0 200 400 600 800 1000 1200 1400 1600 1800
run number

- 500

Elapsed time Memory space

Fig. 1. Indexing (Redhat 7.3, IBM JDK 1.3, SMP 2xPIII/700MHz, SCSI).

for barrels which are used in the lower cells of a tanker. More
often, we can implement the memory barrel as a dynamic
barrel that can absorb other small barrels without use of the
dynamization algorithm (it is obvious that in memory we can
simply append to any inverted list, for instance when the
inverted lists are implemented as growing arrays).

This “catch-them” barrel can be used as a cache in a tanker
and in this way the engine can speed up indexing. In the tanker
that was used in tests (see below), a cache barrel of size 64 was
active. Because of this the tanker does not use dynamization
to build up barrels in cells 0. .. 6.

The experiment is organized as follows: 3.5M HTML doc-
uments (on the ac.uk domain) were divided to n groups
each containing 2000 documents. The collection is indexed in
n runs and for each input group a Java program adds new
documents to already processed documents; processing time
T'i; of the i-th run, and size Mem,; of the index after the i-th
run are measured.

The two properties (“Elapsed time” T'i;, “Memory space”
Mem,;) are summarized in Fig. 1 (“Memory space” is drawn
by points which form the diagonal lines).

When studying the test, it is known that the higher values
(jumps) in the presented graphs reflect the situation when a
large barrel is built. If the run contained more documents,
it could also signal that a lot of these barrels were built.
Therefore, runs of 2000 documents were presumed to be quite
enough to get relevant results. The tests then revealed that we
can assume that Tip(2n) = 2Tip(n) = Tig(n)+ Tip(y) +
Tip(%)+ -+ Tip(1).

It can also be seen, that the presented method works as fast
as merging with a merge factor equal to 2. On the other hand,

in a real system the index must also reflect other modifications
than simple insertions, for instance, when a document is
changed or removed.

IV. BATCH PROCESSING

Until now we assumed that the index is modified after each
insertion. This chapter introduces batch processing, when a
set of insertions or removals is executed at once. For clarity’s
sake we will present a solution to a case where the number of
removals is almost the same as number of insertions. All these
changes come from modifications of documents, because we
use Delete+Insert approach. It is also assumed that the index
is already huge and the number of removals or insertions is
rather small (less than 30%).

Algorithm 2 (Algorithm of dynamization) Tanker, routine
modify(D:documents).
{stepl: remove all obsolete data}
mark existing documents D as deleted/invalid in the index
using bit vector
{r is the number of cells in this tanker}
for all i=0...r do
if |bi| == 0 then
n[i]=empty
else
if [bi|> 273> 0 then
n[i]=bl[i]
else if i==0 then
n[i]=bl[i]
else if [n i — 1| >=2""2 then
n[i]=merge(n[i-1]);n[i-1]=merge(b[i])
else
y=merge(b[i],n[i-1])
if |y| >= 272 then
n[i]=y;n[i-1]=empty
else
n[i]=empty;n[i-1]=y
end if
end if
end if
end for
{step2: if a barrel is still small then eliminate it}
zombie = {ni;ni.size() > 0A|ni| <2073}
new=merge({D},zombie)
{step3: insert the new barrel}
while all positions for new are occupied in n, merge the
barrels with new
new is saved into the array n
{step4: execute all merges we planned }
COMMIT: array n becomes b, obsolete barrels are discarded

The algorithm 2 repairs a tanker which reflects changes in
documents D. It transforms an existing tanker’s structure b
to a new one — n (both are arrays of barrels, so that B;
is represented as bi or n ¢). All merge operations denoted
by the merge method are delayed until we really need the
product of the merge. The empty barrel is denoted as empty.

3395

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

Combined (1R=1W) operations during updates

100
1 90
-1 80
4 70

- 60

-1 50 Changes ratio (%)
< 40

30
20
10

Number of documents (log N)

100 - 70 - 40 - 10 -
90 60 - 30 ——
80 - 50 o 20 -

Fig. 2. Comparison: dynamization versus RFS.

We also note that the merge(B;) operation creates a copy,
not containing any values of documents which are denoted as
removed, of barrel B;.

The main strategy of the algorithm 2 is summarized in four
steps: 1) all obsolete documents are denoted as removed, and
the tanker is repaired to better comply with the condition in
Def. 1; 2) all new documents are indexed using the classic
merge algorithm of merge factor m (we use m = 100). This
way a barrel new is produced. If some tanker’s barrels do not
comply with the condition in Def. 1, they are merged with the
barrel of new documents; 3) the new barrel is appended to the
index; 4) all delayed merge operations are executed, and the
tanker is transformed to a new consistent state.

A. Experiment

We decided to describe the algorithm alternatively, using
its simulation. For this, we utilize the formula T%p(2n) =
2Tip(n), which holds in our real IR system. Then, we can
estimate the time needed to realize the steps of the Alg. 2.

The existing methods introduced in the Chapter 2 are often
compared with the method labeled as “rebuild from scratch”
(RFS). We will apply the same approach.

The simulation is then organized as follows: the original
tanker has 2V documents and it consists of one barrel B
without deleted documents B.deleted() = 0. The barrel is
placed at position N. The value N is placed on the X-axis
in the figure. The updater always removes and inserts chg
percent of the index size (Y-axis). We measure the number of
read and write operations .S needed to realize the Alg. 2. The
Z-axis then presents the ratio]\%, where M is the number of
read and write operations needed by the merging RFS strategy
of factor 100. The measured values are the average of 10000
reiterated runs. The 3-d figure is equivalently represented as a
contour figure (see Fig. 2).

B. Discussion

The first step of Alg. 2 is the removal of values of all
removed or modified documents in the collection. This can
be done quickly, and if desired, the operation can be already

Simulation 22° documents in base

100 | T

90 41

0

(%)

60

50 - L L i]

. . .
5 10 15 20 25
Changes ratio (%)

How much is the tanker full?
How much is the largest barrel full? -------
How long runs a query in the largest barrel? --------

Fig. 3. Simulation of the dynamization algorithm.

done by a crawler that gathers the new or modified documents.
Other steps are not so easy, but the simulation shows how
they work over a long term (10000 reiterated runs). It should
be noted that we can simulate the algorithm for collections
which are almost unrealistic for evaluation. A collection of
216 documents is not easy to obtain, and 10000 repetitions of
the experiment are pretty unrealistic on the hardware available.

The simulation was verified on a collection of size 22!
When the test was repeated with 10% of the documents
randomly changed, it was saved about 86% of time comparing
to the complete rebuild. Our theoretical assumption of 88%
was not achieved, but the difference is small, such that it can
be rooted in the fact that we had to measure only some parts
of engine’s routines, and in JAVA, we were not able to use
accurate system timers.

V. SEARCHING

The typical searching phase consists of two steps. First, we
look up all terms in a dictionary to find offset positions of the
respective inverted lists. Next, the inverted lists are read and
evaluated. Obviously, if the dictionary is cached in a hash table
in a memory (RAM), then the majority of time is consumed
by the second step.

Due to the fact that a tanker 7°(n) must have more than
LsizeQ) pjye documents, we can claim that a query over the
tanker needs time) 3(8n) to be solved. This holds for a single
thread environment (STE), but the query could also run over
each of the tanker’s barrels concurrently. Then the time is
rather limited by the construction size of the largest barrel in
the tanker.

Ee are also interested what happens in a long term. It
could happen that the tanker almost always contains just a
few deleted documents and the limit case (the tanker has up
to 7/8 of deleted documents) occures only time to time and
infrequently. Obviously, the opposite case could also happen.

A. Experiments

The answer to this is given by Figure 3 describing the
experiment. The tanker 7' is an index over 2V documents

3396

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

and it consists of one barrel B without deleted documents
B.deleted() = 0. The barrel is placed at position IV in the
tanker (I' N = B). The updater always removes and inserts
chg percent of the index size (X-axis). We measure the ratio
%jgewd() and the Y-axis then presents the average
value of the ratio after 10000 updates. It should be also noted
that we simulated the algorithm for collections which are
almost unrealistic for evaluation (15 < N < 47), but the
collection size has not any impact on the results, so we decided
not to include this parameter in the experiments presented
herein.

The figure shows that we lost about 25% (in a long term)
when using the dynamization for an index that is updated
concurrently and the number of changes is less than 10%
— a typical situation for a live web search engine. We may
also lost about 35% in several concrete cases. Fortunately,
our algorithm could be enhanced with a routine that checks
whether we are in such a bad case. If so, the routine could
shorten or lengthen the period of updates and move us to a
better case.

The presented figure is related to the situation when the
barrels of a tanker are evaluated sequentially. How is this
changed when the barrels are evaluated in a multi-threaded
environment (MTE) and they operate over a shared result list?
The answer is given by the ratio of the construction size of the
largest barrel and the number of live documents in the tanker
(as explained above). The simulation is presented in Figure 3.
It shows that we could save 30%-70% of time (comparing to a
fully optimized index) when the number of changes is within
a reasonable boundary (less than 30%).

Now, another point is interesting as well — how many live
documents are stored in the largest barrel? The answer to this
shows us how effectively we can evaluate a query in MTE.

The respective simulation is presented in Figure 3 and we
could again claim that only about 25% of performance is lost
due to the deleted documents (in a long term).

It was still told about the average case, or rather, about
the long-term effectiveness. However, a real threat was not
discussed yet — what will happen in the worst case when the
algorithm only guarantees that the response is given (up to)
eight-times slower than with the fully optimized index? Could
it be improved this parameter? Can the speed be improved
when the barrels are ordered by a page rank?

V1. THE WEB, PRACTICAL NOTES

Our algorithm could run eight-times slower than the fully
optimized index in the querying phase. However, according
to [11], we could still save more than 60% of time with
skipping of L = 100 (L — skip factor [11]). All we need to
do is to implement our bit array (storing the 1-bits for deleted
documents) as an inverted list and include it into the queries.
Since the bit array is (can be) fully kept in RAM, we can
save more than was described in the cited paper — the authors
assumed that all inverted lists are read from a hard disk, while
we have one of them in RAM.

Moreover, if the inverted lists are sorted by a document rank
(the highest first), then just a few first blocks are read, because

Top-10 statistics
160 T T

120 - 3 g

100 J

Items

80 H
60 i

20 e T T T T

0 L L L L
0 5 10 15 20 25

Changes ratio (%)

“Avg items read

*Max length read -------

Avg items read (concurrent run) --------
Max items read (concurrent run)

Avg items read in the largest barrel -~~~

Max items read in the largest barrel -------

Fig. 4. Length of the inverted lists for top-10 evaluation.

all other hits would be computed for less-important pages, so
they would not be included amongst top-N.

We must only find a correct starting point of an inverted list
(disk seek operation) and start to read sequentially. In fact the
most expensive routine is the first seek operation. According
to our tests with the EGOTHOR system [8] we can claim, that
a disk block (4kB) is able to save about 500-1000 tuples of
an inverted list. Obviously, such a block is often quite enough
to generate top-10. Using the dynamization, we may have to
generate top-80 (up to 70 documents could be still denoted as
deleted), but this could be still covered by the tuples of the
first block implying no extra I/O operations.

The following experiment shows what happens with the
index, when the index is ordered by page rank. Our setup
is: only chg documents are changing; the probability that a
document is modified since the last update is chg (changes
ratio); top-10 is constructed; the index is updated 10000 times;
if a document was not modified in last 1000 updates, it is
supposed to be static.

Since the engine operates on the Web, we assume that
the top-10 hits are (primarily) looked for in the last barrels
constructed with Alg. 2. It is based on the fact, that the most
wanted documents are probably saved in the most up-to-date
documents of high page ranks.

However, if our query algorithm cannot adopt the evaluation
(where the last barrels have higher priority), all barrels must
be asked for top-N lists and the final top-N is their joint. Then
one might be interested in the maximum length of an inverted
list we must scan in any of the barrels (they are asked for
the hit lists concurrently). Next, the total number of tuples
read in all barrels is an interesting value as well. Both values
(including their means after 10000 updates) are presented for
top-10 queries in Figure 4. The figure also presents the number
of tuples read in a situation when we can adopt the special
evaluation as mentioned above. These values are denoted by
an asterix.

For instance, when 5% documents are changing since last
update, then we must read 10.15 tuples from the largest barrel
in an average case (the maximum value is 16). It implies, if
the querying runs concurrently, the queries run 1.6x slower

3397

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:1, No:11, 2007

TABLE I
SUMMARY
Rebuild Delta change Dynamization
#Barrels 1 Mlogny MN loga8N
Indexing Nlogys N | Alogy MN Alogys 8N
Search (STE) N N ~ MN N ~ 8N
Search (MTE) N & ~MN ¥ ~8N

than over a compact index.

The ”1.6x” factor could imply more I/O operations for high
N. Fortunately, if we prepare the hit lists for “top-N queries”
where N is in reasonable boundaries (for instance <100), the
higher demand for read operations is not significant. This is
based on the fact that the inverted lists are always read by
disk blocks and it does not matter whether we read 1 byte or
the full block. If one tuple was stored using 5 bytes then one
disk block of 4kB could save about 819 tuples and the factor
of 1.6 would not represent any serious threat.

The experiments confirm that the new method has a real
practical impact for search engines operating on the Web.

Finally, the summarization of some features is presented in
Table 1. The first feature — number of barrels — is one of the
most important attributes for a real search system. When the
system operates on more barrels, it needs more file handles
to read data. Since the maximum of file handles is limited at
a given moment, the system might not be able to serve high
load. Other features observed are: time that is needed to apply
changes of A documents amongst N (using merge factor M);
time of a query evaluation when the index is not sorted and
the query has just one term.

Our method could not be directly compared with other high-
performance methods, i.e. “Landmarks”, due to unavailability
of source code of the other algorithms. Therefore, the exper-
iments were aligned with the rebuild-from-scratch approach
which is also used as a base-line by other researchers [10].

Although we believe that our simulation is good and it ac-
curately reflects reality some of the experiments were verified
on a collection of size 22!, When the test was repeated with
10% of the documents randomly changed, it was lost about
25% of time on querying in STE mode (the test computed full
hit lists, not only top-10). Our theoretical assumption of 21%
was not achieved, but the difference is small, such that it can
be rooted in the fact that we had to measure only some parts
of engine’s routines, and in JAVA, we were not able to use
accurate system timers.

The same test was also repeated in MTE. For this, we
borrowed a strong RAID-0 array that could represent a real
hardware for a search engine. JDK 1.5 and Java NIO were used
on 2xAMD Opteron and the result surpassed our theoretical
simulation by five percent (62% comparing to 57%).

The next experiment was pointed to top-10 calculation.
Unfortunately, it was not possible to measure any significant
difference, because all the differencies were neglible. This is
also confirmed by the emulation presented in this paper.

VII. CONCLUSION

We have developed a method for updating index struc-
tures in place, especially in dynamic, time critical document

databases. The method can be used in configurations where
one cannot easily update values stored in inverted lists, and it
makes the modern techniques (i.e. landmarks) unusable.

It was shown that the method can work much more ef-
fectively comparing to “rebuild from scratch”. On the other
hand, the trade-off is based on the fact that we are satisfied
with slower querying — up to eight times comparing to a
fully optimized index. Fortunately, it was shown that the
factor can be further lowered. Our preliminary experiments
and simulations show that the extra operations are almost
fully compensated by the hardware architecture of current
computers, where it does not matter whether a program reads
one byte or hundred bytes from a disk.

REFERENCES

[1] Apache, Jakarta project: Lucene. http://jakarta.apache.org.

[2] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Chapter
8. ACM Press 1999.

[3] Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems 30, 1-7, 107-117, 1998.

[4] Brown, E.W.: Execution Performance Issues in Full-Text Information
Retrieval. Computer Science Department, University of Massachusetts at
Ambherst, Technical Report 95-81, October 1995.

[5] Clarke, C., Cormack, G.: Dynamic Inverted Indexes for a Distributed
Full-Text Retrieval System. TechRep MT-95-01, University of Waterloo,
February 1995.

[6] Cutting, D., Pedersen, J.: Optimizations for dynamic inverted index
maintenance. Proceedings of SIGIR, 405-411, 1990.

[7]1 Fox, E.A., Harman, D.K., Baeza-Yates, R., Lee, W.C.: Inverted fi les. In
Information Retrieval: Data Structures and Algorithms, Prentice-Hall, pp
28-43.

[8] EGOTHOR, JAVA IR system. http://www.egothor.org/.

[9] Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.: Charac-
terizing Web Document Change, LNCS 2118, 133-146, 2001.

[10] Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.: Dynamic
Maintenance of Web Indexes Using Landmarks. Proc. of the 12th W3
Conference, 2003.

[11] Moffat, A., Zobel, J.: Self-Indexing Inverted Files for Fast Text Retrival.
ACM TIS, 349-379, October 1996, Volume 14, Number 4.

[12] Mehlhorn, K.: Data Structures and Effi cient Algorithms, Springer Verlag,
EATCS Monographs, 1984.

[13] Mehlhorn, K., Overmars, M.H.: Optimal Dynamization of Decompos-
able Searching Problems. IPL 12, 93-98, 1981.

[14] Mehlhorn, K.: Lower Bounds on the Efficiency of Transforming Static
Data Structures into Dynamic Data Structures. Math. Systems Theory 15,
1-16, 1981.

[15] Salton, G., Lesk, M.E.: Computer evaluation of indexing and text
processing. Journal of the ACM, 15(1):8-36, January 1968.

[16] Salton, G.: The SMART Retrieval System - Experiments in Automatic
Document Processing. Prentice Hall Inc., Englewood Cliffs, 1971.

[17] Tomasic, A., Garcia-Molina, H., Shoens, K.: Incremental Updates of
Inverted Lists for Text Document Retrieval. Short Version of Stanford Uni-
versity Computer Science Technical Note STAN-CS-TN-93-1, December,
1993.

3398

