
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

580

Abstract—Service-oriented systems have become popular and

presented many advantages in develop and maintain process. The

coupling is the most important attribute of services when they are

integrated into a system. In this paper, we propose a suite of metrics

to evaluate service’s quality according to its ability of coupling. We

use the coupling metrics to measure the maintainability, reliability,

testability, and reusability of services. Our proposed metrics are

operated in run-time which bring more exact results.

Keywords—Dynamic coupling metric, SOA, web service, SOAP

Extension.

I. INTRODUCTION

ERVICE-ORIENTED ARCHITECTURE (SOA) is an

approach to build distributed systems by integrating

components that have independent platform, language, and

operating system. SOA delivers application’s functionality as

services to end-user applications or to build other services

[1]..

SOA is an architecture that uses open-standards to describe

software components. SOA provides a standard way for

describing and interacting between software components.

Specific software components become basic blocks and they

can be reused to build other applications.

Software components are called services. Services are

important elements in SOA. We need a clear understanding of

the term service. A service is a function that is well-defined,

self-contained, and does not depend on the context or state of

other services. Service-oriented system only can operate when

services in this system have to collaborate. Collaboration

between services in system is described as Fig. 1.

A service provider publishes a service description to a

service registry. When a service description is available, a

service consumer can find any service via the service registry,

the service’s description contains sufficient information for

the service consumer to bind to the service provider to use it.

Web Service is a technology that is well suited to

implementing a service-oriented architecture. In essence, Web

Manuscript received June 05, 2009. This work was supported in part by

the Vietnam's Ministry of Science and Technology under Grant

KHCB2.034.06.

Pham Thi Quynh is a Lecturer at Software Engineering Department,

Faculty of Information Technology, Hanoi National University of Education

(E-mail: ptquynh@gmail.com).

Huynh Quyet Thang is an Associate Professor at Software Engineering

Department, Faculty of Information Technology, Hanoi University of

Technology, Hanoi, Vietnam (E-mail: thanghq@it-hut.edu.vn).

services are self-describing and modular applications that

expose business logic as services that can be published,

discovered, and invoked over the Internet [2]

Fig. 1 Collaboration between services in a system

Web services use some standards based on XML. These

standards define describing (WSDL), finding (UDDI) and

communicating between services (SOAP) in system.

The following describes the sequence of events that occur

when an XML Web service is called:

1) The client creates a new instance of an XML Web service

proxy class. This object resides on the same computer as

the client.

2) The client invokes a method on the proxy class.

3) The infrastructure on the client computer serializes the

arguments of the XML Web service method into a SOAP

message and sends it over the network to the XML Web

service.

4) The infrastructure receives the SOAP message and

deserializes the XML. It creates an instance of the class

implementing the XML Web service and invokes the

XML Web service method, passing in the desterilized

XML as arguments.

5) The XML Web service method executes its code,

eventually setting the return value and any out

parameters.

6) The infrastructure on the Web server serializes the return

value and out parameters into a SOAP message and sends

it over the network back to the client.

7) The XML Web service infrastructure, on the client

computer, receives the SOAP message, deserializes the

XML into the return value and any out parameters, and

passes them to the instance of the proxy class.

8) The client receives the return value and any out

parameters.

Dynamic Coupling Metrics for Service –

Oriented Software

Pham Thi Quynh, Huynh Quyet Thang

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

581

Fig. 2 Web service lifetime

Services in a system need to couple to execute a task.

However, this coupling is not always available except to it

need to maintain. This loose coupling make SOA is easy when

maintenance and operation because it operates in individual

module in effect to other modules in the software [1].

Coupling or dependency is the degree to which each

program module relies on each one of the other modules.

Comparing with traditional system, SOA is looser coupling

[3]. This avoids the changes by limiting the impact on other

elements which have relationship with changed element.

Loose coupling describes an approach where integration

interfaces are developed with minimum assumptions between

the sending/receiving parties, thus reducing the risk that

change in one application or module will effect to other

applications or modules. Loose coupling simplifies testing,

maintenance and troubleshooting procedures because

problems are easy to isolate and unlikely to spread or

propagate. Loose coupling minimizes unwanted interaction

among system elements.

Nowadays, some coupling metrics of software have been

proposed [10]. However, they only evaluated the coupling of

object-oriented software. For service-oriented systems, the

coupling metrics, which has been proposed, is static [9,11].

Therefore, in this paper, we will propose a set of dynamic

coupling metrics of service-oriented software. In the next

sections, we will explain how to implement and user guide for

this set of metrics. The last section contains conclusions and

further work.

II. THE PROPOSED METRICS

Coupling is the most important attribute of service oriented

software. The coupling is presented by relationship between

services. This relationship shows dependency between

services. If a service has more relationship with other services,

it will depend on others much more. When a service need to

change which impacts on other services – related to it and

reverse. Therefore, if a service has more dependency

relationship, the coupling between this service and others will

become tighter. We can see from relationship in a service -

oriented software generally, the more relationship exist inside

software, the tighter coupling attribute is. This kind of

relationship or connection between services is a skeleton in

service oriented architecture.

We develop a suite of dynamic coupling metrics for service

oriented software. The “dynamic” concept can be showed by

interaction between services in a system at runtime.

A. Coupling Between Services Metric (CBS)

CBS is built directly from CBO (Coupling Between

Objects) metric in a suite of C&K metrics [4]. For service A,

CBS metric is calculated based on the number of relationships

between A and other services in system.

j

n

nji

i BACBS
..1

 (1)

In which: n is the number of services in system; AiBj=0 if

Ai does not connect to Bj and AiBj=1 if Ai connects to Bj

When a developer builds service A, he can design many

things such as data, messages, operators, use cases … relate to

the functions that service A covers. In fact that we can not use

everything which service A provides. For example, a

developer thinks that service A can interact with service B, C,

D; but in runtime it only communicates with service B. It

means that calculating dynamic coupling between services

will bring a more exact result than based on design

specification.

For a service A, the larger the value of CBS metric, the

tighter the relationship with other services is. In other words,

service A depends much more on others. If these services

change which affects on service A, the maintainability will be

low.

B. Instability Metric for Service Metric (IMS)

According to METRIC ADVISOR from C-DAC [5], fan.in

metric of function A is calculated by the number of functions

that call to function A and fan.out metric is the number of

functions that are called by function A.

The fan.in and fan.out metrics are used to evaluate

software’s maintainability. Fan.out metric shows the number

of functions that function A calls to; therefore these functions

change which make function A also changes. In short, the cost

of maintain for a function which has high fan-out metric’s

value is very high.

Fan.in metric is the number of functions that call to

function A. The fan.in metric’s value of function A is high

means that there are many functions that use and depend on it.

Joost Visser proposed a formula for calculating instability

of a component based on fan-in and fan-out metrics [6].

outfaninfan

outfan

..

. (2)

From above definitions, we built a metric which shows

interaction between a service and others in system through

sending and receiving messages. Considering service A, we

suppose fan-in metric is calculated by the number of messages

which are sent to service A and fan-out metric is the number

of messages which are sent by service A. Next, we apply the

formula for calculating instability of a service.

%100
..

.

outfaninfan

outfan
IMS (3)

If the value of this metric is low, the level of dependency of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

582

service is low whereas others depend on it higher. IMS = 0

means that the stability of service is very high. IMS = 1 means

that the service is very instable.

C. Degree of Coupling between 2 services metric (DC2S)

DC2S metric is developed from CBS metric. As presenting

in 2.1, CBS metric is only applied on all of services in system.

The DC2S metric identifies relationship between two services

to detect the dependency between these services.

Considering service A and service B, the DC2S metric

between A and B is calculated by the percentage of the

number of times from A to B in the number of times from A

to other services in system.

%100

),(

),(
2

1

n

i

iBAN

BAN
SDC

 (4)

In which, n is the number of services in system; N(A, Bi) is

the number of connections from service A to service Bi (which

is the number of calls from A to operators of Bi)

DC2S metric identifies the level of coupling between two

services in runtime; for example, in specification service A

has relation to service B and service C. However, in runtime,

A calls to B by 100 times, whereas it only calls to C by 3

times. This shows that service A couples with service B

tighter than service C. From this point, when maintaining

service A, we should concentrate the level of impact of

service B higher than service C.

D. Degree of Coupling within a given set of services metric

(DCSS)

For a service oriented system, we can build a graph G(V,E)

which can describe services and relation between them in this

system [6], in which: (i) Nodes in graph is services; (ii)

Relation between services is edges; (iii) Direct of edge is

direct from request service to provider service and (iv) Weight

of edge is identified in two cases. In first case – static metric,

weight of edge is 1. In second case – dynamic metric, weight

of edge is the number of times from request service to

provider service.

After that, we build distinct function from node u to node v

[7]. We call d(u,v) is the length of shortest path from u to v. If

between u and v does not exist any paths, in theory d(u,v) is

, but we choose d(u,v) is K in which K is the maximum

value in the length of shortest path between any two nodes. In

static metric, K is the number of nodes in graph. In dynamic

metric, K is the sum of edge’s weight.

For example, a system contains services A, B, C and D (See

Fig. 3). If service A calls service B by one time and service A

calls service C by one time and service B calls service C by

one time and service C calls service D by one time, we will

receive a below matrix as shown in Fig. 4.

Next, we will replace by the sum of edge’s weight, means

that K is 4.

Ser
A

Ser
D

Ser
C

Ser

B

Fig. 3 A system with services and relation between services

1 1

1

1

Ser

A

Ser

D

Ser
C

Ser
B

A A B C D

A

B

C

D

0 1 1 2

 0 1 2

 0 1

 0

Fig. 4 Graph and distinct matrix

To evaluate the ability of coupling with a service which

belongs to the given services, we will build a graph and a

matrix for this given services. We can see that the ability of

coupling of a service is the level of easy to reach a node in

graph [7].

1 1

1

1

Ser

A

Ser

D

Ser

C

Ser

B

A A B C D

A

B

C

D

0 1 1 2

4 0 1 2

4 4 0 1

4 4 4 0

Fig. 5 Graph and distinct matrix with K=4

From this point, we continue to develop a formula for

DCSS metric:

MinMax

vudMax

DCSS Vu Vv

),(

 (5)

In which: Max only appears when all of nodes in graph do

not connect together. Max = K*V*(V-1)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

583

Min only appears when all of nodes in graph connect to

others. Min = V*(V-1)

DCSS reflects the coupling between services in a system. If

this coupling is loose (means that a service can self provide

every requirements), the system will be easy and cheap in

maintenance and flexible with change.

Based on definition of DCSS metric, the value of this

metric is low, the coupling in system will be loose and

reserve. This metric helps to distinguish the difference

between two systems which have the same nodes but differ in

the connection between nodes.

In Fig. 6, both (a) and (b) have K = 6 and V = 6 so that Min

= 30 and Max = 180. In (a), DCSS = 0.2 but in (b) DCSS =

0,6. This proves that (b) has higher coupling.

Ser

B

Ser

A

Ser

F

Ser

Ser

D

Ser
E

1 1

1

1 1
1

A B C D E F

0 1 2 3 4 5

5 0 1 2 3 4

4 5 1 2 3 4

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

A

B

C

D

E

F

Fig. 6 (a) K=6; V=6; DCSS = 0.2

Ser

B

Ser

A

Ser

F

Ser

C

Ser

D

Ser

E

1 1

1

11

1

A B C D E F

0 1 2 3 4 5

5 0 1 2 3 4

4 5 1 2 3 4

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

A

B

C

D

E

F

Fig. 6 (b) K=6; V=6; DCSS = 0.6

Fig. 6. An example about 2 systems which have same nodes and

different edges

Internet/
LAN

Serialize DeserilalizeSOAP Request

Serialize SOAP Response Deserialize

1 2 3

679

4

5

Client

Server

 Fig. 7. Communication of Web-service when works with SOAP

extension

III. IMPLEMENTATION

To apply proposed metrics for web service, the most

importance is to get information about the number of services

request to a service that needs to measure or the number of

services that this service request to them, and the number of

protocols are requested, and all tasks must be executed when

system is operating. To get this information, we used SOAP

Extension. SOAP Extension is a mechanism that allows us to

TABLE I

A SUITE OF DYNAMIC COUPLING METRICS

METRIC FORMULA MEANING

CBS j

n

nji

i BACBS
..1

Measuring

the

coupling

between

services.

IMS
%100

..

.

outfaninfan

outfan
IMS

Measuring

the

instability

of service

DC2S

%100

),(

),(
2

1

n

i

iBAN

BAN
SDC

Measuring

the level of

coupling

between

tow

services in

a system.

DCSS
MinMax

vudMax

DCSS Vu Vv

),(

Measuring

the

coupling in

a suite of

given

services.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

584

get information about SOAP messages which to communicate

between a web service server and a web service customer [8].

Fig. 7 describes positions that we can insert a SOAP

Extension into the web service architecture (circles are

numbered). As you can see, SOAP extensions are quite

flexible: you can run code in a SOAP extension before or after

a serialization or deserialization operation.

SoapMessageStage.BeforeSerialize happens just before the

SOAP message is serialized. When a SOAP message is

processed in client mode (the SOAP message is outgoing), the

BeforeSerialize stage occurs immediately after a client

invokes a Web service proxy method, but before the message

is sent out over the wire. When the message is being

processed in server mode (the SOAP message is incoming),

BeforeSerialize occurs immediately after the WebMethod

returns and before the return values are serialized and sent

back to the client.

SoapMessageStage.BeforeDeserialize occurs before a

message is deserialized and turned into a CLR object. When

processing in client mode, BeforeDeserialize occurs after

receiving the response from a WebMethod invocation, and

just before the response is deserialized into a CLR object.

When processing in server mode, BeforeDeserialize occurs

after a SOAP message is received by the Web server, but

before the SOAP message is deserialized into objects and

passed as arguments to the WebMethod.

SoapMessageStage.AfterDeserialize occurs immediately

after a SOAP message is deserialized into objects. When

processing in client mode, the AfterDeserialize stage occurs

after the response from the WebMethod invocation has been

deserialized into an object, but prior to the client receiving the

deserialized results. When processing in server mode,

AfterDeserialize occurs after the request is deserialized into

objects, but before the method on the object representing the

Web service method is called.

SoapMessageStage.AfterSerialize occurs just after a SOAP

message is serialized, but before the SOAP message is sent

over the wire. When processing in client mode, AfterSerialize

occurs after a client invokes a WebMethod on a client proxy

and the parameters are serialized into XML, and before the

SOAP message is sent over the wire. When processing in

server mode, the AfterSerialize stage occurs after a

WebMethod returns and values are serialized into XML, and

before the SOAP message is sent over the network.

Therefore, to get information about SOAP when a service is

server, SOAP Extension listens at positions 4 and 5. In

situation which service is client, to get information, SOAP

Extension listens at positions 1 and 8.

SOAP Extension code does not change the code of services,

because it is packed as a library file and absolute dependent

with the code of services. Other words, results response from

this code are text files and are verified by service management

before they are sent to measure. So implementing metrics will

include two main parts:

In first part, we implemented SOAP Extension to get

information about SOAP messages and services. SOAP

Extension is built as a library file (.dll). Results from the first

part are .dat files that contain information need to

measurement. These files will be sent for us to measure by

DynamicCouplingMetrics tool, the result of measurement will

be sent back to customer that requests measuring or stored in

database.

 In the second part, after received .dat files, we will execute

measuring on DynamicCouplingMetrics tool, this tool is

implemented to measure dynamically complete, results are

viewed as multiform: number values, chart and table format,

on the other hand results are stored in Database to follow and

statistical.

IV. EXPERIMENTS AND EVALUATION

We experienced the suite of dynamic metrics in a real system

which is described in Fig. 8. The system contains 4 services:

BankNode (BN), ClientNode (CN), ManufactureNode (MN)

and SuppliverNode (SN).

BankNode(BN)

BankService (BS)

+ withdraw ()

+ deposit ()

+ debit ()

ClientNode (CN)

ClientApplication (CA)

SupplierNode(SN)

SupplierService (SS)

+ placeOrder()

+ recallOrder()
+ checkAvailability ()

WarehouseService2(WS 2)

+ getStockInfo ()

ManufacturerNode(MN)

ManufacturerService(MS)

+ placeOrder ()
+ recallOrder ()

+ getPriceList()

WarehouseService1 (WS1)

+ getStockInfo()

Fig. 8. An example about Web-service system

The result was compared to ARSD metric proposed by

Taixi Xu, Kai Qian and Xihe [9]; some metrics for service

from Dmytro Rud, Andreas, Schmietendorf, Reiner R.Dumke

[10]. Table II shows meaning and measuring methods of these

authors.

The suite of our metrics has some advantages. Firstly, it

needn’t use system’s specification whereas almost metrics

which were proposed before need to be provided design

specification of BPEL file.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:3, 2009

585

Secondly, these metrics measure services that stay in the

same position. This leads to limitation in measuring services.

Our metrics solve this problem by users can choose any

services in any positions.

Thirdly, result from metrics of these authors is fix because

of based on static file (design specification of BPEL file). Our

proposed metrics measure services in runtime so that result

can change according to real cases.

The result from above example in case not considering and

considering services stay the same nodes are presented in the

table III and table IV.

The communication between services in a node is

insignificant which does not affect other service in other

nodes. However, if this communication is significant, metrics

of other authors can not give a view about system generally.

Without considering the relation between services in a

node, our proposed metrics give result like other metrics.

Table III shows BS service has CBS = 0 which means that it

does not depend on any services, AIS = 2 presents the number

of services depend on it is maximum. Both CBS and AIS

prove BS service’s stability is the best. In contract, CA service

has CBS = 2 means that none services call it and AIS = 0

which shows none services depend on it. To sum up, CA

service’s stability is the lowest. The CBS metric also shows

that the stability of MS service is as bad as CA service, but the

AIS metric can not conclude like that.

In table IV, both CBS and ADS metrics conclude that the

stability of MS and CA services is low. In addition, the CBS

metric also asserts MS service is the most instable like the

ACS metric gives.

Now we will compare proposed DCSS metric to ARSD

metric. From Fig. 6, we can see the coupling of (a) is looser

than (b), the DCSS metric proves it but the ARSD metric

concludes the coupling of (a) and (b) is same.

Finally, because the proposed metrics are based on

connections in runtime, so they should be evaluated when

some services can not be connected together or services are

out of work.

V. FUTURE WORKS

We will develop a large storage which contains available

information of services. This data is result from many times of

measuring a service in different times and in different

systems. This data will be compared to each others and

conclusion from users of service. After that, we can evaluate

service exactly. SOAP extension technology provides

information about time sending/receiving SOAP message, the

size of message and etc. Therefore, in future, we will continue

to build a suite of performance metrics.

REFERENCES

[1] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and

Design. Prentice Hall PTR, August 04, 2005.

[2] http://www.w3.org/TR/

[3] Jeffrey Hasan, Mauricio Duran. Expert Service-Oriented Architecture in

C# 2005. Apress Publisher, Second Edition.

[4] Stephen H. Kan.. Metrics and Models in Software Quality Engineering.

Addison Wesley, 2002, .

[5] http://www.cdac.in/html/ssdgblr/metric.asp

[6] Joost Visser, Departamento de Inform´atica Universidade do Minho

Braga, Portugal, “Structure metrics for XML schema”.

www.di.uminho.pt/~joostvisser/publications/StructureMetricsForXMLS

chema.pdf

[7] Rodrigo A. B., Ehud Rivlin, and Ben Sheneiderman. Structural Analysis

of Hypertexts: Identifying Hierarchies and Useful Metrics. ACM Trans.

Inf. Syst., Vol. 10, No. 2. (April 1992), pp. 142-180.

[8] A Kalani, E Tittel, P Kalani, Que Certification Indianapolis,

Ind, “Developing XML Web Services and Server Components with

Visual C#. NET and the. NET Framework”, Que Publishing, 2003 .

[9] TaiXu, Kai Qian, Xi He. Service Oriented Dynamic Decoupling Metrics.

Computer and Information Science, 2006. ICIS-COMSAR 2006. 5th

IEEE/ACIS International Conference on , pp 44-47, 2006.

[10] Dmytro Rud, Andreas Schmietendorf and Reine.. Resource Metrics for

Service-Oriented Infrastructures”.

www.cs.uni-magdeburg.de/~rud/papers/Rud-13.pdf

[11] Huynh Quyet Thang, Pham Thi Quynh, Tran Quoc Viet. The Reusability

and Coupling Metrics for Service-Oriented Software. Proceddings of

Japan-Vietnam Workshop on Software Engineering 2007, Hanoi

September 26-27, 2007, pp. 53-63

TABLE II

METRICS FOR COMPARING

METRIC FORMULA MEANING

AIS[s]

The number of services

which depend on measured

service s.

Measuring the

level of

confidence

ADS[s]

The number of services

which are called by service a

but do not stay the same

position with s.

Measuring the

level of

confidence

ACS[s]
][][][sADSsAISsACS

Measuring the

level of

confidence

ARSD
n

i

iR
n

ARSD
1

1 The average

of dependence

TABLE III

COMPARING 3 METRICS WITHOUT WEB REFERENCE

 CBS(1) IMS(1) AIS

BS 0 0 2

MS 2 2/3 1

SS 0 0 1

WS1 0 0 0

WS2 0 0 0

CA 2 1 0

TABLE IV

COMPARING 3 METRICS WITH WEB REFERENCE

 CBS(1) IMS(1) AIS

BS 0 0 0

MS 3 2 2

SS 1 0 0

WS1 0 0 0

WS2 0 0 0

CA 2 2 0

