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Abstract—The Time-Domain Boundary Element Method (TD-

BEM) is a well known numerical technique that handles quite 
properly dynamic analyses considering infinite dimension media. 
However, when these analyses are also related to nonlinear behavior, 
very complex numerical procedures arise considering the TD-BEM, 
which may turn its application prohibitive. In order to avoid this 
drawback and model nonlinear infinite media, the present work 
couples two BEM formulations, aiming to achieve the best of two 
worlds. In this context, the regions expected to behave nonlinearly 
are discretized by the Domain Boundary Element Method (D-BEM), 
which has a simpler mathematical formulation but is unable to deal 
with infinite domain analyses; the TD-BEM is employed as in the 
sense of an effective non-reflexive boundary. An iterative procedure 
is considered for the coupling of the TD-BEM and D-BEM, which is 
based on a relaxed renew of the variables at the common interfaces. 
Elastoplastic models are focused and different time-steps are allowed 
to be considered by each BEM formulation in the coupled analysis.   
 

Keywords—Boundary Element Method, Dynamic Elastoplastic 
Analysis, Iterative Coupling, Multiple Time-Steps.  

I. INTRODUCTION 
N this paper two boundary element formulations, namely 
the so-called D-BEM (Domain Boundary Element Method) 

and the TD-BEM (Time-Domain Boundary Element Method), 
are employed in order to perform 2D non-linear 
elastodynamic analyses. The D-BEM formulation employs the 
static fundamental solution (Kelvin fundamental solution) and 
keeps, in the BEM integral equations, the domain integral 
related to the inertial terms, i.e., the domain integral related to 
the acceleration [1], [2]. As a consequence, in order to 
perform dynamic analyses, the entire domain has to be 
discretized and time marching schemes, similar to those 
employed by Finite Element Method, may be adopted in order 
to advance in time. TD-BEM formulations, on the other hand, 
employ time-dependent fundamental solutions [3], [4]. The 
fulfilment of the radiation condition by the fundamental 
solution turns this formulation very suitable for performing 
infinite domain analysis, since there are no reflected waves 
from infinity.  

Due to the characteristics of the two BEM formulations 
mentioned above, it looks natural and straightforward to 
employ, in a non-linear elastodynamic analysis, the D-BEM 
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formulation for the part of the domain in which inelastic 
behaviour is expected to occur and the TD-BEM formulation 
for the part of the domain that behaves elastically (along the 
text, these sub-domains will be referred to simply as D-BEM 
sub-domain and TD-BEM sub-domain, respectively). In an 
infinite domain analysis, the interface between the non-linear 
and the linear domains, that is, between the D-BEM sub-
domain and the TD-BEM sub-domain, can be interpreted as 
an efficient non-reflecting boundary.  

It is important to mention that in BEM dynamic analyses 
the correct choice of the time-step length plays a fundamental 
role [3]. As the time-step lengths required by the D-BEM to 
produce reliable results are usually smaller than those required 
by the TD-BEM, special time-marching procedures are 
employed, which turns out to be very easy to implement in an 
iterative coupling approach [5]. The proposed final algorithm 
is very effective, as demonstrated by the examples presented 
at the end of this paper.  

II.  BOUNDARY ELEMENT FORMULATIONS 
A. Time-Domain Boundary Element Method 
The integral equation based on dynamic fundamental 

solutions that solves the elastodynamic model in focus is 
given by:  
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where Γ is the boundary of the body, )(ξikc depends on the 
geometry, and the terms ),;,(* τξtXuik  and ),;,(* τξτ tXik  
represent the dynamic fundamental displacement and traction, 
respectively. X is the field point, ξ is the source point, and 

),;,( τξtXs  stands for possible domain integrals contributions 
(initial conditions or/and body forces). Adopting the following 
space-time approximations for the variables of the model ( kv  
stands for ku  or kτ ; η  and φ  are space and time 
interpolation functions, respectively, related to a boundary 
node j and a discrete time m): 
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the following system of equations can be obtained: 
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where C, G and H are influence matrices; nS  is related to 
domain integrals and nU  and nT  are displacement and 
traction vectors, respectively, at the discrete time n. After 
introducing the boundary conditions of the model, the system 
of equations (3) can be solved for displacements and tractions, 
at each time tn. For more details concerning the present 
formulation, the reader is referred to [4]. 

B. Domain Boundary Element Method 
The integral equations based on static fundamental 

solutions that solves the dynamic elastoplastic model in focus 
(displacements and stresses) are given by:  
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where the terms );(* ξXuik , );(* ξτ Xik  and );(* ξε Xikj , as 

well as );(* ξXuikj , );(* ξτ Xikj  and );(* ξε Xikjl , represent 

the elastostatic fundamental solutions. ),( tXb j  stands for 
body forces terms, ρ is the mass density of the model, and 

),( tXu j  stands for accelerations. ),( tXP
jlσ  represents the 

“initial” (plastic) stress components and the free term 
)),(( tXg P

jlik σ  is due to the derivative of the initial stress 

domain integral. Ω stands for the domain of the body. 
Adopting the following generic space approximation for the 
variables of the model (j stands for boundary element nodes or 
cell nodes; dual reciprocity formulations are also possible): 
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the following system of equations can be obtained, after 
suitable algebraic operations: 
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where matrices H, G, 'H  and 'G  correspond to the boundary 
integrals, whereas matrices M, W, 'M  and 'W  correspond 
to the inertial and initial stress domain integrals (the free term 
depicted in equation (5) is dealt with in 'W ). Vector nO  
stands for the stress nodal values. nS  and nS'  are the vectors 
related to body force terms and nU  and nT  are displacement 
and traction vectors, respectively, at time step n. To solve the 
system of equations (7)-(8) the boundary conditions of the 
model have to be considered and a time-integration scheme 
has to be adopted (the present work adopts the Houlbot 
method [6]). Moreover, an iterative algorithm must be 
considered in order to properly evaluate the problem stress 
state (elastoplastic model). The present work adopts the 
Newton-Raphson scheme in order to deal with non-linear 
effects. After considering the above-mentioned procedures, 
the system of equations (7)-(8) can be solved for 
displacements, tractions and stresses, at each time step. For 
more details concerning the present formulation, the reader is 
referred to [1]. 

III. COUPLING PROCEDURES 
In the current section, the iterative coupling of the BE 

formulations previously presented is considered. Some 
important procedures with which the coupled numerical 
solution becomes more efficient, accurate and stable are firstly 
described. These procedures are, namely: (i) adoption of a 
relaxation parameter α in order to ensure or/and speed up the 
convergence of the iterative coupling process; (ii) adoption of 
time interpolation/extrapolation procedures in order to 
consider independent time discretizations for the different BE 
formulations.  

In the iterative coupling procedure, a relaxation parameter α 
is introduced, which relates the recent BEM results ( V)( α+k ) 
with the results of the previous iterative step ( V)(k ) and the 
final results ( V)1( +k ) at the current iterative step. Considering 
a generic variable V, the adoption of the relaxation parameter 
α can be described as follows: 
 

.)1()( )()()1( VVV kkk αα α −+= ++  (9) 
 

In order to consider different time-steps (namely tTD Δ  and 
tD Δ , where the left-side subscripts TD and D stand for the 

TD-BEM and the D-BEM, respectively) in each sub-domain, 
interpolation/extrapolation procedures along time may be 
considered. In the present work, the 
interpolation/extrapolation procedures are based on the BEM 
time interpolation functions (e.g., piecewise constant )(tτφ  
and linear )(tuφ ), as depicted by Fig. 1. 
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Fig. 1 Time interpolation/extrapolation procedures:  (a) time 

extrapolation: tTDU  = tDU )/( dttTD Δ  + tt TDTD Δ−U )/1( dttTD Δ− ; 

(b) time interpolation: tDT  = tTDT  

 
 The boundary conditions (equilibrium and continuity 
conditions, respectively) at coupling interfaces are given by: 
 

,0TT =+ t
TD

t
D  (10) 
 

.0UU =− t
TD

t
D  (11) 
 

In the iterative coupling of the previously described BEM 
formulations, at the common interfaces, natural boundary 
conditions are prescribed for the sub-domains modeled by the 
D-BEM and essential boundary conditions are prescribed for 
the sub-domains modeled by the TD-BEM. The displacements 
evaluated at the sub-domains modeled by the D-BEM are used 
to obtain the interface displacements (prescribed interface 
boundary condition) for the sub-domains modeled by the TD-
BEM (11); the tractions evaluated at the sub-domains modeled 
by the TD-BEM are used to obtain the tractions (prescribed 
interface boundary condition) for the sub-domains modeled by 
the D-BEM (10). Concisely, each sub-domain is solved 
separately ( t

D U  and t
TDT  are evaluated at each iterative 

step) and the interface relations t
D U t

TD U  and 
t

TDT t
DT  are iteratively considered until convergence is 

achieved. A basic algorithm solution for the adopted iterative 
coupling is shown on Table I. 

 
 
 
 

TABLE I 
ITERATIVE COUPLING ALGORITHM 

 
(1) Initial calculations: 
(1.1) Time steps for each sub-domain are selected ( tTD Δ , tD Δ ) and 

initial time attribution is adopted: tt TDTD Δ=  and 0=tD . 
(1.2) BEM standard initial calculations are considered (influence matrices 

1G , 1H  etc.) and initial prescribed values are chosen at the 
common interface surfaces (e.g., 0T =)0(

D ). 
(2) Time-step loop: 
(2.1) Beginning of evaluations at each time step: update ttt DDD Δ+= . If 

tt TDD >  then: update ttt TDTDTD Δ+=  and evaluate convolution and 
body term vectors. 

(2.2) Iterative loop: 
(2.2.1) Solve D-BEM: obtain tDk

D U)( α+ . 

(2.2.2) tDk
D

tDk
D

tDk
D UUU )()()1( )1()( αα α −+= ++ . 

(2.2.3) From tDk
D U)1( +  obtain tDk

TD U)1( +  (Eq.11). 

(2.2.4) From tDk
TD U)1( +  obtain tTDk

TD U)1( +  (time extrapolation). 

(2.2.5) Solve TD-BEM: obtain tTDk
TDT)1( + . 

(2.2.6) From tTDk
TDT)1( +  obtain tDk

TDT)1( +  (time interpolation). 

(2.2.7) From tDk
TDT)1( +  obtain tDk

DT)1( +  (Eq.10). 
(2.2.8) Check for convergence. 

(2.3) Updating (and printing) of D-BEM results. If ttt TDDD >Δ+  then: 
updating (and printing) of TD-BEM results.  

(2.4) Go to the next time step until the analysis is finished. 
(3) End of calculations  
 

IV. NUMERICAL APPLICATIONS 
Two examples are considered here. The first one deals with 

a nonlinear cantilever beam (finite-domain problem), and the 
second one is concerned with a nonlinear circular cavity 
(infinite-domain problem). Results related to the proposed 
TD-BEM/D-BEM coupling algorithm are compared with 
other numerical results, showing the good accuracy of the 
proposed methodology. 

A. Cantilever Beam 
This example consists of a cantilever beam submitted to a 

Heaviside type forcing load. Fig. 2(a) shows the boundary 
conditions, geometry and selected internal point A. Fig. 2(b) 
shows the coupled TD-BEM/D-BEM mesh adopted: 64 linear 
boundary elements of equal length are employed (32 boundary 
elements for TD-BEM and 32 boundary elements for D-
BEM), as well as 128 linear triangular integration cells (D-
BEM formulation).  

The adopted time-steps are: stTD 015.0=Δ  and 
stD 005.0=Δ . 

The physical properties of the model are given by: ν = 0.0 
(Poisson's ratio); E = 100 N/m2 (Young's modulus); ρ = 1.5 
kg/m3 (mass density); and σ0 = 0.1 N/m2 (uniaxial yield stress 
— von Mises yield criterion).  

The geometry of the beam is defined by a = 2m and b = 1m. 
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a/2  

  

  

 

(a)  (b) 

Fig. 2 Cantilever beam: (a) geometry, boundary conditions and 
selected boundary point; (b) coupled mesh  

 
Fig. 3 depicts time-history results for the vertical 

displacements at point A considering the coupled TD-
BEM/D-BEM formulation, as well as results provided by 
standard TD-BEM and D-BEM acting alone (with analogous 
time and space discretization). Fig. 4 indicates the average 
number of iterative steps per time-step necessary for converge, 
taking into account different relaxation parameter values. 

Fig. 3 Vertical displacement time-history results considering coupled 
TD-BEM/D-BEM, TD-BEM, and D-BEM analyses 
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Fig. 4 Average number of iterations per time-step for convergence, 
taking into account different relaxation parameter values 

 
As one can observe, good results are obtained by the 

coupled methodology and convergence is achieved quite 
rapidly once appropriate relaxation parameters are considered. 

B. Circular Cavity 
This plane strain problem consists of a circular cavity under 

a uniform internal pressure suddenly applied and kept constant 
in time. A sketch of the model is shown in Fig. 5(a). The 
boundary element and internal cell discretization is depicted in 
Fig. 5(b): 46 linear boundary elements are employed in the 
TD-BEM/D-BEM coupled analysis (20 boundary elements for 
TD-BEM and 26 boundary elements for D-BEM), as well as 
270 linear triangular cells (D-BEM formulation). In the 
present analysis the double symmetry of the problem is taken 
into account. An interesting feature of the boundary element 
formulation is that symmetric bodies under symmetric loads 
can be analysed without discretization of the symmetry axes. 
This can be accomplished by an automatic condensation 
process, which integrates over reflected elements and 
performs the assemblage of the final matrices in reduced size 
[7]. 

 

A   B

R d 

x 

 y 

  f(t) 

D-BEM TD-BEM 

(a) (b) 

Fig. 5 Circular cavity: (a) geometry, boundary conditions and 
selected boundary node and internal point; (b) coupled mesh 

 
The physical properties of the model are: ν = 0.2308, 

E = 6.5277⋅108 N/m2, and ρ = 1.804⋅103 kg/m3. A perfectly 
plastic material obeying the Mohr-Coulomb yield criterion is 
assumed: cohesion = 4.8263⋅106 N/m2, internal friction 
angle = 30o. The geometry of the problem is defined by: R = 
3.048 m, and d = 3.658 m. The time discretization adopted is 
given by: stt DTD 2.0=Δ=Δ (since, in this case, multiple wave 
reflexions do not occur, a larger range of time-steps can be 
considered in the analysis, allowing the same time-step to be 
adopted for both formulations).   

Time histories of radial (σR) and circumferential (σC) stress 
components, at boundary node A (x = R and y = 0) and 
internal point B (x = R+d and y = 0), are depicted in Figs. 6 
and 7. Displacement time history is plotted in Fig. 8. The 
linear TD-BEM/D-BEM results are compared with results 
related to the TD-BEM formulation, obtained by adopting a 
richer mesh of 12 linear boundary elements to model the 1/4 
of the cavity (once again the symmetry of the problem is 
considered). Stresses at internal points for the TD-BEM 
analysis were computed employing complex algebra [8]. As 
one can observe, good agreement is obtained between the TD-
BEM and TD-BEM/D-BEM formulations (Figs. 6, 7 and 8 are 
also in good agreement with results obtained by Chow and 
Koenig [9]).  
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Fig. 6 Linear circumferential stresses: TD-BEM solution and coupled 
TD-BEM/D-BEM solution 

 
 

(a) 
 

(b) 

Fig. 7 Linear and nonlinear stresses for the coupled TD-BEM/D-
BEM solution: (a) stresses at point A; (b) stresses at point B 

 
In Fig. 8(b), the TD-BEM/D-BEM displacement time-

history at point A is plotted, considering linear and nonlinear 
analyses. Results concerning a TD-BEM/FEM coupled 
analysis [5] are also plotted in Fig. 8(b), for comparison: once 
again, good agreement can be observed. 

 
 

(a) 
 

(b) 

Fig. 8 Radial displacement considering TD-BEM, coupled TD-
BEM/D-BEM, and coupled TD-BEM/FEM solutions: (a) linear 

results; (b) linear and nonlinear results at point A 

V.  CONCLUSION 
The methodology for the solution of non-linear dynamic 

problems presented in this work proved to be very efficient, as 
it makes use of the main advantages of two different BEM 
formulations: finite domains with non-linear behaviour can be 
modelled by the D-BEM formulation, which is very simple, 
and infinite (finite) domains with linear behaviour can be 
modelled by the TD-BEM formulation. Due to the 
characteristics of the latter, it is possible to solve infinite 
domain problems very appropriately, since no artificial 
boundaries are introduced in the analysis (this eliminates the 
possible influence of spurious reflected waves). Besides, 
iterative coupling at common interfaces does not demand a 
high computational cost and can be easily implemented in a 
computer code.  
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