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Abstract—A duplicated image region may be subjected to a 

number of attacks such as noise addition, compression, reflection, 
rotation, and scaling with the intention of either merely mating it to 

its targeted neighborhood or preventing its detection. In this paper, 

we present an effective and robust method of detecting duplicated 

regions inclusive of those affected by the various attacks. In order to 
reduce the dimension of the image, the proposed algorithm firstly 

performs discrete wavelet transform, DWT, of a suspicious image. 

However, unlike most existing copy move image forgery (CMIF) 
detection algorithms operating in the DWT domain which extract 

only the low frequency subband of the DWT of the suspicious image 

thereby leaving valuable information in the other three subbands, the 

proposed algorithm simultaneously extracts features from all the four 

subbands. The extracted features are not only more accurate 

representation of image regions but also robust to additive noise, 

JPEG compression, and affine transformation. Furthermore, principal 

component analysis-eigenvalue decomposition, PCA-EVD, is applied 

to reduce the dimension of the features. The extracted features are 

then sorted using the more computationally efficient Radix Sort 
algorithm. Finally, same affine transformation selection, SATS, a 

duplication verification method, is applied to detect duplicated 

regions. The proposed algorithm is not only fast but also more robust 
to attacks compared to the related CMIF detection algorithms. The 

experimental results show high detection rates.  

 

Keywords—Affine Transformation, Discrete Wavelet Transform, 
Radix Sort, SATS.  

I. INTRODUCTION 

copy-move image forgery, CMIF, is a specific kind of 

image tampering. In a CMIF, a part of an image is copied 

and then pasted on a different location within the same image. 

Usually, such an image tampering is done with the aim of 

either hiding some image details, in which case a background 

is duplicated, or adding more details in which case at least an 

object is cloned. Fig. 1 depicts examples of CMIF attacks.  

The forged images are shown in the left column and the 

original images are shown in the right column. The top row 

depicts object removal and the bottom row shows object 

duplication in an image attacked by CMIF. 
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Fig. 1 Examples of CMIF. Forged images are in left column and 

original images are in right column. Rows depict object removal 

(above) and object duplication (below) 

 

CMIF attacks are often imperceptible because of the fact 

that the copied regions come from the same image as the 

segments where the regions are pasted thereby making the 

color palettes, noise components, dynamic ranges and other 

properties compatible with the rest of the image [1], [2]. 

Furthermore, an attacker can geometrically manipulate, 

compress or add noise to the copied regions thereby mating 

and blending the pasted regions into their targeted 

surroundings [3], [4]. 

The primary task of a CMIF detection algorithm is to 

determine if a given image contains cloned regions without 

prior knowledge of their shape and location. Various passive 

forensic methods have been designed to detect CMIF [2]-[6]. 

However, we narrow down our presentation to only those 

CMIF detection algorithms which utilize block characteristic 

approach in their extraction of the feature vectors.  

Luo et al. [7] propose a CMIF detection method in which a 

suspicious NM ×  image is tiled with overlapping bb ×  

blocks. In total, )1)(1( +−+−= bNbMk  blocks are needed 

in order to cover the whole image. A 7-tuple feature vector is 

defined to represent each of the k  blocks. The first three 

components of each feature vector consist of the averages of 

the pixel intensities in the whole block. The block is then 

divided into halves horizontally, vertically, main-diagonally 

and minor-diagonally. The last four components of the feature 

vector are the ratios of the sums of pixel intensities in one half 

of the block, in each demarcation direction, to the sum of pixel 

intensities in the whole block. Because the components of the 

feature vectors are floating numbers, Lexicographic Sort is 

used in ordering the feature vectors. Then shift vector method 

is used to verify region duplications. The first weakness of the 

algorithm proposed by Luo et al. [7] is the fact that it is 

applied to images in spatial domain where the dimensions of 

images cannot be reduced without significant loss of 

information. Secondly, the slower Lexicographic Sort used in 
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ordering the feature vectors raises the complexity of the 

algorithm to )log7( kkO . At the same time the extracted 

feature vectors are not robust to geometric attacks. In addition, 

the algorithm inherits the fundamental weakness of the shift 

vector approach of failing to detect geometrically manipulated 

regions. It follows that the method is not only complex but 

also weak to attacks. 

Following a similar approach, Lin et al. [8] define a 9-tuple 

feature vector whose components also consist of block based 

statistics of the pixel intensities. Through floor operation, the 

components are rounded into integers. Consequently Radix 

Sort is used to sort the feature vectors and it improves the 

computational complexity of the algorithm to )9( kO . 

However, the algorithm has the same weaknesses as those of 

the algorithm proposed by Luo et al. [7], minus Lexicographic 

Sort. 

In Section II, a focused and comprehensive background 

towards the design of the proposed algorithm is presented. The 

proposed CMIF detection algorithm is presented in Section III. 

Its advantages over existing related CMIF algorithms are 

stipulated. Section IV presents the detection results by the 

proposed algorithm and Section V concludes the paper. 

II. BACKGROUND  

A. Principal Component Analysis  

Principal Component Analysis, PCA, is a well known 

technique for multivariate analysis [5], [9]. The core task of 

PCA is to reduce the dimensionality of a data set which has a 

large number of interrelated variables, while retaining the 

original variations of the data as much as possible. For a 

positive semi-definite symmetric matrix, finding principal 

components is computationally the same as solving an 

eigenvalue-eigenvector problem. From this perspective, we 

now present principal component analysis-eigenvalue 

decomposition, PCA-EVD, as an algebraic tool for matrix 

dimension reduction. Let H denote a matrix defined in (1) as 

follows: 
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If we guarantee that each of the row vectors of the matrix H 

is zero mean, and we let jj λµ ,  be a pair of corresponding 

eigenvector and eigenvalue respectively such that 

bj ,,2,1 …=  and bλλλ ≥≥≥ ⋯21 , then (2) and (3) are 

clear, where C is a covariance matrix of the matrix H. 
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Considering a new linear basis formed by the eigenvectors, 

jµ , (4) shows that we can reduce the dimension of the row 

vectors of H to bt ≤  without much loss of original 

information.   
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(4)  

B. Same Affine Transformation Selection  

The idea of recovering parameters of affine transformation 

of a region in an image was once presented by Amerini et al. 

[10]. In their work [10], the authors use Maximum Likelihood 

estimation of homography [11] to estimate the parameters of 

the affine transformation in homogenous coordinates.  

However, a simple and straight forward approach to 

recovering the parameters of the affine transformation of a 

region in an image in 2D Cartesian coordinates, named the 

same affine transformation selection, SATS, is proposed by 

Christlein et al. [12]. SATS is an alternative selection and 

verification method to the common shift vector method [1]. 

Like shift vector, SATS has an outlier filtering property. 

However, SATS is insensitive to affine transformation in that 

it recovers the affine transformation parameters of a 

geometrically manipulated region at a cost of only a slightly 

increased computational time. Hence SATS is a better option 

for the verification of the duplicated regions which have been 

affected by translation, rotation or scaling. The detailed SATS 

method is as follows: 

Let 1iB  and 2iB  be bb ×  matching blocks whose centers, 

in row vector form, are 1ic
�
 and 2ic

�
 respectively. If 2iB  is a 

result of an affine transformation of 1iB  then  

 

2 1 . ,i ic c A s= +
� � �

        
(5) 

 

The 22 ×  matrix A  in (5) consists of the two rotation and 

two scaling parameters and the vector s
�
 consists of the two 

translation parameters. Let ),( 21 iii hhh
���

=  be a vector of the 

feature vectors 21, ii hh
��
 extracted from the matching blocks 

1iB  and 2iB  respectively, then a set of three such vectors as 

ih
�
 is enough to initially approximate all the six parameters of 

the affine transformation. More such vectors may be needed 

only to stabilize the parameter approximation. This is the core 

purpose of the SATS algorithm. For a detailed presentation of 

the SATS algorithm refer to [12], [13].  

C.  Block Characteristic Based Feature Extraction  

A given feature vector thhhh …
�

21= , whose components 

tihi ,,2,1, …=  are individual pixels or normalized DWT 

coefficients, is sensitive to pixel variations induced by additive 
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noise and lossy compression, [14]. The probable solution to 

this drawback is to use feature vectors whose components are 

block characteristics of the pixels, instead of the individual 

pixels. Clustering the pixels into blocks has some quantizing 

effect on the components thereby making the feature vectors 

more robust to pixel changes induced by additive noise and 

lossy compressions. We now establish the quantizing effect 

and robustness of the block characteristic approach. Fig. 2 

shows a bb ×  block divided into four concentric squares.  

 

 

Fig. 2 Block division into four concentric squares 

 

Suppose we define a feature vector, 521 hhhh …= , in 

which the individual components 5,,2,1, …=ihi  are 

computed as follows:  

(i) Let 1a  be the average of the pixel intensities within the 

whole block, then 11 ah =  

(ii) The block is then divided into 4 concentric squares 

41, ≤≤ isqi  of sides 41,1
4

≤≤+×





ii

b
 

respectively.    is the floor operator. 
(iii) Let )( isqave  be the average of pixel intensities within the 

square, isq , then 41,)(1 ≤≤=+ isqaveh ii .  

The defined components will not significantly change with 

pixel variations induced by additive noise and lossy 

compression. For example, assuming that the per pixel 

additive white Gaussian noise (AWGN) for each pixel, δ , is 
an independent and identically distributed variable from a 

zero-mean normal distribution with variance n . Then the 

noisy block due to addition of such noise will be δ+= BB
' . 

Consequently, the average of the noisy block will be 

1
1

'
1 δ+= aa  where 0)( ' =δE

 
and 

2

'
)(

b

n
D =δ . If 5≥b , 

then 1
'
1 aa ≈ . This means that 1h  does not change much. 

Hence 1h  
is robust to such noise addition. Extending the 

argument for the robustness of 1h  to 52, ≤≤ ihi  is obvious. 

Hence 521 hhhh …=  is robust to additive noise. At the same 

time, JPEG compression and Gaussian blurring only slightly 

change the low frequency components of the image signal and 

discard high frequency components. Hence 521 hhhh …=  is 

also robust to these operations. Furthermore the feature vector 

521 hhhh …
�

=  is robust to affine transformation. For example, 

let the block 'B  be the result of rotating the block of Fig. 2 

through 090  clockwise and let 
'
3

'
2

'
1 ,, sqsqsq  and 

'
4sq  be 

concentric squares of 
'B , then it is clear that 

41,' ≤≤= isqsq ii . It follows that the feature vector 

521 hhhh …=  is robust to such a rotation. The argument also 

holds, practically, for rotation through arbitrary angles because 

the majority of each square’s populace will still be within the 

square at any rotation. 

D. The Radix Sort  

 Let dvvvV ⋯21=
 
and 

duuuU ⋯21=  be tuple−d  

sequences such that iv  and iu  are the th−i dimensions of V

and U respectively. Let iK  compare V  and U  by their 

th−i dimension. Let ),( KHStableSort  be any stable sorting 

algorithm such as Bucket-Sort that uses the comparator K . If 

we let NK =  be integer keys in the range )]1(0[ −− N , then 

the sorting method which uses the sorting algorithm 

),( NHStableSort  to lexicographically order UV ≤  for every 

pair V  and U  in H , where H  is a set of k  tuple−d  

sequences, is the Radix Sort. The application of the Radix Sort 

obviously requires that iv  and iu  be integers in the range 

)]1(0[ −− N  for every comparison of tuple−d  sequences 

dvvvV ⋯21=  and 
duuuU ⋯21=  in the set H . The concise 

presentation of the Radix Sort is shown in Table I. 
 

TABLE I 

THE RADIX SORT 
 

Input: tupled −  sequences in H such that ),...,()0,...,0( 1 dvv≤  and  

)1,...,1(),...,( 1 −−≤ NNvv d  for each tuple V  in H. 

Output: Set H sorted in Lexicographic order. 

               For di ←  downto 1 

                         Stable-sort (H, N) 

 

In this presentation, d  is the length of the keys. Let 

))(( kTO be the complexity of the ),( NHStableSort , if we let 

),( NHStableSort  be the ),( NHBucketSort , then 

)())(( kNOkTO += . It follows that the Radix Sort has the 

complexity ))(( kNdO + . If Nk >> , then 

)())(( dkOkNdO ≈+ . 

III. THE PROPOSED ALGORITHM 

The proposed CMIF detection algorithm operates in the 

DWT domain of a suspicious image and it consists of the 

following steps. It is important to emphasize, right at the 

beginning, that the proposed algorithm is not restricted to 

images in the red, green, blue, RGB color model. Any color 

model can apply. Besides, multi-channel images can readily 

be transformed between color spaces. For mono-chromatic 
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images, there is no harm in repeating some components of the 

extracted feature vectors.  

1. Let ),( yxF be a suspicious RGB image with NMk ×=3  

pixels per channel. 

2. Initialize the following parameters: 

(i) bb× , the block size. 

(ii) t , the PCA truncation threshold. 

(iii) l , the level of orientation. 

(iv) 1t , separation threshold. 

(v) 2t , connectivity threshold. 

3. Perform an −l level DWT on the ),( yxF  to obtain 

subbands ),( vuF l
α  where { }HHHLLHLL ,,,∈α  

represents orientation and a positive integer l  is the level 

of the orientation. Each ),( vuF
l

α  has a reduced image 

space of 
l

k
crk

4

3
2 ≈×=  pixels. The pixels are actually 

DWT coefficients normalised to unsigned integers in the 

range [0-255]. 

4. Slide a fixed bb ×  window on every ),( vuF l
α  pixel by 

pixel from top-left corner to bottom-right corner, in a 

raster scan order, resulting in a total of 

)1)(1(44 1 +−+−×=× bcbrk  overlapping blocks. For 

each of the 1k  block locations, compute the feature 

vectors },{,721 HHHLLHLLhhhh ∈= ααααα
…

�
 and 

2821 hhhh …
�

=  as follows 

(i) Let 31, ≤≤ iai
α

, be the averages of red, green and 

blue channels of { }HHHLLHLLvuF
l

,,,),,( ∈αα  

respectively, then .31, ≤≤= iah ii
αα  

(ii) Compute the Y  channel of 

{ }HHHLLHLLvuF l ,,,),,( ∈αα  using the 

relationship BGRY 114.0587.0299.0 ++= .  

(iii) Divide each block in the Y  channel into 4 concentric 

squares 41, ≤≤ isqi
α

 of sides 41,1
4

≤≤+×





ii

b
 

according to Section II.  

(iv) Consider only pixels inside each eccentric squares 

41, ≤≤ isqi
α  sequentially. Then 41,)(3 ≤≤=+ isqaveh ii

αα  

where )( α
isqave  is the average of the pixels inside the 

square, .α
isq  

(v) Compute 
HHHLLHLL hhhhhhhh
����

…
�

== 2821  by 

concatenating the four vectors 

},{,721 HHHLLHLLhhhh ∈= ααααα
…

�
. 

(vi) Form a 281 ×k  matrix H  whose rows are the 1k  

feature vectors, 
HHHLLHLL hhhhhhhh
����

…
�

== 2821 . 

5. Perform PCA-EVD on the matrix H  to reduce the 

dimension of the features vectors to 28<t  according to 

Section II.  

6. Normalize each of the t  components of each row of the 

matrix H  to unsigned integers in the range [ 2550 − ]. 

7. Sort the rows of the matrix H  using Radix Sort. 

8. Performed SATS algorithm on the sorted matrix H  to 

verify region duplications and to filter out outliers. 

9. Finally, filter out isolated matching blocks through 

morphological opening to obtain the final results. 

The following are the advantages of the proposed algorithm 

over existing CMIF detection algorithms. 1) Normally, the 

computational complexity of a CMIF detection algorithm 

converges to the complexity of the feature sorting method 

which in turn is a function of the dimensions of the image. 

Consequently, most CMIF detection methods which operate in 

the spatial domain are generally more complex [1], [15]. In 

order to reduce the dimension of the image, most existing 

CMIF detection algorithms which operate in the DWT domain 

[1], [2], [16] approximate the image by extracting only the low 

frequency subband ),( vuF l
LL . Much as most of the energy of 

an image is concentrated in the subband ),( vuF l
LL , valuable 

detail information of the image is still lost by ignoring the 

other three subbands. In the proposed algorithm, we manage to 

incorporate information from all the four subbands thereby 

making the extracted features more accurate representation of 

the blocks. In this case, two blocks can only have matching 

features if and only if they are similar in all the subbands of 

the DWT of an image. Meanwhile, the number of blocks, 1k , 

just before the feature sorting algorithm is applied is the same 

as in any other CMIF detection algorithm operating in the 

DWT domain. Therefore we incur the same sorting costs as 

the existing CMIF algorithms in the DWT domain. 2) In 

addition, the proposed algorithm also reduces the dimension of 

each feature vector from 281×  to t×1  through PCA-EVD. 

This overly reduces the complexity of the algorithm. 3) 

Remarkable reduction in complexity of the proposed 

algorithm is achieved through sorting extracted features using 

the Radix Sort which has the complexity of )( 1tkO  instead of 

the common Lexicographic Sort which would have the 

complexity of )log7( 11 kkO  for the same task. 4) At the same 

time, the extracted features are robust to additive noise, JPEG 

compression, Gaussian blurring and affine transformation. 5) 

Finally, a SATS approach is taken at the duplication 

verification stage thereby avoiding the fundamental weakness 

of the common shift vector approach of failing to detect 

geometrically manipulated duplicated regions. SATS is 

insensitive to affine transformation. Therefore, the proposed 

algorithm is not only non-complex but also robust to linear 

and geometric attacks.  

IV. EXPERIMENTAL RESULTS  

To validate the proposed algorithm, experiments are 

conducted on a dataset of 300 images sourced mostly from 

www.freefoto.com. Most images have the dimensions of 

256256× pixels. When a −1 level DWT, Haar, is performed 

on the images, the dimensions of the images reduce to 
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128128× pixels. The level of orientation is restricted to 1=l . 

The size of the block is set to 1717×=× bb pixels throughout 

the experiments. The PCA-EVD truncation threshold is set to 

8=t . The distance of the matching block pairs is set to 

171 =t  and the least frequency of connected matches is set to 

502 =t .  

Fig. 3 shows examples of the detection results by the 

proposed algorithm. In the right column are the original 

images; in the middle column are the forged images in which 

the duplicated regions are affected by various attacks; the right 

column shows the results from the proposed algorithm. 

 

 

Fig. 3 Detection results by the proposed algorithm 

 

We assess the performance of the proposed CMIF algorithm 

using the following stricter method. Let 1D  and 2D  be an 

original region and a duplicated region respectively, 1R and 

2R  be the respective output regions mapped by the proposed 

algorithm, then the accuracy r and false negative w  of the 

detection are respectively defined in (6) and (7) as follows:  

 

1 1 2 2

1 2

R D R D
r

D D

+
=

+

∩ ∩

              

(6) 

 

1 1 2 2

1 2

R D R D
w r

D D

+
= −

+

∪ ∪

      

(7) 

 

 

The results by the proposed algorithm for the set of 300 

images whose duplicated regions are affected by various 

forms of attacks are shown in Table II. The results 

demonstrate that the algorithm has, on average, 

recommendable accuracy in cases where the duplicated 

regions are merely translated or reflected. High detection rates 

are also registered in cases where the duplicated regions are 

affected by JPEG compression or additive noise. There is a 

fairer accuracy where the duplicated regions are affected by 

rotation, or combined forms of affine transformation. The 

accuracy of the algorithm is relatively low in cases where 

duplicated regions are affected by scaling or rotation through 

arbitrary angles. In general, however, we note that the 

accuracy of the algorithm increases with an increase in the 

size of the duplicated regions. 
 

TABLE II 

RESULTS OF THE PROPOSED ALGORITHM FOR A SET OF 300 IMAGES 

Forms of 

Attacks 
 

Average Detection Rates of Duplicated Regions of 

Various Sizes (pixels)    and  Forms of  Attacks 

3232 ×  4848 ×  6464 ×  

r  w  r  w  r  w  

Translation 1.0000 0.0567 1.0000 0.0521 1.0000 0.0311 

JPEG     100 

Quality    80 

60 

40 

1.0000 

0.9987 

0.9843 

0.9695 

0.0499 

0.0977 

0.1301 

0.1171 

1.0000 

0.9993 

0.9897 

0.9702 

0.0401 

0.0861 

0.1245 

0.1069 

1.0000 

1.0000 

0.9926 

0.9818 

0.0323 

0.0719 

0.1171 

0.1011 

SNR       40 

(dB)        32 

24 

20 

0.9976 

0.9881 

0.9537 

0.8913 

0.1191 

0.1293 

0.1477 

0.1484 

0.9983 

0.9890 

0.9594 

0.8999 

0.1081 

0.1137 

0.1319 

0.1407 

0.9995 

0.9893 

0.9663 

0.9124 

0.0992 

0.1017 

0.1231 

0.1295 

Scaled 

Reflection 

0.7447 

0.9987 

0.4680 

0.0734 

0.7653 

0.9998 

0.4631 

0.0614 

0.7818 

1.0000 

0.4467 

0.0231 

 

 

Rotation 

60˚ 

90˚ 

120˚ 

0.8847 

0.9882 

0.8959 

0.1461 

0.1314 

0.1217 

0.9013 

0.9889 

0.9153 

0.1213 

0.0978 

0.1169 

0.9355 

0.9987 

0.9454 

0.1193 

0.0953 

0.1115 

Mixed affine 

transformation 
0.8863 0.1217 0.8991 0.1200 0.9114 0.1121 

 

We take an extra effort to compare the proposed algorithm 

with the existing CMIF algorithms in terms of feature forms, 

feature vector sorting methods, number of blocks required to 

cover the whole image, and run time complexity. The 

comparison results are shown in Table III. For comparison 

purposes, consider a 256256×  image tiled with 88×  

overlapping blocks. Recall that 
l

k
k

4
1 ≈  where 

)1)(1( +−+−= bNbMk . Because the dimensions of the 

image are reduced through DWT and the dimensions of the 

feature vectors are reduced through PCA before the feature 

vectors are sorted using Radix Sort, the run time complexity of 

the proposed method is lower than those of the existing block-

based methods. 
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TABLE III 

COMPARISON WITH EXISTING RELATED ALGORITHMS 

Algorithm Feature form Sorting 

Method 

Number of 

8x8 Blocks 

k  

Run Time  

Complexity for 

Any Given k  

Luo et al. [7] Pixel Block 
Characteristics 

Lexicographic 
Sort 

62,001 )log7( kO  

Lin et al. [8] Pixel Block 

Characteristics 

Radix Sort 62,001  )9( kO  

Proposed DWT Block 

Characteristics 

Radix Sort 14,641  )8( 1kO  

V.  CONCLUSION  

In this paper, an effective and robust CMIF detection 

method has been presented. The method is capable of 

detecting duplicated regions which are affected by additive 

noise, lossy compression and affine transformation attacks. In 

order to reduce the dimension of the image, the proposed 

algorithm performs DWT. However, unlike most existing 

algorithms operating in the DWT domain which extract only 

the low frequency subband of the DWT of a suspicious image 

thereby leaving valuable information in the other three 

subbands, the proposed algorithm simultaneously extracts 

features from all the four subbands. The extracted features are 

not only more accurate representation of image regions but 

also robust to additive noise, JPEG compression, and affine 

transformation. Furthermore, PCA-EVD is applied to reduce 

the dimension of the features. The extracted features are then 

sorted using the more efficient Radix Sort algorithm. Finally, 

SATS is applied to verify duplicated regions. SATS is opted 

for over the shift vector method because SASTS is insensitive 

to affine transformation. Consequently, the proposed 

algorithm is not only fast but also more robust compared to the 

existing related algorithms. The experimental results show 

high detection rates.  
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