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I. INTRODUCTION

The development in the field of quantum computing is
a real menace of the security of many used public key
cryptographic algorithms. Shor has demonstrated in 1994 that
cryptographic schemes whose security relies on the difficulty
of the factorization problem, such as RSA and the difficulty
of discrete logarithm problem, such as Digital Signature Al-
gorithm (DSA), could be broken using quantum computers.
Consequently it is necessary to have available alternative
signature and identification schemes.
Coding based cryptography is one of the few alternatives
supposed to be secure in a post quantum world. The most
popular cryptosystems in coding theory are the McEliece [9]
and Niederreiter [11] ones. The main advantage of these two
public cryptosystems is the provision of a fast encryption
and decryption (about 50 times faster for encryption and 100
times faster for decryption than RSA), but they have a major
disadvantage that they require very large keys, which need
large memory spaces.
Secure identification schemes were introduced by Feige, Fiat
and Shamir [6]. These cryptographic schemes allow a prover
to identify itself in polynomial time to a verifier without
revealing any information of its private key to the verifier.
These schemes could be turned into a digital signature via
Fiat-Shamir paradigm [5].
In the last few years there were many tentatives to build
practical identification or signature schemes based on error-
correcting codes. Stern proposed at Crypto’93 [14] an iden-
tification scheme based on syndrome decoding problem, and
Véron proposed in 1995 a dual version of the first one based on
search of low weight problem [15]. In 2001, Courtois, Finiasz,
and Sendrier [4] introduced the first signature scheme based
on McEliece and Niederreiter cryptosystems.
The concept of ring signatures was first introduced in 2001 by
Rivest et al. [13]. Ring signatures permit any user from a set
of intended signers to sign a message with no existing group
manager and to convince the verifier that the author of the
signature belongs to this set without revealing any information

about its identity.
In 2002, Bresson et al. [3] extended this concept in a t-
out-of-N threshold ring signature, which enables to any t
participating users belonging to a set of N users to produce a
signature. The anonymity of t signers should be protected in
both inside and outside the signing group.
The concept of threshold ring signatures in code-based cryp-
tography was introduced by Aguilar et. al in [1]. This scheme
is a generalization of Stern identification scheme. The major
advantage of this construction is that its complexity depends
linearly on a maximum number of signers N , comparing with
the complexity of threshold ring signature schemes based on
number theory whose complexity is O(tN). However, the
disadvantage of large signature sizes is still unsolved in this
scheme.
Our contribution: In this paper, we propose the generalization
of Véron identification and signature in order to build thresh-
old ring signature schemes. Using an improved version of
Véron scheme, we obtain smaller public and private key sizes
and better computation complexity for our scheme compared
to the generalization of Stern scheme proposed in [1].
Organization of the paper: This paper is organized as
follows: in Section II we briefly present basic background for
code-based cryptography. In Section III we present Stern and
Véron schemes and we show in Section IV how to use the
last scheme to construct an identification schemes with special
properties. Finally we conclude the paper in Section V.

II. BACKGROUND OF CODING THEORY

Next, we provide the necessary mathematical background
to understand the schemes that we present in the next sections.
Let n and k be two integers such that n ≥ k and F

n
2 be

a finite field over {0, 1}n. A code C is a k-dimensional
subspace of the vector space F

n
2 .

Definition 1 (Minimum distance and hamming weight).
The minimum distance is defined by d := infx,y∈Cdist(x, y),
where "dist" denotes the hamming distance.
Let x be a vector of F

n
2 , then we call wt(x):= dist(x, 0) the

weight of x. It represents the number of non-zero entries.
C[n, k, w] is a code with length n, dimension k and the ability
of error-correcting in C is up to w errors.
Definition 2 (Generator, Parity Check Matrix and Syn-
drome). A matrix G ∈ F

k×n
2 is called generator matrix of C,

if its rows span C.
A matrix H ∈ F

(n−k)×n
2 is called parity check matrix of C,
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if HxT = 0, ∀x ∈ C.
A code generated by H is called the dual code of C and
denoted C⊥.
Given a word x of F

n
2 , a syndrome of x is defined as a vector

s of length (n− k) such that HxT = s.

A. Syndrome Decoding (SD) Problem

The security of most code-based cryptosystems relies on
the difficulty of solving a syndrome decoding problem (SD),
which is defined as follows:
Input: A m × n random binary matrix H over F2, a target
vector s ∈ F

m
2 and an integer w > 0.

Question: Is there a vector x ∈ F
n
2 with wt(x) ≤ w, such

that HxT = s.

This problem is proven NP-complete in [2].
An equivalent version of the SD problem (dual version) can
be presented as follows:
Input: A k × n random binary matrix G over F2, binary
vector x of length n of F

n
2 and w > 0.

Question: Is there a vector (m, e) with m a vector of length
k, e a vector of length n and weight w such that x = mG+e.

B. Usual attacks: Information Set Decoding

Against code-based cryptosystem there are two classes of
attacks : structural attacks which try to recover the structure
of the code and decoding attacks which try to decode
directly a plaintext. Information Set Decoding (ISD) is one
of the known decoding attacks, which has the advantage of
low complexity. We calculate our suggested parameters of
all scheme, in this paper using the following proposition
introduced by Finianz and Sendrier [7].
WFISD(n, r, w) is defined as the minimum binary work factor
(number of binary operations) of the binary ISD algorithm
to find a solution on input parameters (n, k = n− r, w) of a
code over F

n
2 .

Proposition:
Let k be n − r, if

(
n
w

)
< 2r (single solution) or if(

n
w

)
> 2r(multiple solutions) and

(
r

w−p

)(
k
p

)� 2r

WFISD(n, r, w) ≈ minp
2l min((n

w),2r)

λ(n
w)

√
(k+l

p )
with

l = log(Kw−p

√(
k
p

)
)

with λ = 1 − e−1 ≈ 0.63. If we have
(

n
w

)
> 2r (multiple

solutions) and
(

r
w−p

)(
k
p

)� 2r, we have:

WFISD(n, r, w) ≈ minp
2l2r/2√
( r−l

w−p)
with

l = log(Kw−p
2r/2√
( r−l

w−p)
)

According to the authors, the variable p should be very small
(p ≤ 8) and Kw−p = 2(t− p).

C. The McEliece Cryptosystem

The McEliece cryptosystem is the first cryptosystem based
on the difficulty of decoding without knowledge of the struc-
ture of the code. It has shown resistance against attacks for
more than 20 years and is still unbroken in its original version.
The original version of McEliece uses Goppa codes, which are
hard to distinguish from a random code and have an efficient
decoding algorithm. This cryptosystem is very fast but the
drawback is the public key size (about 500000 bits).
We now briefly describe this cryptosystem in Algorithm 1. For
more details we refer to [9].

Algorithm 1 McEliece cryptosystem
Parameters: n, k, w ∈ N, where w � n
� Key generation:

1: G′: a k × n binary generator matrix of C[n, k, w]
2: S: a k × k random binary non singular matrix
3: P : a n× n random binary permutation matrix
4: compute the k × n matrix G = SG′P

Public key: (G, w)
Private key: (S, DC , P ), where DC is an efficient decod-
ing algorithm for C
� Encryption:

5: m → c = mG + e, where e is a random word of weight
w, m is the plaintext and c is the ciphertext
� Decryption:

6: c→ DC(cP−1)S−1

7: get m

D. The Niederreiter Cryptosystem

Niederreiter cryptosystem is a dual version of McEliece
cryptosystem, which uses a parity check matrix of a code C
as public key. This cryptosystem is as secure and efficient
as the McEliece cryptosystem. The Algorithm 2 presents this
cryptosystem. See [11] for more details.

Algorithm 2 Niederreiter cryptosystem
Parameters: n, k, w ∈ N, where w � n
� Key generation:

1: H ′: a k × n binary parity check matrix of C[n, k, w]
2: S: a (n−k)× (n−k) random binary non singular matrix
3: P : a n× n random binary permutation matrix
4: compute the k × n matrix H = SH ′P

Public key: (H,w)
Private key: (S, DC , P ) where D is an efficient decoding
algorithm for C
� Encryption:

5: m→ s = HeT, where e is a random word of weight w
� Decryption:

6: compute S−1c = H ′PeT

7: decode H ′PeT in PeT

8: get e
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III. IDENTIFICATION AND SIGNATURE SCHEMES

In this section, we present two identification schemes based
on error-correcting codes. Both are three-pass schemes and
proved to satisfy a perfect zero-knowledge interaction proof,
which is an interactive method for one party to prove to
another that a statement is true, without revealing any addi-
tional information. The security of both schemes is based on
the syndrome decoding problem (SD). The first identification
scheme is proposed by Stern [14] and uses a parity check
matrix H of a random binary linear code C as public key,
which is common to all users. The second is called Véron
identification scheme. It was introduced by Véron [15] and is
a dual version of Stern scheme, which uses a generator matrix
G of a random binary linear code C as public key.

A. Stern Identification Scheme

Let H be a public random (n − k) × n binary matrix and
h be a hash function returning a binary word of length n.
The prover P constructs its public key x associated to its secret
key s such that HsT = x. The syndrome x is calculated once
during the lifetime of H .
We now describe the scheme that enables the prover to identify
itself to the verifier. The scheme includes r rounds, each of
them is performed in Algorithm 3 as follows:

Algorithm 3 Stern Identification Scheme
Parameters: n : code length; k : code dimension; H ∈
F

(n−k)×n
2 : parity-check matrix, h a collision resistant

hash function returning a binary word n.
Private key: s ∈ F

n
2 , such that wt(s) = ω

Public key: x ∈ F
n−k
2 , such that HsT = x

� Prover: make commitments
1: Choose u from F

n
2 at random

2: Choose σ permutation over {1, . . . , n} at random
3: Set c1 ← h

(
σ, HuT

)
4: Set c2 ← h(σ(u))
5: Set c3 ← h(σ (u⊕ s))
6: Send ci to Verifier

� Verifier: make a challenge
7: Choose challenge b from {0, 1, 2} at random
8: Send b to Prover

� Prover: answer the challenge
9: if b = 0 then send u and σ to Verifier

10: else if b = 1 then send u⊕ s and σ to Verifier
11: else if b = 2 then send σ(u) and σ(s) to Verifier
12: end if

� Verifier: checks the answer complies with commitments
13: if b = 0 then check if c1 and c2 were honestly computed
14: else if b = 1 then check if c1 and c3 are correct.
15: else if b = 2 then check if c2 and c3 are correct, and that

wt(σ(s)) = ω.
16: end if

This scheme has for each single round the knowledge error
of 2/3. The number r of consecutive rounds depends on the
required level of security denoted by β, i.e. the scheme must
be iterated r times until (2/3)r ≤ β, for 80 bits security level

one needs about 140 rounds.
By using Fiat-Shamir paradigm [5], it is possible to convert
this scheme into a signature scheme.

1) Performance and security: The security of stern scheme
is based on all of the following conditions:

• Random linear codes satisfy a Gilbert-Varshamov type
lower bound [8].

• For large n almost all linear codes lie over the Gilbert-
Varshamov bound [12].

• Solving the syndrome decoding problem for random
codes is NP-complete [2].

Let C[n, k, w] be a random linear code. When n equals 2k,
the first condition implies that w is approximately 0.22n.
The first condition assures the existence of good random codes.
It permits to estimate a lower bound on the minimum weight
of the definite code and thereby to provide an evaluation of the
usual attack by information set decoding. The second condition
affirms that all random codes satisfy such a bound and the last
condition assures the difficulty to solve the decoding problem.

2) Suggested parameters:
Considering n = 614, k = n/2 = 307 and w = 68, we have
the following results:

• ISD attack complexity: 280

• Public Data size: k2 + k (94556 Bits)
• Private Data size: k2 + 2k (94863 Bits)
• Prover’s Work Factor: r(k(2(n−k)+1)+n+ n

3 ) binary
operations (� 224,6)

B. Dual construction: Véron Signature Scheme

As mentioned above, in [15] the author of this scheme uses
a k×n generator matrix G of a random binary linear code C
as a public key, this matrix is common to all users. Each of
them receives a secret key (m, e), where m is a vector of k
bits, e a vector of n bits and weight w. A user’s identifier x
is obtained by:

x = mG + e

Suppose that the prover P wants to prove to the verifier
V that P is indeed the person corresponding to the public
identifier x using Véron identification scheme.
This scheme is described in Algorithm 4.

1) Performance and security: The security of Véron iden-
tification scheme relies on the three conditions of random
linear codes, which have been already discussed in the Stern
identification scheme.

2) Suggested parameters:
Considering n = 614, k = 307 and w = 68, we have the
following results:

• ISD attack complexity: 280

• Public Data size: k2 + 2k (94863 Bits)
• Private Data size: k2 + 3k (95170 Bits)
• Prover’s Work Factor: r( 8

3 (k(n − k) + n + 5
3k) binary

operations (� 225)
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Algorithm 4 Véron Identification Scheme
Parameters: n: code length; k: code dimension; G ∈
F

k×n
2 :generator matrix, h a collision resistant hash func-

tion.
Private key : (m, e) ∈ F

k
2 × F

n
2 , such that wt(e) = ω

Public key : x ∈ F
n
2 , such that mG + e = x

� Prover: make commitments
1: Choose u from F

k
2 at random

2: Choose σ permutation over {1, . . . , k} at random
3: Set c1 ← h(σ)
4: Set c2 ← h(σ((u + m)G))
5: Set c3 ← h(σ(uG + x))
6: Send ci to Verifier, i =1, 2, 3

� Verifier: make a challenge
7: Choose challenge b from {0, 1, 2} at random
8: Send b to Prover

� Prover: answer the challenge
9: if b = 0 then send u + m and σ to Verifier

10: else if b = 1 then send σ((u+m)G) and σ(e) to Verifier
11: else if b = 2 then send σ and u to Verifier
12: end if

� Verifier: checks the answer complies with commitments
13: if b = 0 then check if c1 and c2 were honestly computed
14: else if b = 1 then check if c1 and c3 are correct, and

wt(σ(e)) = w
15: else if b = 2 then check if c2 and c3 are correct.
16: end if

C. Improved Véron Signature Scheme

In this subsection, we briefly describe an improvement of
the original scheme [16]. The idea of this improvement is to
start with two arbitrary vectors chosen in a finite field, and
among them a generator matrix G of a binary linear code C
can be built. The storage space required by the prover, in this
case, is reduced, because the prover only needs to store the two
vectors and not the whole matrix. Further advantage of this
idea is that the complexity of the computation has considerably
decreased comparing to Stern identification scheme and the
original version of Véron scheme.
Let F2k be a finite field and β = {β1, . . . , βk} be a basis of
F2k .
Let γ =

∑k
i=1 βiγi be an arbitrary element of F2k , γ can be

represented then as (γ1, · · · , γk).
The β product matrix of γ, denoted by [γ]β , is the (k × k)
matrix defined as follows:

[γ]β =

⎡
⎢⎣

γ.β1

...
γ.βk

⎤
⎥⎦

Example:
Consider the finite Field F23 generated by p(x) = x3 + x + 1
and α root of p(x).
Let β = {1, α, α2} basis of F23

Then we have : 0 = (000); 1 = (100); α = (010); α2=(001)
α3 = (110); α4 = (011); α5 = (111); α6 = (101)
For γ = α4, we have:

TABLE I
COMPARISON OF THE THREE SCHEMES

Public Data (bits) Privat Data (Bits) Prover’s Work Factor
Stern scheme 94556 94863 224.6

Véron scheme 94863 95170 225

Improved Véron scheme 1228 1535 223.4

[γ]β =

⎛
⎝

0 1 1
1 1 1
1 0 1

⎞
⎠

Definition 1.
Let q be a power of a primzahl p.
A trace operator TrFqm :Fq is defined as follows:

TrFqm :Fq
: Fqm −→ Fq

z −→∑m−1
i=1 zqi

Definition 2.
Let β = {β1, · · · , βm} be a basis of F2m .
β = {β1, · · · , βm} is called duale trace basis if :

∀i, j T rF2m :F2(βiβ
∗
j) = δij .

Where δij is the Kronecker symbol.

As mentioned above, a generator matrix G of a binary
linear code C is replaced by the following (k × 2k) matrix:
([γ1]β∗, [γ2]β∗), for two arbitrary vectors (γ1, γ2) of F2k such
that wβ(γ1) and wβ(γ2) be small, where wβ(γ) is defined as
the Hamming weight of (γl, ..., γk), for given vector γ of F2k .
For more details of this construction we refer to [16].

1) Performance and security: The security of this scheme
depends on syndrome decoding problem and linked to the
parameters n, k and w.

2) Suggested parameters:
Considering n = 614, k = 307 and w = 68, we have the
following results:

• ISD attack complexity: 280

• Public Data size: 4k (1228 Bits)
• Private Data size: 5k (1535 Bits)
• Prover’s Work Factor: r(2k(11

3 + 5
3 t1 + t2)− 10

3 ) binary
operations (� 223.4)

The results of the three above schemes are summarized in
table I. As you can see, the size of public and private data has
been significantly reduced by the improved Véron scheme. In
addition the computation complexity has been optimized. Both
advantages allow the application of such schemes in devices
with low storage capacities, such as smart cards.

In the next section, we describe how these advantages can
be applied to optimize the performance of a threshold ring
signature scheme.

IV. THRESHOLD RING SIGNATURE

In order to make use of the benefits of the improved Véron
identification scheme, we present in this section a novel variant
of the Aguilar et.al [1] threshold signature scheme in coding
theory that was based on Stern scheme.
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A. Threshold ring Véron-based signature scheme

In this section we propose a new threshold ring scheme
based on error correcting codes, called threshold ring Véron
scheme. The construction of this scheme can be considered
as a generalization of Véron identification scheme, which can
be afterwards converted to a signature scheme by using Fiat-
Shamir paradigm.
More precisely, we consider one set of N members
(P1, . . . , PN ). Let t be a subset of this set consisting of the
members which want to sign a message whereas one of them
is a leader L.
Each user of the group (P1, . . . , PN ) chooses its own k × n
generator matrix Gi. The leader collects all these matrices
and forms among them the following matrix G called master
public key.

G =

⎛
⎜⎜⎜⎝

G1 0 · · · 0
0 G2 0 0
...

. . . Gi 0
0 0 · · · GN

⎞
⎟⎟⎟⎠

We first define two notions of block permutation that we will
use in our scheme.

Let n and N be two integers.

Definition 1
A constant n-block permutation Σ on N blocks is a
permutation by block which permutes together N blocks
of length n block by block. Each block being treated as a
unique position as for usual permutations.

A more general type of permutation is the n-block permutation
Σ on N blocks.
Definition 2
A n-block permutation Σ on N blocks is a permutation
which satisfies that the permutation of a block of length n
among N blocks is exactly included in a block of length n.
A constant n-block permutation is a particular n-block
permutation in which the blocks are permuted as such.
For instance the permutation (6, 5, 4, 3, 2, 1) is 2-block
permutation on 3 blocks and the permutation (3, 4, 5, 6, 1, 2)
is a constant 2-block permutation on 3 blocks since the order
on each block ((1, 2), (3, 4) and (5, 6)) is preserved in the
block permutation.
The notion of product permutation is then straightforward.
Let us define σ, a family of N permutations (σ1, · · · , σN )
of {1, · · · , n} on n positions and Σ a constant n-block
permutation of N blocks defined on {1, · · · , N}. We consider
a vector v of size nN of the form:

v = (v1, v2, · · · , vn, vn+1, · · · , vn+n, v2n+1, · · · , vnN ),

we denote V1 the first n coordinates of v and V2

the n following coordinates and so on, to obtain:
v = (V1, V2, · · · , VN ). There we can define a n-
block permutation on N blocks, Π = Σ ◦ σ as
Π(v) = Σ ◦ σ(v) = Σ(σ1(V1), · · · , σN (VN )).

TABLE II
COMPARISON OF STERN THRESHOLD SCHEME AND OUR SCHEME

Public Data (Bits) Privat Data (Bits) Prover’s Work Factor
Stern threshold scheme 4727800 4743150 224.6

Our scheme 76750 61400 223.4

Let w be an integer. To ensure the anonymity, each
user of t signers generates a couple (mi, ei) such that
miGi + ei = 0 where each ei has a weight w. The N − t non
signers choose (mi, ei) = (0, 0). Then we obtain the public
key (G, w) and the secret key (m, e) such that mG + e = 0
where e is a nN vector of weight tw. For more anonymity
the leader uses special permutations to mix the permutations
used of each t-signers in order to mask matrices used in the
scheme. The prover P , consists of the set of t signers among
N , proves to the verifier that he knows a secret key (m, e),
with e is a nN vector of weight tw.
Algorithm 5 gives a full description of this scheme.

1) Performance and security: Due to the limit size of
our paper, we do not give the full proofs of the following
statements, but the proofs can be realized in the same way as
in [1].

• Threshold Véron scheme is an interactive zero-knowledge
scheme with a probability of cheating 2/3.

• The scheme satisfies the threshold signature anonymity.

2) Advantage of our scheme: If we use the improved
Véron scheme to create each matrix Gi, the prover have to
store only the two vectors described in Section III, we obtain
then the following key sizes:

• Public key size: 5kN instead (k2 + k)N for public key
size in the original Stern threshold scheme.

• Private key size: 4kN instead (k2 +2k)N for private key
size in the original Stern threshold scheme.

Table II gives a comparison of Stern threshold scheme and
our scheme considering the following parameters N = 50,
n = 614 and k = n/2 = 307

V. CONCLUSION

In this paper, we have proposed a variant of threshold
identification scheme based on error-correcting codes to reduce
the complexity computation of the prover and the size of the
data stored by the latter. Unfortunately, as often in code-based
cryptography, our proposed scheme suffer from large system
parameters, that could be reduced by using specific codes such
quasi-dyadic codes introduced in [10].
To the best of our knowledge, up to present there exist no
threshold signature schemes except a few code-based sys-
tems in post-quantum world. Therefore, we encourage the
cryptography community to work in this area because a lot
of proposals are needed in post-quantum cryptography like
schemes with additional properties.
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Algorithm 5 Threshold Véron scheme
Parameters: n : code length; k: code dimension; G ∈
F

k×n
2 :generator matrix, h a collision resistant hash func-

tion.
Private key: (m, e) ∈ F

nN
2 , such that wt(e) = Nω

Public key: x ∈ F
(n−k)N
2 , such that mG + e = x

� Each signer: make master commitments
1: Each signer chooses ui from F

k
2 at random

2: Each signer chooses σi permutation over {1, . . . , n} at
random

3: Set c1,i ← h(σi)
4: Set c2,i ← h(σi((ui + mi)Gi))
5: Set c3,i ← h(σi(uiGi))
6: Send c1,i, c2,i and c3,i∀i to Leader

� Leader: make commitments
7: L chooses N−t random values ui of F

k
2 and N−t random

permutations σi of {1, 2, . . . , n}
8: L fixes the secret keys (mi, ei) of the N−t missing users

at 0
9: L computes the N − t corresponding commitments by

choosing random ui and σi (t + 1 ≤ i ≤ N)
10: L chooses a random constant n-block permutation Σ on

N blocks {1, 2, . . . , N} in order to obtain the master
commitments:

11: Set C1 ← h(Σ(c1,1, . . . , c1,N ))
12: Set C2 ← h(Σ(c2,1, . . . , c2,N ))
13: Set C3 ← h(Σ(c3,1, . . . , c3,N ))
14: L sends C1, C2 and C3 to Verifier

� Verifier: make a challenge
15: Choose challenge b from {0, 1, 2} at random
16: Send b to Leader

� Leader: answer the challenge
� Let Pi be one of the signers. The first part of the step
is between each signer and L

17: if b = 0 then Pi sends ui + mi and σi to Leader
18: else if b = 1 then Pi sends σi((ui + mi)Gi) and σi(ei)

to Leader
19: else if b = 2 then Pi sends σi and ui to Leader
20: end if

� L simulates the N − t others Véron scheme with
(mi, ei) = (0, 0) where t + 1 ≤ i ≤ N
� L computes the answer for V (and sends it)

21: if b = 0 then L constructs u + m = (u1 + m1, . . . uN +
mN ) and Π = Σ ◦ σ and sends u + m and Π to verifier

22: else if b = 1 then L constructs
Π((u+m)G) = (Σ◦σ1((u1+m1)G1)), . . . ,Σ◦σN ((uN +
mN )GN )) and Π(e) = (Σ◦σ1(e1), . . . ,Σ◦σN (eN )) and
sends Π((u + m)G) and Π(e) to verifier

23: else if b = 2 then L constructs Π = Σ ◦ σ and u =
(u1, . . . , uN ) and sends them to verifier

24: end if
� Verifier: checks the answer complies with commitments

25: if b = 0 then V verifies that Π(m, e) is a n-block
permutation and that C1, C2 have been honestly calculated

26: else if b = 1 then V verifies that Π(m, e) is a n-block
permutation and that C2, C3 have been honestly calculated

27: else if b = 2 then V verifies that Π(m, e) is a n-block
permutation and that C1, C3 have been honestly calculated

28: end if
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