
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1008

DJess – A Knowledge-Sharing Middleware to

Deploy Distributed Inference Systems

Federico Cabitza, Bernardo Dal Seno

Abstract— In this paper DJess is presented, a novel distributed
production system that provides an infrastructure for factual and
procedural knowledge sharing. DJess is a Java package that provides
programmers with a lightweight middleware by which inference
systems implemented in Jess and running on different nodes of a
network can communicate. Communication and coordination among
inference systems (agents) is achieved through the ability of each
agent to transparently and asynchronously reason on inferred knowl-
edge (facts) that might be collected and asserted by other agents
on the basis of inference code (rules) that might be either local or
transmitted by any node to any other node.

Keywords— Knowledge-Based Systems, Expert Systems, Dis-
tributed Inference Systems, Parallel Production Systems, Ambient
Intelligence, Mobile Agents.

I. INTRODUCTION

D
JESS stands for “Distributed Jess” and Jess [1] for “Java

Expert System Shell”, a Rule Engine and scripting

environment written in JavaTM at Sandia National Laboratories

since the mid 90’s. Jess, as a rule engine tightly integrated

with the Java language, allows programmers to build Java

applications that have the capacity to reason on “factual”

knowledge expressed in terms of symbolic expressions by

means of “procedural” knowledge supplied in the form of

declarative rules. DJess has been developed in order to add

to the Jess inference functionalities a set of mechanisms that

allow to transparently create and manage an integrated collec-

tion of Inference Systems (IS) that communicate according to

a generative communication model [2]. In a generative com-

munication framework, agents communicate through a shared

and distributed memory so that no explicit communicative

message is necessarily exchanged. At this extent, DJess com-

munication model can be considered akin to the tuple space

model embodied by the Linda language [3] and its several

specific dialects. As a middleware1, DJess offers both spatial

and temporal decoupling by allowing processes to be directly

unaware of each other’s identities and to run their control flows

asynchronously and even within non-overlapping lifetimes; it

enables information sharing and communication among dis-

tributed agents through hidden remote object invocations (i.e.,

RMI); furthermore, DJess provides a common programming

abstraction across a distributed system by turning a collection

of devices (and applications running on them) into a single

integrated computational environment; such a system within

F. Cabitza and B. Dal Seno are with the Laboratory of Models &
Architectures for Coordination at Università degli Studi di Milano Bicocca,
Milano, Italy (e-mail: cabitza@disco.unimib.it; dalseno@disco.unimib.it)

1For middleware we adopt the widely accepted definition that conceives of
it as any software that mediates between application programs and a network
in order to make them interconnected and hence able to communicate.

the DJess framework is called a Web of Inference Systems

(WoIS). We use the quite general term “inference system”

to indicate computational systems (e.g., agents, devices2) that

are able to reason about what they perceive, and hence able

to create and manipulate knowledge about the environment

and themselves. A WoIS is then a network of communicating,

independent (time and space decoupled) inference systems that

are integrated by the capability of inferring on knowledge that

is transparently shared among the network’s members.

In the next section we first introduce the concept of dis-

tributed inference system along with the main characteristics

of the DJess architecture; this will be further outlined in the

following section along with some implementation details; the

last section contains a brief report on both current and future

work and the main motivations of the project.

II. DJESS-BASED DISTRIBUTED INFERENCE SYSTEMS

In this section we first give some vocabulary on rule-based

systems with a particular reference to the Jess lexicon; then

an outline of the DJess architecture is given.

A. Jess-based Inference Systems

Jess is a Java program written by Ernest Friedman-Hill to

deploy fast and flexible Rule-Based Systems (RBS) [4]. RBSs

are programs whose control flow can be said both event-

driven and data-driven in that they perform some action only

if some condition is true and they are able to produce (infer)

conclusions from a set of premises3. In fact, rules are but

if-then computational constructs expressing recommendation

of action if some condition occurs and RBSs are programs

that select and execute available rules according to their

current context; this makes RBSs particularly suitable for

implementing reactive architectures that must be modular and

easily extensible. Like other systems implemented by similar

rule-based languages (e.g., CLIPS, OPS5), each Jess inference

system is composed of three main components: a rule set,

a working memory and a rule engine. The rule set is the

collection of all the rules that can be executed by the IS

according to the current content of the working memory.

The Working Memory (WM) is the storage of the knowledge

2We can refer to these systems by several equivalent terms, such as devices
or agents if we like to stress respectively either their user-interactional and
computational capabilities or their intelligent and autonomous behavior in
complex real settings; likewise we can refer to ISs by the term nodes, if
we refer to their spatial decoupling in a topological network, or production
systems (or rule-based systems) if we refer to the particular kind of reasoning
model they reify. Since agents are often described as entities able to per-
form inferential (i.e., deductive) symbolic reasonings, we consider the terms
Inference Systems and Agents as synonyms.

3Accordingly, from this point on, we use rule-based systems, production
systems, and inference systems as synonyms.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1009

nuggets the rule engine operates on; these nuggets represent

the factual knowledge of the RBS and are hence called facts:

facts are like records with certain value fields called slots; the

fields structure is specified by a template that defines types

and default values of the slots. The rule engine — also called

inference engine — is a program (interpreter) that performs

iteratively the so-called Match-Resolve-Act (MRA) cycle over

the rule set and the working memory. In a MRA cycle, at

any given time, the rules of the rule set are first selected

and activated by matching them against the WM elements

(Match phase); then a rule among the activations is chosen

for immediate execution according to some selection strategy

(Resolve phase) and finally executed (Act or firing phase). In

the Act phase, facts can be modified or deleted, and new facts

can be added to the working memory as well.

In choosing the scripting environment to base our distributed

inference system on, the possibility to deploy our solution

across different platforms and to rely on a well documented

architecture played a decisive role. Therefore, we chose Jess

since its source code is available, it is written entirely in

Java and is widely used within a professional programmers’

community.

B. DJess: Distributing an Inference System

Distributing an inference system means both to distribute

in space the inference engines and to parallelize in time the

inference process made on the same facts. Distribution of

an inference system can be useful for two main reasons:

making the inference process faster and getting physical

separation. The former allows better performances in terms of

throughput and response time; the latter supports robustness,

resource sharing, agents cooperation, and pervasiveness of

computation. As a matter of fact any design must come to

compromises and no optimal solution for every application

domain is given. In designing the distribution of our Jess-based

inference systems, we had to face design and implementation

alternatives between performance and consistency guarantee.

The application domain that has mainly influenced the DJess

design is the Ambient Intelligence (AmI) environment [5].

An AmI environment can be defined as a tightly integrated

collection of computational devices that is able to aptly

assist the user whenever and wherever she needs it. Such a

collection is inherently distributed and heterogeneous since the

computational systems that compose it can be either mobile

and embedded in any kind of everyday object or embedded

and hidden in the background infrastructure surrounding the

user [6]; besides ubiquity and transparency, such systems must

also exhibit some intelligent behavior in terms of context

awareness and ability to recognize and react aptly to user ac-

tions by reasoning on knowledge that was previously acquired

or possibly learned from past experience. For such a domain,

we think that the deployment of distributed inference systems

is likely predictable; in such systems, coordination would rely

on a very high level (semantic) interoperability provided by a

suitable communication middleware.

Since our proposed solution — the Web of Inference

Systems — has been conceived for a set of application

domains where response time is less critical, its design and

Fig. 1. Web of Inference Systems. WoIS members are inference systems
constituted by an inference engine (E) and a rule set (RS) each. SWM is the
shared working memory and it is where all the shared facts are stored and
accessed by any member of the WoIS. A system, M, plays the role of web
manager.

implementation trade often performance for consistency where

this is suitable for the AmI domain. That notwithstanding, the

WoIS provides an abstraction level and a sound mechanism to

relieve the programmer of having to build a communications

framework in every domain where a knowledge-based and

inference-based technology is feasible. A representation of

a WoIS is given in Fig. 1: a WoIS is defined as a set of

registered ISs, called members of the WoIS; a set of shared

facts (constituting the Shared Working Memory, SWM); and

the WoIS manager, which can be either a regular IS with

managing functions or a dedicated service provider.

The manager offers two services: the first one is the regis-

tration and the locating of ISs as they join or leave the WoIS;

the second one is the incremental backup of the SWM so

as to manage temporary disconnections of the members and

to partially reconstruct the distributed inference history. The

use of a centralized WoIS manager has the disadvantage of

creating possible bottlenecks in the system, but it is obviously

the simplest solution for a name server. We have assumed that

in a typical AmI environment computation be mainly driven by

user activity and that communication be based on broadband

LANs, so that the delays induced by a centralized model are

presumably not appreciable.

As depicted in Fig. 1, the SWM is the set of all the shared

facts. Each agent can match and execute its rules on shared

facts as if they were local; in effect there is no physical

common memory in DJess: every IS has a copy of each

shared fact in its own local WM and all ISs’ engines run

independently of each other. For these two reasons we say

that the DJess WoIS is a distributed asynchronous inference

system [7] where no centralized data repository is kept and

facts are transparently shared among the nodes of the network.

Generally a distributed system is said transparent when it is

able to ensure that “a collection of independent computers

appear to its users as a single coherent system” [8]. This

acceptation of transparency has been one of the most important

requirement in designing DJess and it regards both the Java

programmer and the inference system designer, i.e. who writes

the rule set and conceives the facts structure according to the

application domain. For the former, we speak of transparency

especially for the synchronization mechanisms involved in

knowledge sharing. For the latter, transparency has been

guaranteed in the inter-IS communication, since asserting facts



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1010

is a sort of implicit communication between the asserting IS

and the other ISs, whose rules might match the asserted fact.

This ensures a sort of backward compatibility, as almost no

modification to the RBS code is required when porting it from

a monolithic system to a distributed one.

Other two important properties of distributed systems have

been taken into account in designing our architecture: relia-

bility and, at some extent, performance. With regard to the

former we have conceived both security mechanisms related

to the identification/registering of the members of the system

and fault tolerance mechanisms, at least in terms of managing

sudden disconnections of members and misalignment of the

distributed working memories; in regard to the latter property

— performance — we have designed our system so that the

most time-demanding phase in the inference execution (the

Match phase [9], [10]) is left local4.

III. THE DJESS ARCHITECTURE AND IMPLEMENTATION

DJess is mainly an extension of Jess; its architecture is

designed with the goal of keeping modifications of the Jess

code as few as possible, so as to cut down on development

time and bugs, and to avoid duplicate work being done on

the same functionalities. DJess, like Jess, is both a scripting

language and a rule engine, that is a program that involves

several Java classes and their methods (API).

As a scripting language DJess is a tool for the rule-based

application designer. From her point of view, DJess totally

adopts the Jess syntax but also provides a load-rule func-

tion and a different default resolve strategy. The load-rule

function enables to load a rule into a remote rule set; this

makes DJess a (weak) mobile code environment [11] since it

allows interpretable code to be transparently transferred among

different inference systems. The default resolve strategy is

partially nondeterministic in order to lower the overhead due

to synchronization between ISs. About sharing, programmers

can decide whether a fact will be private or shared at the

assertion time; the default policy is that any asserted fact is

transparently shared.

As an inference engine, DJess is a tool mainly for the

Java programmer. Since a Java program can easily embed

a Jess or DJess rule-base system, the development of a

bridge between the inference application and the platform

or device functionalities is up to the Java programmer. The

only difference between Jess and DJess is that, in the latter,

methods for creating, joining, leaving, and destroying a WoIS

are available.

In order to synchronize the shared memory, DJess exploits

a powerful Jess feature: shadow facts. This feature allows to

use Java beans (objects whose attributes are accessible through

set and get methods) as if they were elements of the working

memory; when an object is used in such a way, Jess creates

a fact — the shadow fact — that is dynamically linked with

that object: every modification made on the bean is mirrored

on the “shadowed” fact and vice versa. For every fact shared

across the WoIS, a shadow fact, and hence a shadowed java

4Moreover, in so doing, the number of messages exchanged for the
synchronization of the shared memory is minimized.

Fig. 2. A graphical representation of the synchronization mechanism in DJess
is given. JVMi are Java Virtual Machines; SWMi are local copies of the shared
working memory; sfi are shadow facts, representing the same shared fact; pi

are their corresponding proxy objects; and gf is the ghost fact used for the
shared fact synchronization.

bean, is present in every node (see Fig. 2). The Java bean is

called proxy; all the proxies corresponding to the same shared

fact are linked together by means of a Java remote object that

we call ghost fact. The ghost fact has been introduced for

two purposes: storing the state of the shared fact, i.e. the slot

values; and providing a single point of synchronization for the

ISs. For simplicity each ghost fact is stored in the Java virtual

machine of the asserting IS.

Conflicts and unwanted interferences may occur when dif-

ferent ISs access the same shared fact by firing interfering

rules at the same time. Two rules are said to interfere if there

is a dependency of some sort between them [12]. A read-write

dependency (or a true data dependency) occurs between two

engines if one of them fires a rule that writes (i.e., modifies or

deletes) a fact read (contained in the if-part) by the other and

a write-write dependency (or an output dependency) occurs if

both of them write the same fact [13].

In DJess, to prevent inconsistency due to interfering, a

mutual exclusion mechanism is implemented through locks

associated with ghost facts and acquired in the transition from

the Resolve to the Act phase. Rule firings are treated as

single indivisible units (consistency through serializability5):

the effects of two parallel rule firings are the same of a

serial sequence of those firings; moreover changes made

by a rule firing cannot trigger another rule firing until the

former is finished. In fact rule firings in DJess are akin to

transactions, and the system used to control concurrency is a

frequent solution in transaction systems, the two-phase lock

protocol6 [14], yet without rollback. Rule firing execution is

divided in three steps: locks acquisition, statements execution,

and locks release. In the first step, a lock is acquired for every

fact matched in the activation and for every fact that has a

binding (i.e., a variable referencing it); if the acquisition of a

lock fails, all locks are released and the firing is postponed,

without any rollback since there is nothing to undo. The

second step is the actual rule firing; actions are then performed

5DJess addresses only the consistency problems due to concurrency; those
possibly arising from knowledge bases integration are left to IS designers.

6In a two-phase lock scheme no further lock can be acquired after having
released any lock.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1011

according to the rule statements and if an assert is executed,

the new fact is created in a locked state7. In the last step, all

locks are released and if a rule has been blocked by any of

these locks, it is eventually fired.

Although shared facts are replicated in each IS’s working

memory, the coordination achieved through the ghost fact

permits to conceive of the SWM as a distinct and unique entity.

Ghost facts do not require to modify Jess’s implementation

of the Rete algorithm; no modifications are needed for the

modify primitive either, due to the use of shadow facts. In Jess

(hence in DJess), whenever modify is invoked on a shadow

fact to change some slot values, the corresponding set methods

of the shadowed Java bean are called. So in DJess, when a

set method of a proxy is called in response to a modify, no

proxy internal variable is updated; the method just calls the

corresponding ghost fact set method. In so doing, the ghost

fact updates its attributes and notifies all its other proxies of

the modification by calling their set methods; consequently

the modification is shadowed in all ISs’ working memories

through the native Jess mechanism.

Asserting and retracting shared facts involves some modi-

fications of Jess mechanisms. Every time the engine of an IS

tries to create a new template in the shared module in response

to a deftemplate statement, the template is parsed and the

Java code for two new classes, namely the proxy and the ghost

fact classes, is generated, so that these classes have a bean

property for each slot in the original template. The code is

then compiled and sent along with the template to all the other

WoIS members, that from then on are ready to assert shared

facts using the new template. When the engine of an IS uses

a shared template and attempts to assert a fact, it instantiates

the associated ghost fact class and initializes this new object

with the slot values of the fact; it then notifies all engines in

the WoIS, sending them a reference to the ghost fact. Each

engine creates a new proxy bound to the ghost fact and uses

it to assert a shadow fact in its working memory. Likewise,

when an engine retracts a shared fact, it notifies all the WoIS

members’ engines and they remove the corresponding shadow

fact from their memory; finally also the ghost fact is removed

from the system.

IV. FUTURE WORK AND CONCLUSIONS

In this paper we have presented DJess, a scripting environ-

ment that enables programmers to write powerful rule-based

inference systems. Such systems are able, even running on

different machines, both to share elements of their working

memory, so as to infer on remote facts as if they were

local, and to exchange procedural knowledge (rules) so as

to reach a better semantic interoperability on the base of

common factual representations. Full integration with Java,

transparency, and the adoption of a pure generative commu-

nication model make DJess quite different from DCLIPS, an

infrastructure for inferential code mobility used in multi-robot

systems [15] that to our knowledge is the closest work in

approach and aims. Since the set of facts that constitutes any

7This is to prevent another engine from firing a rule on a new fact before
the asserting rule execution has been completed.

single working memory can represent the internal state of the

IS as well as its symbolic description of the current situation,

we intend to deploy such a system in an Ambient Intelligence

domain, whose typical requirements and constraints drove our

implementation choices. In fact, we think DJess can facilitate

the design and writing of lightweight rule-based applications

running on top of pervasive devices by providing off-the-shelf

inference capabilities and a simple communication middleware

through which context-aware systems can transparently share

both representations of the current context and code to manage

this knowledge properly.

Our future work will then address the refinement of the

rule-based inference approach as a general methodology for

AmI systems, and will address the further development and

optimization of the security, resilience, and synchronization

mechanisms involved in memory sharing and consistency

guaranteeing.

At the current moment, DJess is in an alpha state and the

programming interfaces have been fully developed8; we have

realized some demonstrators to probe the reliability and the

performance of the overall architecture. The beta release will

be based on Jess 6.1 version, the Jess latest stable version to

date.

REFERENCES

[1] Jess, the Java Expert System Shell, http://herzberg.ca.sandia.gov/jess/
[2] D. Gelernter, “Generative communication in Linda,” ACM Trans. Pro-

gram. Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.
[3] N. Carriero and D. Gelernter, “Linda in context,” Communications of

the ACM, vol. 32, no. 4, pp. 444–458, 1989.
[4] E. Friedman-Hill, Jess in Action – Java Rule-based Systems. Manning

Publications Co., 2003.
[5] M. Lindwer, D. Marculescu, T. Basten, R. Zimmermann, R. Marculescu,

S. Jung, and E. Cantatore, “Ambient intelligence visions and achieve-
ments: Linking abstract ideas to real-world concepts.” in Proceedings of

the conference on Design, Automation and Test in Europe (DATE ’03),
2003, pp. 10–15.

[6] M. Weiser, “Some computer science issues in ubiquitous computing,”
Commun. ACM, vol. 36, no. 7, pp. 75–84, 1993.

[7] T. Ishida, “Parallel, distributed and multi-agent production systems
– A research foundation for distributed artificial intelligence,” in
Proceedings of the First International Conference on Multi-Agent

Systems, V. Lesser, Ed. San Francisco, CA: MIT Press, 1995, pp.
416–422.

[8] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and

Paradigms. Prentice Hall, 2002.
[9] T. Ishida, “Parallel rule firing in production systems,” IEEE Transactions

on Knowledge and Data Engineering, vol. 3, no. 1, pp. 11–17, 1991.
[10] S. Kuo, “A parallel asynchronous message-driven production system,”

Ph.D. dissertation, University of Southern California, 1991.
[11] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”

IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342–
361, May 1998.

[12] A. Acharya, “Eliminating redundant barrier synchronizations in rule-
based programs,” in Proceedings of the 10th international conference

on Supercomputing. ACM Press, 1996, pp. 325–332.
[13] S. Tata, G. Canals, and C. Godart, “Specifying interactions in coopera-

tive applications,” in In Eleventh International Conference on Software

Engineering and Knowledge Engineering, Kaiserslautern, Germany,
June 1999.

[14] J. Gray and A. Reuter, Transactions Processing: Techniques and Con-

cepts, M. Kaufmann, Ed., San Mateo, CA, USA, 1994.
[15] F. Amigoni, M. Somalvico, and D. Zanisi, “A theoretical framework for

the conception of agency,” International Journal of Intelligent Systems,
vol. 14, no. 5, pp. 449–474, May 1999.

8For a bird’s eye view of the implementation, a provisional documentation
is given at http://www.mac.disco.unimib.it/djess.


