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Abstract—It is sometimes difficult to differentiate between 

innocent murmurs and pathological murmurs during auscultation. In 
these difficult cases, an intelligent stethoscope with decision support 
abilities would be of great value. In this study, using a dog model, 
phonocardiographic recordings were obtained from 27 boxer dogs 
with various degrees of aortic stenosis (AS) severity. As a reference 
for severity assessment, continuous wave Doppler was used. The data 
were analyzed with recurrence quantification analysis (RQA) with 
the aim to find features able to distinguish innocent murmurs from 
murmurs caused by AS. Four out of eight investigated RQA features 
showed significant differences between innocent murmurs and 
pathological murmurs. Using a plain linear discriminant analysis 
classifier, the best pair of features (recurrence rate and entropy) 
resulted in a sensitivity of 90% and a specificity of 88%. In 
conclusion, RQA provide valid features which can be used for 
differentiation between innocent murmurs and murmurs caused by 
AS. 
 

Keywords—Bioacoustics, murmur, phonocardiographic signal, 
recurrence quantification analysis.  

I. INTRODUCTION 
HE relationship between blood volumes, pressures and 
flows within the heart determines the opening and closing 

of the heart valves. Normal heart sounds occur during the 
closure of the valves, while pathological murmurs are 
produced by turbulent blood flow caused by narrowed or 
leaking valves (or from the presence of abnormal passages in 
the heart) [1]. Heart murmurs are common during childhood, 
between 50 – 80%, but only about 1% of these murmurs are 
pathological [2]. The clinical standard for assessing valvular 
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heart disease is echocardiography. However, in the primary 
health care, when deciding who requires special care, 
auscultation plays an important role. Distinguishing innocent 
heart murmurs from mild pathological murmurs is a diagnostic 
challenge, and current murmur assessments as well as 
echocardiographic evaluations are sometimes inconclusive.  

With the advent of digital stethoscopes and the 
development of portable processing power, we envision an 
intelligent stethoscope with decision support abilities [3]. 
Such a tool, able to screen murmurs, would be both time- and 
cost-saving while relieving many patients from needless 
anxiety. In this study we used recurrence quantification 
analysis (RQA) for differentiation between innocent murmurs 
and murmurs caused by aortic stenosis (AS). The presented 
work, which is using a dog model, is part of a wider 
investigation concerning the prognostic value of heart murmur 
evaluation in young individuals, as well as differentiation 
between innocent murmurs and murmurs caused by AS in 
adults [4]. 

Research on signal processing of the phonocardiographic 
signal (i.e. recorded sounds from the heart) has been extensive 
[5]–[6], and several authors have reported tools to screen 
innocent murmurs from pathological murmurs [7]–[9]. 
Common for these approaches are time and/or frequency 
based features which are used as input to an artificial neural 
network classifier. Spectral features are reasonable since there 
is an established relationship between the murmur’s frequency 
content and the severity of the stenosis [10]. However, as 
stated by Bhatikar et al. [7], the relationship between the 
features and the target value (the clinical diagnosis) is 
complex. Advanced artificial neural networks with nonlinear 
decision boundaries have therefore been applied in the 
classification task. We suggest that by finding relevant 
features, the relationship between features and targets can be 
simplified, thus reducing the risk of misclassification caused 
by overfitting. 

Recent studies indicate that the phonocardiographic signal 
is nonlinear [11]–[13], thus motivating the use of nonlinear 
analysis tools. Here RQA is used to capture the nonlinear 
dynamics of the systolic segment of the phonocardiographic 
signal. Our hypothesis is that the turbulence-induced murmur 
signal can be quantified with RQA, especially with the 
parameters recurrence rate (which should decrease as the 
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signal becomes more turbulent) and entropy (which should 
increase by increasing turbulence).  

As in the work by Tavel et al. [14], this study is restricted 
to murmurs induced by aortic stenosis. Our intention is not to 
replace previously developed classification methods [7]–[9], 
[14], but rather to complement the previously used features 
with a new set of features able to capture the nonlinear 
dynamics of the phonocardiographic signal. More specifically, 
the aims of this paper are to introduce RQA features to 
quantify phonocardiographic signals and to prove their 
usefulness by classifying innocent murmurs from murmurs 
caused by AS. 

II. MATERIALS AND METHODS 
The study was approved by the Local Ethical Committee in 

Uppsala, Sweden. Twenty-seven privately owned boxer dogs 
were included in the study, 15 females and 12 males, aged 
(mean ± std) 2.15 ± 2.18 years (range 1-9 years). The 
inclusion criterion was that an auscultatory heart murmur over 
the aortic area should be present, whereas other findings 
indicative of systemic disease or other organ malfunctions on 
physical examination should be absent. For characterization 
purposes, all dogs underwent an echocardiographic 
examination. In order to evaluate heart sounds and murmurs a 
phonocardiographic examination was performed. Cardiac 
diseases, congenital as well as acquired, other than AS were 
excluded by echocardiographic examination. In dogs with 
innocent murmurs, anemia was excluded by routine 
hematology. All examinations were performed by experienced 
examiners. 

A. Measurements 
A phonocardiographic examination took place in a quiet 

room with the dog in a standing position. The examinations 
were performed using the Welsh Allyn Meditron stethoscope 
(Meditron ASA, Medi-Stim ASA, Oslo, Norway), connected 
to a computer with the Meditron Analyzer software (Meditron 
ASA, Medi-Stim ASA, Oslo, Norway). The chest piece of the 
stethoscope was placed over the aortic area, giving the loudest 
and clearest heart murmur possible. One recording lasted for 
10 seconds and was performed on each dog.  The signal was 
digitized at 44.1 kHz with 16 bits per sample using a sound 
card (Meditron ASA, Medi-Stim ASA, Oslo, Norway). All 
recordings were stored on the computer.  

An echocardiographic examination was performed with the 
dog in right and left lateral recumbency on the ultrasound 
examination table. The examinations were performed using a 
GE Vivid 3 ultrasound machine with a 5 MHz transducer. A 
complete echocardiographic examination with standardized 
imaging planes was performed [15], paying special attention 
to 2D changes indicative of aortic or pulmonic stenosis. The 
mitral, tricuspid, aortic and pulmonic valves were screened for 
regurgitation using color flow Doppler. Pulsed-wave Doppler 
was used for measurement of the pulmonic flow velocity. The 
peak aortic flow velocity (Vmax) was measured by continuous 
wave Doppler using the subcostal transducer location 
recommended by Lehmkuhl and Bonagura [16]. The Vmax 
parameter was used as a hemodynamic reference to assess AS 
severity. 

B. Group Denomination 
The dogs were divided into four classes. Class 1 and 2 had 

no morphological evidence of AS on 2D echocardiography. 
Class 1 consisted of dogs with Vmax <1.8 m/s while class 2 had 
Vmax ≥1.8 m/s. Class 3 and 4 on the other hand had 
morphological evidence of AS on 2D echocardiography. Class 
3 consisted of dogs with Vmax ≤3.2 m/s (mild AS) while class 
4 had Vmax >3.2 m/s (moderate-severe AS). The group 
denomination is based on Kittleson and Kienle [17]. 
Echocardiographic and auscultatory data are summarized in 
Table I, while examples of phonocardiographic recordings are 
shown in Fig. 1. 
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Fig. 1 Examples of phonocardiographic signals from dogs with 

different degrees of aortic stenosis. The signals are recorded from 
dogs belonging to class 1-4 with aortic flow velocity 1.63 m/s, 1.83 

m/s, 3.2 m/s and 4.4 m/s in (a)-(d), respectively. Note how difficult it 
is to distinguish between different classes 

TABLE I 
SUMMARY OF ECHOCARDIOGRAPHIC DATA FOR ALL DOGS. THE GROUP 

DENOMINATION WAS BASED ON PEAK AORTIC FLOW VELOCITY, AS 
OUTLINED IN THE MAIN TEXT 

Class 1 2 3 4 

Number of dogs 8 8 5 6 
Vmax (m/s), mean ± 
std 

1.65 ± 
0.09 

2,02 ± 
0.19 

2.82 ± 
0.36 

4.68 ± 
0.57 

Aortic flow velocity, 
range (m/s) 

1.52-1.73 1.84-2.41 2.40-3.20 4.00-5.50 

2D morphological 
aortic stenosis 

No No Yes Yes 
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C. Preprocessing of the Phonocardiographic Signals 
All recorded phonocardiographic signals were manually 

segmented by experienced examiners. Four markers per heart 
cycle were determined; the beginning of the first heart sound, 
the end of the first heart sound, the beginning of the second 
heart sound and the end of the second heart sound. Noisy or 
corrupted signal segments, determined by visual inspection by 
KH, were excluded from further studies. The systolic part of 
the signal, defined as the period ranging from the end of the 
first heart sound to the beginning of the second heart sound, 
was used as input for RQA. A 5th order Butterworth high-pass 
filter with a cut-off frequency of 50 Hz was used to remove 
trends from the signal. The filtering was performed by zero-
phase digital filters, processing the input data in both the 
forward and reverse directions. The signals were also down 
sampled to 14.7 kHz to reduce computational complexity. All 
processing of the phonocardiographic signals were made in 
MATLAB (The MathWorks, Inc., Natick, MA, USA) and in 
the cross recurrence plot toolbox [18]. 

D. Nonlinear Systems and Embedology 
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Fig. 2 Results from calculations of average mutual information I(τ) 
(a) and Caos’s method E1(d) in (b). The minimum in (a) determines 
the delay parameter to τ = 92 samples and the knee in (b) determines 
the embedding dimension to d = 4. The displayed curves are mean 

values calculated from all dogs 
 

The dynamics of a time discrete system is determined by its 
possible states in a multivariate vector space (called state 
space or phase space). The transitions between the states are 
described by vectors, and these vectors form a trajectory 
describing the time evolution of the system according to 
x(t+1) = φ(x(t)) where x(t) is the state of the system, t is the 
time index, φ is a mapping function such that φ:M→M and M 

is the true state space. In the phonocardiographic signal, only 
a single scalar measure s(t)=h(x(t)), t=1,2,…,N, is available. If 
s(t) is a projection from M, then Takens’ theorem provides a 
way to undo the projection and reconstruct a dynamically and 
topologically equal replica of the true state space [19]: 

 

( ) ( ) ( )( )
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         (1) 

 
where τ is a delay parameter, d is the embedding dimension 
and F is a map from the true state space to the reconstructed 
state space. In this study, τ was set to 92 based on average 
mutual information [19] and d was set to 4 based on Cao’s 
method [20], see Fig. 2. Since the dynamics of the 
reconstructed state space contains the same topological 
information as the original state space, characterization and 
prediction based on the reconstructed state space is as valid as 
if it were made in the true state space. 

E. Recurrence Quantification Analysis 
The state space of a system is often high-dimensional, 

especially when reconstructed from experimental data where 
noise tends to inflate the dimension. Its phase portrait can 
therefore only be visualized by projection into two or three 
dimensions. This operation does however fold the attractor, 
and by doing so, destroying its structure. A recurrence plot 
(RP) is a way to visually investigate the d-dimensional state 
space trajectory through a two-dimensional representation 
[18], [19]. An RP is a symmetric NxN matrix that represents 
the recurrence of states of the system, and a point in 
coordinate (i, j) indicates that two states y(i) and y(j) are close 
to each other. An RP is defined as: 

   
( ) ( ) ( )( ),RP i j y i y jε= Θ − −                    (2) 

 
where i,j = 1,…,N, ε is a cut-off distance, ║•║ is the 
Euclidean norm (any norm could be used) and Θ(•) is the 
Heaviside function. States that are close to each other in the 
reconstructed state space are represented by black dots in the 
recurrence plot. An example RP is shown in Fig. 3. 

Recurrence quantification analysis is a way to parameterize 
the RP. Isolated recurrence points occur if states are rare, if 
they do not persist for any time or if they fluctuate heavily. 
Diagonal lines occur when a segment of the trajectory runs in 
parallel with another segment, i.e. when the trajectory visits 
the same region of the phase space at different times. Vertical 
(horizontal) lines mark a time length in which a state does not 
change or changes very slowly. The eight most common 
RQA-parameters are used in this study [18], [21]: 

• Recurrence rate: The percentage of recurrence points 
(black dots) in the recurrence matrix. 

• Determinism: The percentage of the recurrence points 
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that form diagonal lines. Diagonal lines are associated 
with deterministic patterns in the dynamics, hence 
determinism.  

• Mean diagonal line length: The average length of the 
diagonal lines. 

• Maximal diagonal line length: The length of the 
longest diagonal line. Inversely proportional to the 
largest Lyapunov exponent which describes how fast 
trajectories diverge in the reconstructed state space. 

• Entropy: The Shannon entropy of the distribution of 
the diagonal line lengths. Measures the complexity of 
the signal.  

• Laminarity: The percentage of recurrence points which 
form vertical lines. 

• Trapping time: The average length of the vertical lines. 
• Maximal vertical line length: The length of the longest 

vertical line. 
 
In this study, RQA was applied to the systolic period of 

each heart cycle in each dog. The obtained values were then 
averaged within each dog resulting in eight RQA feature 
values per dog.  

F. Statistical Analysis 
The statistical analysis was made in two steps. The 

clinically interesting task of separating class 1+2 (dogs 
without morphological evidence of AS on 2D 
echocardiography) from class 3+4 (dogs with morphological 
evidence of AS on 2D echocardiography) was tested using the 
Wilcoxon rank-sum test. A nonparametric test was used since 
the assumption of normality could not be verified. 

Linear discriminant analysis (LDA) was applied to 
investigate the separability between class 1+2 and class 3+4 
when using the RQA features that were found significant in 
the previous step [22]. The RQA features that showed 
significant differences between the groups were analyzed pair 
wise. Due to the limited study population, a leave one out 
approach was used to create the training and the test set [23]. 
This means that all but one dog was used as training data to 
construct the discriminant functions while the excluded dog 
was used for validation. This procedure was iterated for all 
dogs, where a different dog was excluded each time. 

III. RESULTS 
The number of heart cycles (mean ± std) in the twenty-

seven examined boxer dogs were 11 ± 3. According to the 
Wilcoxon rank-sum test, there were significant differences at 
the 2% level between dogs from class 1+2 compared to dogs 
from class 3+4 in four of the eight RQA measures; recurrence 
rate, entropy, trapping time and maximal vertical line length, 
see Table II. An example RP is shown in Fig. 3 while box and 
whisker plots of all eight RQA measures are shown in Fig. 4. 
Results from the pair wise linear discriminant analysis are 
shown in Table III.  

 

IV. DISCUSSION 
Features obtained via RQA were investigated in this paper. 

Four of the eight RQA measures showed significant 
differences between innocent murmurs and murmurs caused 
by AS at the 2% level.  

Recognition of severe AS is not difficult in clinical practice 
since the murmur generally becomes louder and longer with 
increasing severity of the obstruction [24]. Mild obstructions, 
however, cause soft murmurs which are difficult to distinguish 
from innocent murmurs. This can be seen in Fig. 1. The class 
denomination in this study is based on Kienle and Kittleson 
[17], as well as our own clinical experience, considering class 
1 as dogs with innocent murmurs and class 2 as dogs in the 
grey-zone for AS. Both of these classes are however  
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Fig. 3 The phonocardiographic signal from Fig. 1d is shown in (a) 

while its corresponding recurrence plot is shown in (b) 
 

TABLE II 
SUMMARY OF ECHOCARDIOGRAPHIC DATA FOR ALL DOGS. THE GROUP 

DENOMINATION WAS BASED ON PEAK AORTIC FLOW VELOCITY, AS 
OUTLINED IN THE MAIN TEXT 

 p-value Significance 

Recurrence rate 0.00004 Significant 
Determinism 0.08867 Not significant 
Mean diagonal line length 0.53735 Not significant 
Maximal diagonal line length 0.05127 Not significant 
Entropy 0.01670 Significant 
Laminarity 0.13231 Not significant 
Trapping time 0.00019 Significant 
Maximal vertical line length 0.00123 Significant 
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considered as innocent murmurs due to their limited influence 
on physiological function. Instead, it is the differentiation 
between mild AS and dogs without AS which is the most 
critical in the clinical situation (that is, class 1+2 vs. class 
3+4). Dogs with mild AS in our study had auscultatory 
murmur degrees between II and IV out of VI, while murmur 
degrees in class 1 and 2 varied between I and II out of VI. In 
dogs with murmur degree II, it is not possible to determine the 
cause of the murmur by cardiac auscultation alone, and in 
these dogs the echocardiographic examination is sometimes 
inconclusive [17]. In the current study, RQA proved useful in 
separating these difficult groups.  

 The canine cardiovascular and respiratory systems are 
similar to the human, which has made the dog a commonly 
used model in cardiovascular research [25]. In the boxer 
breed, the prevalence of heart murmurs is high, reportedly 
between 50 – 80% [17], [26], [27].  A proportion of these 
murmurs are caused by AS, which is a common heart disease 
in boxer dogs [26], whereas the underlying cause for the 
murmur remains undiscovered in other cases. These murmurs 

are commonly referred to as innocent murmurs. In contrast to 
humans, canine AS is not of degenerative origin, but a 
congenital disease affecting the aortic valves or the left 
ventricular outflow tract due to a subvalvular fibrous stenosis 
[17]. Another difference is the higher heart rate in the dog, 
which, in this study, admitted rather short recording sessions 
(10 seconds) when recording the phonocardiographic signal. 

The nonlinear features used in this study are not easy to 
interpret. When leaving the well known concepts of time and 
frequency, the obtained features become hard to explain in 
terms of physiological events. Another complicating issue is 
the fact that the reconstructed state space is four-dimensional, 
making it impossible to visualize. Nonetheless, the four 
significant RQA features may be interpreted as follows. The 
recurrence rate corresponds with the probability that a specific 
state will recur, and as the turbulence increases, the 
probability of recurring states decreases. This is in agreement 
with Fig. 4a. Entropy reflects the complexity of the 
deterministic structure in the system. As the turbulence 
increases, the complexity of the signal increases, see Fig. 4e. 
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Fig. 4 Box and whisker plots of the eight RQA features showing their distribution in the four defined classes (ranging from innocent murmur 

to flow murmurs caused by severe aortic stenosis). There is one box for each class and the boxes have lines at the lower quartile, median, and 
upper quartile values.  The whiskers are lines extending from each end of the boxes to show the extent of the rest of the data. Outliers are data 

with values beyond the ends of the whiskers 

TABLE III 
RESULTS FROM PAIR WISE LINEAR DISCRIMINANT ANALYSIS. A LEAVE ONE OUT METHODOLOGY IS USED TO DETERMINE THE TRAINING AND THE TEST 

SET 

 Correct classifications (%) Sensitivity (%) Specificity (%) 

Recurrence rate ↔ Entropy 89 90 88 
Recurrence rate ↔ Trapping time 85 82 88 
Recurrence rate ↔ Maximal vertical line length 78 72 81 
Entropy ↔ Trapping time 85 89 83 
Entropy ↔ Maximal vertical line length 74 75 74 
Trapping time ↔ Maximal vertical line length 78 69 86 
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Trapping time is related with the laminarity time of the 
system, i.e. how long the system remains in a specific state. 
This measure should decrease with increasing turbulence, as 
in Fig 4g. The maximal vertical line length represents the 
longest segment which remains in the same phase space 
region over some time. This kind of structure in state space 
will also decrease with increasing turbulence, see Fig 4h.  

In supervised learning, overfitting is likely to occur in cases 
where (i) learning was performed too long, where (ii) training 
examples are rare, where (iii) too many feature vectors are 
used or (iv) a combination thereof. This basically means that 
many different solutions are consistent with the training 
examples, but disagree on unseen data. Hence, when 
presenting new examples to the developed classifier, the 
predictions will not be reliable. In order to avoid overfitting, it 
is necessary to use cross-validation to verify the results [23]. 
Due to the limited amount of data in this study, a leave-one-
out methodology was used for cross-validation [23]. 

In this study, four significant feature vectors were derived. 
However, these are only used pair wise in the linear 
discriminant analysis. The reason is to avoid overfitting of the 
classifier. When using many features in combination with 
limited training examples, the risk of loosing generality is 
high. Using three of four feature vectors creates a high 
dimensional feature space which can not be represented 
accurately by 26 examples (the last dog is used for cross-
validation). This also indicates the importance of finding 
representative features. For example, Bhatikar et al. [7] uses 
252 features and a nonlinear classifier to achieve a sensitivity 
of 93% and a specificity of 90% when classifying innocent 
murmurs from murmurs caused by ventricular septal defect 
(based on 153 training examples and 88 test examples). In this 
study, the best feature vectors achieved a sensitivity of 90% 
and a specificity of 88% when classifying innocent murmurs 
from murmurs caused by aortic stenosis. The results are 
comparable to ours, but here we use a plain linear classifier 
with only two feature vectors.  

To conclude, RQA provides valid features which can be 
used for differentiation between innocent murmurs and 
murmur caused by AS.  
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