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Abstract—Missing values in real-world datasets are a common
problem. Many algorithms were developed to deal with this
problem, most of them replace the missing values with a fixed
value that was computed based on the observed values. In
our work, we used a distance function based on Bhattacharyya
distance to measure the distance between objects with missing
values. Bhattacharyya distance, which measures the similarity of
two probability distributions. The proposed distance distinguishes
between known and unknown values. Where the distance between
two known values is the Mahalanobis distance. When, on the other
hand, one of them is missing the distance is computed based on the
distribution of the known values, for the coordinate that contains
the missing value. This method was integrated with Wikaya, a
digital health company developing a platform that helps to improve
prevention of chronic diseases such as diabetes and cancer. In order
for Wikaya’s recommendation system to work distance between users
need to be measured. Since there are missing values in the collected
data, there is a need to develop a distance function distances between
incomplete users profiles. To evaluate the accuracy of the proposed
distance function in reflecting the actual similarity between different
objects, when some of them contain missing values, we integrated it
within the framework of k nearest neighbors (kNN) classifier, since
its computation is based only on the similarity between objects. To
validate this, we ran the algorithm over diabetes and breast cancer
datasets, standard benchmark datasets from the UCI repository. Our
experiments show that kNN classifier using our proposed distance
function outperforms the kNN using other existing methods.

Keywords—Missing values, distance metric, Bhattacharyya
distance.

I. INTRODUCTION

MANY real-world datasets suffer from the problem of

missing values. There are many serious data quality

problems in health datasets such as: missing, redundant,

inconsistent, outliers and noisy data. Missing values can be

caused by human errors, system generated errors, equipment

failure, and so on. Based on the research of Cabena [3], about

20% of the effort is spent trying to solve the problem and

on figuring out the data, 60% of the effort is spent on data

preparation and feature extraction and another about 20% on

data analysis. We were introduced to this problem by a data

we received from Wikaya ltd, an artificial intelligence platform

that helps improve prevention to chronic diseases. We do that

by providing the Prevention Score giving a clear indication to

the level of prevention efforts. The Score is calculated based

on clinical algorithms licensed from Washington University.

The platform define users profiles by collecting data from the

users, their mobile phones, and wearables and, in phase II,
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through integration with EMR. Therefore many values will be

assigned as missing values.

In this research we use a distance function over incomplete

users profile based on Bhattacharyya distance, where some

patients do not have full health profiles. Our work is based on

the work of Abdallah et al. [1]. Today, the existing mehtods,

solve this problem by filling the missing values with a fix

value that computed based on the known values.

However, our suggested method is based mainly on

Bhattacharyya distance, which measures the similarity of two

probability distributions. We distinguished between two cases:

(a) complete patients profiles and (2) incomplete profiles.

Where the distance between two complete profiles is simply

the Mahalanobis distance. When on the other hand there is a

missing value of one of the attributes, the distance is computed

based on to the distribution of the missing attribute- attribute

might be a risk factor or data collected from the smarphones.

To measure the ability of the derived distance function to

reflect the actual similarity between different objects when

some of their values are missing, we integrated it within the

framework of k nearest neighbors (kNN) classifier since its

performance is based only on the similarity between objects.

We use standard benchmark data from the UCI repository

for both diabetes and breast cancer diseases. Our experiments

show that kNN classifier using the developed distance function

outperforms the kNN using other methods.

The paper is organized as follows. Previous methods

which deal with missing values are reviewed in Section II.

An overveiw of Bhattacharyya distance is described in

Section III. The proposed distance function using is described

in Section IV. Experimental results on numerical diabetes and

breast cancer datasets is presented in Section V. Finally, our

conclusions are presented in Section VI.

II. RELATED WORK

Several methods have been proposed to deal with missing

data.

Based on [4], [7]-[9] there are three main types of missing

data:

1) Missing Completely at Random(MCAR): when the

missing value is not related to any other sample.

2) Missing at Random(MAR): when the probability that a

value is missing may depend on some known values but

it does not depend on the other missing values.

3) Not Missing at Random(NMAR): when the probability

that a known value is missing depends on the value that

would have been observed.
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There are two basic types of methods to deal with the

problem of incomplete datasets. (1) Deletion: methods from

this category ignore all the incomplete profiles. These methods

may change the distribution of the data by decreasing the

volume of the dataset [11]. Moreover, in our case we can not

use it because it means to ignore the patients that have missing

values in their profiles which is unaccepted in Wikaya case. (2)

Imputation: in these methods the missing values were replaced

with known value according to statistical computation. Based

on these methods we convert then incomplete data to complete

data and as a result the exist machine learning algorithms can

be run they deal with complete data.

One of the most common approaches in this domain is the

Mean Imputation (MI) method that replace each incomplete

datapoint with the mean of the data. There are several

obvious disadvantages to this method. (a) using a fixed

instance to replace all the incomplete instances will change the

distribution of the original dataset, (b) ignoring the relationship

among attributes will bias the performance of subsequent data

mining algorithms. These problems were caused since we

replace all the incomplete instance with a fixed one. On the

other hand, a variant of this method is to replace the missing

values only based on the distribution of the attributes. It means

that the algorithm will replace each missing value with the

mean of the of its attribute (MA) and the whole instance [10].

And in a case that the values were discrete the missing value

will be replaced by the most common (MCA) value in the

attribute [6] (i.e., filling the unknown values of the attribute

with the value that occurs most often for the same attribute).

All those methods ignore the other possible values of the

attribute and their distribution and represent the missing value

with one value, that is wrong in realworld datasets.

Finally, the k-Nearest Neighbor Imputation method [12],

[2] estimates the values that should be replaced based on the k
nearest neighbors based only on the known values. The main

obstacle of this method is the runtime complexity.

III. BHATTACHARYYA DISTANCE

For completeness we will now give a short overview

of the Bhattacharyya Distance and then we will describe

how we integrated it within the distance function. A.

Bhattacharyya was a statistician who worked in the 1930s at

the Indian Statistical Institute. He defined a distance function

that measures the similarity/dissimilarity between two given

probability distributions.

Consider two univariate probability density functions, f1, f2
in the same domain. The Bhattacharyya distance is defined

based on the amount of the overlap between two statistical

sample as:

DB(f1, f2) = − ln (BC(f1, f2))

where BC is the Bhattacharyya coefficient, which is the

amount of overlap between two statistical samples or

populations. For discrete probability distributions case the

Bhattacharyya coefficient will be:

BC(f1, f2) =
∑
x∈X

√
f1(x) · f2(x),

and

BC(f1, f2) =

∫ √
f1(x)f2(x)dx,

for continuous case.

Let f1(x), f2(x) be two univariate Gaussian probability

density functions as a special case, and assume that μ1 �= μ2

and σ1 �= σ2 and:

f1(x) = N (μ1, σ
2
1)

f2(x) = N (μ2, σ
2
2)

The Bhattacharyya coefficient is defined as:

BC(f1, f2) =

∫ √
f1(x)f2(x)dx,=√

2σ1σ2
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1 + σ2

2)
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2
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}
.

As a result, the Bhattacharyya distance DB is:
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.

For multivariate normal distributions, we will use covariance

instead of varicance, fi = N(μi,Σi) the Bhattacharyya

distance will be:

DB =
1

2
ln

(
detΣ√

detΣ1detΣ2

)
+

1

8
(μ1 − μ2)

TΣ−1(μ1 − μ2),

where μi and Σi are the means and covariance of the

distributions, and

Σ =
Σ1 +Σ2

2
.

As seen from these equations the Bhattacharyya distance

is a generalization of the Mahalanobis distance. When the

variances of the two distributions are the same the first term

of the distance is zero as this term depends solely on the

variances of the distributions, and the distance will be

DB =
1

8
(μ1 − μ2)

TΣ−1(μ1 − μ2),

that is identical to the Mahalanobis distance between two

means μ1, μ2.

On the other hand, if the variances are different and the

means are equal (as shown in Fig. 1) the Mahalanobis distance

will be zero, where the Bhattacharyya distance which takes

into account the differences between the variances.
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Fig. 1 Bhattacharyya distance for two special cases: (a) The variances are
the same (σ1 = σ2), means are different (μ1 �= μ2). (b) The means are

equal (μ1 = μ2), variances are different (σ1 �= σ2)

IV. BHATTACHARYYA DISTANCE BASED DISATNCE

FUNCTION OVER INCOMPLETE DATASETS

We now turn to define the proposed distance metric [1]

that we used over the incomplete diabetes and breast cancer

datasets. Let A be a set of points (i.e., each point represent a

patient profile), where each coordinate describes one parameter

from the patient profile. Given a measured value xi for the

ith coordinate i ci, the conditional probability for ci will

be P (ci|xi) ∼ N (xi, σ
2
i ), where xi is the mean and σ2

i is

the variance of the sensor/risk factor which measured the

coordinate ci. When on the other hand the value of xi is

missing then the probability distribution for ci might be given

in advance or can be computed according to the known values

for this coordinate from the data (i.e., P (ci) ∼ χi), where χ
is the distribution. In our derivation when the distribution is

unknown we estimate it using the kernel density estimation

method (KDE) from the measured values.

Note that since each specific coordinate is measured by the

same sensor and under the same conditions, each coordinate

has a specific variance σ2
i . Our method can be generalized to

deal with coordinates whose measurements are dependant, but

for simplicity we assume that the coordinates measurements

are independent. Under these assumptions we will treat each

coordinate separately.

Given two sample points X and Y , the goal is to compute

the distance between them. Let xi and yi be the ith coordinate

values from points X,Y respectively. There are three possible

cases for the values of xi and yi: (1) Both values are given.

(2) One value is missing. (3) Both values are missing.

1) Two Values Are Known: When the values of xi and yi
are given the distance between them will be defined as:

DB(xi, yi) = DB(N(xi, σ
2
i1), N(yi, σ

2
i2)) =

1

2
ln

(
σ2
i1
+ σ2

i2

2σi1σi2

)
+

1

4

(xi − yi)
2

σ2
i1
+ σ2

i2

.

Since xi and yi were measured by the same sensor σi1 =
σi2 = σi and thus

DB(xi, yi) =
1

8

(xi − yi)
2

σ2
i

. (1)

As mentioned above, this is the Mahalanobis distance which

is the standard distance measurement between two points. In

this case, the runtime complexity is O(1).
2) One Value Is Missing: Suppose that xi is missing and

the value yi is given. Since the value of xi is unknown, we can

not compute its Bhattacharyya distance. Instead we model the

distance as a random selection of a point from the distribution

of its coordinate χi and compute its distance. The mean of

this computation is our distance. We will estimate this value

as follows: We divide the range of ci [min(ci),max(ci)] into

l − 1 equal intervals (m1, . . . ,ml) as illustrated in Fig. 2.

For each value mj we can estimate its probability density

p(mj) using the KDE. The probability for the jth interval Δj
is:

P (Δj) = p(mj) · max(ci)−min(ci)

l − 1
.

As a result, we approximate the Mean Bhattacharyya

distance (MDB) between yi and the distribution as:

MDB(χi, yi) =
l−1∑
j=1

P (Δj)DB(N (mj , σ1),N (yi, σ1)).

This metric measures the distance between yi and each

suggested value of xi and takes into account the probability for

this value according to the evaluated probability distribution.

This is in contrast to the Most Common Attribute Value
method. There the value of the attribute that occurs most

often is selected to be the value for all the unknown values

of the attribute and imply that the probability of the most

common attribute value is 1 and 0 for all other possible values.

Furthermore our distance is different from the Mean Attribute
Value method, where the mean of a specific attribute is

selected to replace the unknown values of the attribute because

it does not take into account the dispersion of the values in

the distribution. Thus for example two distributions with the

same mean and different variances (as can be seen in Fig. 3)

will get the same distance whereas in our method the distance

increases as a function of the variance.
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Fig. 2 An example for the normal kernel density estimation results for
coordinate ci. mj denotes the selected points and p(mj) denotes the

probability density for mj

Fig. 4 illustrates the dependance of our distance on the

variance of distribution χi. When the variance is close to

the measurement variance σ2
i the distance will converge to

the value achieved for a measured value. As the variance

increases the distance increases until it converges to the

distance achieved for the uniform distribution.

In this case (i.e., one value is missing), the runtime of

our method is O(l), since according to this metric the

algorithm has to compute l − 1 Bhattacharyya distances. On

the other hand as l increases so does the accuracy of the

distance estimation. There fore, there is a trade off between

the accuracy of the estimate and the the complexity of the

algorithm. From our experiments we did not find a significant

change in the performance of the classification algorithms as

a function of l.

3) The Two Values Are Missing: In this case in order

to estimate the Mean Bhattacharyya Distance we have to

randomly select values for both xi and yi. Both of these values

are selected from distribution χi. In order to compute the mean
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Fig. 3 (a) and (b) show two distributions with the same mean and different
variances. The distance computed for these two distributions is different
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Fig. 4 The distance between a measured point and an unknown value with
different values of the variance σ2

c of the distribution χi

the following double sum has to be computed.

MDB =
l−1∑
q=1

l−1∑
j=1

P (Δ1q)P (Δ2j)DB(N (m1q, σi),N (m2j , σi)).

Consider again the examples in Fig. 3. The MDB of the

first distribution with the larger variance will naturally be

larger than the MDB of the second distribution with the

smaller variance. Fig. 5 shows the dependance of MDB on the

variance σ2
c of the distribution χi. As the distribution is more

dispersed, the value of the MDB increases. In this example the

distributions χi were Gaussian but the relationship is general.

As in this case no value has to be known in order to compute

the MDB the distance between two missing values from a

specific coordinate will be fixed, and has to be computed only
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Fig. 5 The value of MDB as a function of the variance σ2
c of the

distribution χi

once. It therefore does not have any effect on the runtime of

the algorithm.

V. EXPERIMENTS ON NUMERICAL DATASETS

In order to measure the ability of the new distance

function to reflect the actual similarity or dissimilarity between

instances with missing values we compare the performance

of the kNN (k = 1) classifier on complete data (i.e., without

missing values) to the performance of the kNN classifier using

our distance (KNN-BH), the kNN-MC (i.e., Most Common

attribute value), the kNN-MA (i.e., the Mean value of each

Attribute), and the kNN-MI(Mean Imputation) that replaces

a data point with missing values with the mean of all the

instances in the data, on the same datasets with missing values.

We ran our experiments on health standard numerical

datasets for diabetes and breast cancer diseases from the

Machine Learning Repository (UCI) [5]. The first dataset is

the Pima Indians diabestes datasets. The owner of this dataset

is the National Institute of Diabetes and Digestive and Kidney

Diseases. In particular, all patients here are females at least

21 years old of Pima Indian heritage. This data contains 762

patients and 8 attributes for each woman as follow:

1) Number of times pregnant

2) Plasma glucose concentration a 2 hours in an oral

glucose tolerance test

3) Diastolic blood pressure (mm Hg)

4) Triceps skin fold thickness (mm)

5) 2-Hour serum insulin (mu U/ml)

6) Body mass index (weight in kg/(heightinm)2)

7) Diabetes pedigree function

8) Age (years)

The second is the Wisconsin Diagnosis Breast Cancer

dataset which contains 683 patients and 8 attributes as follow:

1) Clump Thickness

2) Uniformity of Cell Size

3) Uniformity of Cell Shape

4) Marginal Adhesion

5) Single Epithelial Cell Size

6) Bare Nuclei

7) Bland Chromatin

8) Normal Nucleoli

9) Mitoses

Both of these data sets are two-classe classification problem.

The characteristics of all the datasets can be seen in Table I.

Those datasets were labeled, but this knowledge was used

only to evaluate the accuracy of the resulting classifier. In all

experiments these datasets are assumed to be unlabeled.

TABLE I
DATASET PROPERTIES

Dataset Dataset size Classes
Pima Indians 762× 8 2
Breast Cancer 683× 8 2

In the first stage of the experiments, from each dataset a

set of size 10%-50% of the dataset is randomly drawn to be

samples with missing values, where at least one coordinate

from each instance was selected randomly to be the missing

value. After that, from each dataset a set of 10% of the dataset

was drawn randomly to be the training dataset (i.e., labeled)

and the rest is the testing dataset. (Note that the training

dataset may contains instances with missing values.) Then the

accuracy was evaluated for each set of missing values by the

ability of the kNN classifier to label the data. The results are

averaged over 10 different runs on each dataset. A resulting

curve was constructed for each dataset to evaluate how well

the algorithm performed.

A. Results

As can be seen from Fig. 6, the kNN-BH was superior

and outperforms the other algorithms. The learning curves

are constructed by computing the ratio of correctly classified

instances to the whole unlabeled data.

The main goal here is to compare our method to the exists

methods that deal with the missing data problem. As can be

seen in the results curves (in Fig. 6), the kNN-BH obviously

outperforms the other methods. Moreover, according to the

results curves the performances of the kNN-MC was better

than the performance of the kNN-MA over the Pima Indians

dataset, while on the Breast Cancer datasets the performance

of the kNN-MA was better. In both datasets the performance

of the kNN-MS was poorly.

This improvement in kNN-BH performanct proofs the

ability of the derived method that based on the Bhattacharyya

distance to better measure the actual similarity/dissimilairty

between the different objects with missing values.

VI. CONCLUSIONS

Many real-world datasets suffer from the problem of

missing values. Several methods have been proposed to

measure the similarity between objects with missing values.

In this research, we derived a new distance function based on

data attributes distribution using the Bhattacharyya distance

and used is for incomplete datasets. The developed distance

distinguishes between two cases: (a) complete points and (2)

incomplete points.

To measure its ability to measure the similarity between

different objects we integrated it within the frame work of the

kNN classifier framework (we use the one nearest neighbor
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(a) (b)

Fig. 6 Results of 1NN without missing values, 1NN-BH, 1NN-MC, 1NN-MS and 1NN-MA algorithms over six numerical datasets with missing values

classifier). We use standard benchmark data from the UCI

repository for both diabetes and breast cancer diseases. From

our experiment we conclude that our distance is a more

appropriate function to measure the similarity between objects

with missing value especially when the percent of the missing

values is becomes large. This is because when the missing data

is small, the missing value does not influence the similarity

value significantly.
This distnace is general and can be used as part of many

machine learning algorithm that used the distance between

data points.
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