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Abstract—Transmission network expansion planning (TNEP) is 

a basic part of power system planning that determines where, when 
and how many new transmission lines should be added to the 
network. Up till now, various methods have been presented to solve 
the static transmission network expansion planning (STNEP) 
problem. But in all of these methods, transmission expansion 
planning considering network adequacy restriction has not been 
investigated. Thus, in this paper, STNEP problem is being studied 
considering network adequacy restriction using discrete particle 
swarm optimization (DPSO) algorithm. The goal of this paper is 
obtaining a configuration for network expansion with lowest 
expansion cost and a specific adequacy. The proposed idea has been 
tested on the Garvers network and compared with the decimal 
codification genetic algorithm (DCGA). The results show that the 
network will possess maximum efficiency economically. Also, it is 
shown that precision and convergence speed of the proposed DPSO 
based method for the solution of the STNEP problem is more than 
DCGA approach.  
 

Keywords—DPSO algorithm, Adequacy restriction, STNEP.  

I.  INTRODUCTION 
RANSMISSION network expansion planning (TNEP) is 
an important component of power system planning. It 

determines the characteristic and performance of the future 
electric power network and influences the operation of power 
system directly. Its task is to minimize the network 
construction and operational cost, while meeting imposed 
technical, economic and reliability constraints. TNEP should 
be satisfied required adequacy of the lines for delivering safe 
and reliable electric power to load centers during the planning 
horizon [1-3]. Calculation of investment cost for network 
expansion is difficult because it is dependent on the various 
reliability criteria [4]. Thus, the long-term TNEP is a hard, 
large-scale and highly non-linear combinatorial optimization 
problem that generally, can be classified as static or dynamic. 
Static expansion determines where and how many new 
transmission lines should be added to the network up to the 
planning horizon. If in the static expansion the planning 
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horizon is categorized in several stages we will have dynamic 
planning [5], [6].  

In the majority of power systems, generating plants are 
located far from the load centers. In addition, the planned new 
projects are still far from completion. Due to these factors, 
investment cost for transmission network is huge. Thus, the 
STNEP problem acquires a principal role in power system 
planning and should be evaluated carefully. Because any effort 
to reduce transmission system expansion cost significantly 
improves cost saving. After Garver’s paper that was published 
in 1970 [7], much research has been done on the field of 
TNEP problem. Some of them such as [1]-[3], [6], [8]-[25], 
[33] is related to problem solution method. Some others, 
proposed different approaches for solution of this problem 
considering various parameters such as uncertainty in demand 
[5], reliability criteria [4], [26]-[27], and economic factors 
[28]. Also, some of them investigated this problem and 
generation expansion planning together [29]-[30]. Recently, 
different methods such as GRASP [3], Bender decomposition 
[6], HIPER [17], branch and bound algorithm [31], sensitivity 
analysis [15], have been proposed for the solution of STNEP 
problem. In all of them, transmission planning considering 
network adequacy restriction has not been studied. Loading 
rate of lines will assign overloading time and miss network 
adequacy after the end of planning horizon. In Ref. [8], 
authors proposed a neural network based method for solution 
of the TNEP problem with considering both the network 
losses and construction cost of the lines. But TNEP 
considering adequacy restriction has not been investigated in 
this study. In Ref. [10], the network expansion costs and 
transmitted power through the lines have been included in 
objective function and the goal is optimization of both 
expansion costs and lines transmitted power. In addition, the 
objective function is different from those which are 
represented in [6], [11]-[12], [15]-[17], [20], [31]. However, 
transmission expansion planning problem considering network 
adequacy constraint has not been studied. In Ref. [32], the 
voltage level of transmission lines has been considered as a 
subsidiary factor but its objective function only includes 
expansion and generation costs and one of the reliability 
criteria i.e.: power not supplied energy. Moreover, expansion 
planning has been studied as dynamic type and the network 
adequacy restriction has not been considered. In Ref. [33], 
STNEP problem with considering both the network losses and 
construction cost of the lines has been solved by discrete 
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particle swarm optimization. But the adequacy constraint of 
transmission lines has not been studied. 

The lines adequacy of network is necessary to provide load 
demands when the network is expanding because its lack (i.e. 
lines overloading) caused to load interrupting. It should be 
noted that the network expansion cost is proportional to the 
lines adequacy of transmission network. In fact, the expansion 
cost is increased by increasing the lines adequacy and using 
the exact planning and the proper solution method. On the 
other hand, with a low network adequacy, the network 
operates weakly to support load demand and becomes 
overloaded early. Thus, with compromising between two 
parameters, i.e. network adequacy rate and expansion cost and 
finally defining a total index, static transmission network 
expansion planning can be implemented in order to have a 
network with maximum efficiency technically and 
economically. 

Recently, global optimization techniques like genetic 
algorithm [1], [11], [20], simulated annealing [16], [25], Tabu 
search [12] and in our pervious papers [34], [35] decimal 
coded genetic algorithm (DCGA) have been proposed for the 
solution of STNEP problem. These evolutionary algorithms 
are heuristic population-based search procedures that 
incorporate random variation and selection operators. 
Although, these methods seem to be good methods for the 
solution of TNEP problem, However, when the system has a 
highly epistatic objective function (i.e. where parameters 
being optimized are highly correlated), and number of 
parameters to be optimized is large, then they have degraded 
efficiency to obtain global optimum solution and also 
simulation process use a lot of computing time. Moreover, in 
all of them, transmission expansion planning considering the 
network adequacy restriction has not been studied. In order to 
overcome these drawbacks and considering network adequacy 
restriction, expansion planning has been investigated by 
including adequacy parameter in the fitness function of 
STNEP problem using discrete particle swarm optimization 
(PSO) algorithm in this paper. PSO is a novel population 
based metaheuristic, which utilize the swarm intelligence 
generated by the cooperation and competition between the 
particle in a swarm and has emerged as a useful tool for 
engineering optimization [36], [37]. Unlike the other heuristic 
techniques, it has a flexible and well-balanced mechanism to 
enhance the global and local exploration abilities. Also, it 
suffices to specify the fitness function and to place finite 
bounds on the optimized parameters. 

The proposed DPSO method is tested on the Garver's 6-bus 
system in comparison with DCGA approach [34], [35] (see 
Appendix for more details) in order to demonstrate its 
effectiveness and robustness for solution of the desired 
STNEP problem (see Appendix for more details). The results 
evaluation reveals that expansion costs is more decreased in 
comparison with decimal codification genetic algorithm 
(DCGA). Also, expanded network will possess a proper 
adequacy to support load demand. Finally, by comparing 
between the convergence curves of proposed PSO based 
method and DCGA, it can be concluded that both the precision 
and convergence speed of proposed algorithm are more than 
DCGA method. 

II.  MATHEMATICAL MODEL OF THE PROPOSED STNEP 
PROBLEM 

The STNEP problem is a mixed-integer nonlinear The 
STNEP problem is a mixed-integer nonlinear optimization 
problem. Due to consider the network adequacy restriction in 
STNEP problem, the proposed objective function is defined as 
follows: 

2

,
)( oAw

ji
ijij TTCnCLFitness −×−= ∑

Ω∈

                                (1) 

Where, 
CLij: Construction cost of each line in branch i-j.  
nij: Number of new circuits in corridor i-j. 
Ω : Set of all corridors. 
CAw: Annual worth of transmission network adequacy 
($/(year)2). Determination of this parameter is based on 
importance of network adequacy for network owners. 
To: Required time for missing the expanded network 
adequacy which is determined by network owners (in year).  
T: Required time for missing the expanded network 
adequacy which is calculated by DPSO and DCGA 
approaches (in year). It should be noted that value of this 
parameter must be equal to To. 
It should be mentioned that with performing DC load flow 

to load growth for years after expansion, in each year that only 
a line of the network is overloaded, network adequacy is 
missed. Several restrictions have to be modeled in a 
mathematical representation to ensure that the mathematical 
solutions are in line with the planning requirements. These 
constraints are as follows (see Refs. [5], [34] for more details): 

0=−+ dgSf                                                                      (2) 
0))(( 0 =−+− jiijijijij nnf θθγ                                          (3) 

ijijijij fnnf )( 0 +⋅≤ β                                                          (4) 

ijij nn ≤≤0                                                                          (5) 

N-1 Safe Criterion                                                                 (6) 
Where, Ω∈),( ji  and: 
S: Branch-node incidence matrix. 
f: Active power matrix in each corridor.             
g: Generation vector. 
d: Demand vector. 
N: Number of network buses. 
θ: Phase angle of each bus. 

ijγ : Total susceptance of circuits in corridor i-j.   
0
ijn : Number of initial circuits in corridor i-j. 

ijn : Maximum number of constructible circuits in corridor 
i-j. 

ijf : Maximum of transmissible active power through 
corridor i-j.  
In this study, the objective function is different from those 

which are mentioned in [1]-[20], [23]-[28], [30], [31], [33]-
[35] and the goal is obtaining the number of required circuits 
for adding to the existed network in order to ensure desirable 
required adequacy of the network along the specific planning 
horizon. Thus, problem parameters are discrete time type and 
consequently the optimization problem is an integer 
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programming problem. For the solution of this problem, there 
are various methods such as classic mathematical and heuristic 
methods [5]-[21]. In this study, the discrete particle swarm 
optimization algorithm is used to solve the STNEP problem 
due to flexibility and simple implementation. 

III.  DPSO ALGORITHM AND PARTICLE STRUCTURE OF THE 
PROBLEM  

Particle swarm optimization algorithm, which is tailored for 
optimizing difficult numerical functions and based on 
metaphor of human social interaction, is capable of mimicking 
the ability of human societies to process knowledge [36]. It 
has roots in two main component methodologies: artificial life 
(such as bird flocking, fish schooling and swarming); and, 
evolutionary computation. Its key concept is that potential 
solutions are flown through hyperspace and are accelerated 
towards better or more optimum solutions. Its paradigm can be 
implemented in simple form of computer codes and is 
computationally inexpensive in terms of both memory 
requirements and speed. It lies somewhere in between 
evolutionary programming and the genetic algorithms. As in 
evolutionary computation paradigms, the concept of fitness is 
employed and candidate solutions to the problem are termed 
particles or sometimes individuals, each of which adjusts its 
flying based on the flying experiences of both itself and its 
companion. It keeps track of its coordinates in hyperspace 
which are associated with its previous best fitness solution, 
and also of its counterpart corresponding to the overall best 
value acquired thus far by any other particle in the population. 
Vectors are taken as presentation of particles since most 
optimization problems are convenient for such variable 
presentations. In fact, the fundamental principles of swarm 
intelligence are adaptability, diverse response, proximity, 
quality, and stability [38]. It is adaptive corresponding to the 
change of the best group value. The allocation of responses 
between the individual and group values ensures a diversity of 
response. The higher dimensional space calculations of the 
PSO concept are performed over a series of time steps. The 
population is responding to the quality factors of the previous 
best individual values and the previous best group values. The 
principle of stability is adhered to since the population 
changes its state if and only if the best group value changes. 
As it is reported in [36], this optimization technique can be 
used to solve many of the same kinds of problems as GA and 
does not suffer from some of GAs difficulties. It has also been 
found to be robust in solving problem featuring non-linearing, 
non-differentiability and high-dimensionality. It is the search 
method to improve the speed of convergence and find the 
global optimum value of fitness function. 

PSO starts with a population of random solutions 
‘‘particles’’ in a D-dimension space. The ith particle is 
represented by Xi = (xi1, xi2, . . . ,xiD). Each particle keeps track 
of its coordinates in hyperspace, which are associated with the 
fittest solution it has achieved so far. The value of the fitness 
for particle i is stored as Pi = (pi1, pi2, . . . ,piD) that its best 
value is represented by (pbest). The global version of the PSO 
keeps track of the overall best value (gbest), and its location, 
obtained thus far by any particle in the population. PSO 
consists of, at each step, changing the velocity of each particle 

toward its pbest and gbest according to Eq. (7). The velocity 
of particle i is represented as Vi= (vi1, vi2. . . viD). Acceleration 
is weighted by a random term, with separate random numbers 
being generated for acceleration toward pbest and gbest. The 
position of the ith particle is then updated according to Eq. (8) 
[36], [37]: 

))(())(()()1( 2211 txPrctxPrctvtv idgdidididid −+−+×=+ ω  (7) 

)1()()1( ++=+ tcvtxtx ididid                                             (8) 
Where, Pid and Pgd are pbest and gbest. It is concluded that 

gbest version performs best in terms of median number of 
iterations to converge. However, pbest version with 
neighborhoods of two is most resistant to local minima. The 
results of past experiments about PSO show that ω was not 
considered at an early stage of PSO algorithm. However, ω 
affects the iteration number to find an optimal solution. If the 
value of ω is low, the convergence will be fast, but the 
solution will fall into the local minimum. On the other hand, if 
the value will increase, the iteration number will also increase 
and therefore the convergence will be slow. Usually, for 
running the PSO algorithm, value of inertia weight is adjusted 
in training process. It was shown that PSO algorithm is further 
improved via using a time decreasing inertia weight, which 
leads to a reduction in the number of iterations [38]. In Eq. (7), 
term of c1r1 (Pid - xid (t)) represents the individual movement 
and term of c2r2 (Pgd - xid (t)) represents the social behavior in 
finding the global best solution.   

Regarding the fact that parameters of the TNEP problem are 
discrete time type and the performance of standard PSO is 
based on real numbers, this algorithm can not be used directly 
for solution of the STNEP problem. There are two methods for 
solving the transmission expansion planning problem based on 
the PSO technique [33]: 

1) Binary particle swarm optimization (BPSO). 
2) Discrete particle swarm optimization (DPSO). 
Here, the second method has been used due to avoid 

difficulties which are happened at coding and decoding 
problem, increasing convergence speed and simplification. In 
this approach, the each particle is represented by three arrays: 
start bus ID, end bus ID and number of transmission circuits 
(the both of constructed and new circuits) at each corridor. In 
the DPSO iteration procedure, only number of transmission 
circuits needs to be changed while start bus ID and end bus ID 
are unchanged in calculation, so the particle can omit the start 
and end bus ID. Thus, particle can be represented by one 
array. A typical particle with 12 corridors is shown in Fig. 1. 

 
Xtypical = (1, 2, 3, 1, 0, 2, 1, 0, 0, 1, 1, 2) 

Fig. 1 A typical particle 
 
In Fig. 1, in the first, second, third corridor and finally 

twelfth corridor, one, two, three and two transmission circuits 
have been predicted, respectively. 

Also, the particle’s velocity is represented by circuit’s 
change of each corridor. ω is considered as a time decreasing 
inertia weight that its value is determined by Eq. (9). 

tln
1

=ω                                                                                 (9) 
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Finally, position and velocity of each particle is updated by 
the following equations: 

))](())(()([)1( 2211 txPrctxPrctvFixtv idgdidididid −+−+×=+ ω     (10) 

)1()()1( ++=+ tvtxtx ididid
                                                     (11) 

Where, t is the number of algorithm iterations,                 
vmin ≤ vid ≤ vmax, and fix (.) is getting the integer part of f. When 
vid is bigger and smaller than vmax and vmin, make vid  = vmax and 
vid  = vmin, respectively. While, xid is bigger than upper bound of 
circuit number allowed to be added to a candidate corridor for 
expansion, then make xid equal the upper bound. While xid < 0, 
make xid  = 0. The other variables are the same to Eqs. (7) and 
(8). The flowchart of the proposed algorithm is shown in     
Fig. 2. 

 

 
Fig. 2 Flowchart of the DPSO algorithm 

 
In this study, in order to acquire better performance and fast 

convergence of the proposed algorithm, parameters which are 
used in DPSO algorithm have been initialized according to 
Table I. It should be noted that DPSO algorithm is run several 
times and then optimal results is selected. 

TABLE I 
VALUE OF PARAMETERS FOR DPSO ALGORITHM  

Parameter Value 

Problem dimension 15 
Number of particles 30 
Number of iterations 1000 

C1 1.7 
C2 2.3 

vmax 3 
vmin -3 

IV.  RESULTS AND DISCUSSION  
To prove the validity of the proposed planning technique, it 

was applied to the IEEE Garver's 6-bus system. The 
configuration of the test system before expansion is given in 
Fig. 3. The length of possible corridors and construction cost 
of 230 kV lines has been given in Tables II and III 
respectively. In this network, existed lines are 230 kV with 
capacity 400 MW. Resistance and leakage reactance per 
kilometer of each line are 0.00012 and 0.0004, respectively. 
Substations 1, 3 and 6 are generator busses that their 
generation limit are 100 MW, 250 MW and 450 MW, 
respectively. The load data has also given in Table IV. Finally 
the planning horizon year is 2014 (5 years ahead). 

 

 
Fig. 3 Garver's 6-bus network 

 

TABLE II 
CONFIGURATION OF THE NETWORK 

From bus To bus Length (Km) 

1 2 100 
1 3 95 
1 4 150 
1 5 60 
1 6 170 
2 3 55 
2 4 110 
2 5 65 
2 6 75 
3 4 155 
3 5 50 
3 6 120 
4 5 157 
4 6 85 
5 6 160 

 
TABLE III 

CONSTRUCTION COST OF 230 KV LINES 

Variable Cost of 
Line Construction   

 (×103 dollars) 

Fix Cost of Line 
Construction      
(×103 dollars) 

Number of 
Line Circuits 

45.9 546.5 1 
63.4 546.5 2 

 
 

2 

3 

4 

5 
1

6 

Start 

The fitness function is defined and 
related variables of DPSO are selected. 

Positions and velocities of particles 
are generated randomly. 

New velocities and positions of the particles 
for calculating the next fitness function value 

are calculated from (10) and (11). 

 

Fitness function is calculated. 

End 

Is end condition 
satisfied? 

No 

Yes 

pbest and gbest are determined. 

ω is specified according to (9). 
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TABLE IV 
ARRANGEMENT OF THE LOAD 

Load (MW) Bus Load (MW) Bus 

160 4 80 1 
240 5 240 2 

0 6 40 3 
 

In order to solve the transmission expansion planning 
problem considering the network adequacy restriction, the 
proposed method (DPSO) is implemented on the case study 
system for various times of missing the expanded network 
adequacy (To changes between 6 to 14 years by 2 year steps) 
and the results are obtained as follows (numbers into the tables 
are required lines for adding to the network until planning 
horizon year). 

 
TABLE V 

PROPOSED CONFIGURATION AND COST FOR NETWORK EXPANSION WITH 
RESPECT TO TO= 6 YEARS 

Expansion cost Number of required 
circuits Corridor 

3 2-6 
19.86  M$US 

1 5-6 
 

TABLE VI 
PROPOSED CONFIGURATION AND COST FOR NETWORK EXPANSION WITH 

RESPECT TO TO= 8 YEARS 

Expansion cost Number of required 
circuits Corridor 

4 2-6 
23.75  M$US 

1 5-6 
 

TABLE VII 
PROPOSED CONFIGURATION AND COST FOR NETWORK EXPANSION WITH 

RESPECT TO TO= 10 YEARS 

Expansion cost Number of required 
circuits Corridor 

4 2-6 
1 3-5 27.69  M$US 
2 4-6 

 
TABLE VIII 

PROPOSED CONFIGURATION AND COST FOR NETWORK EXPANSION WITH 
RESPECT TO TO= 12 YEARS 

Expansion cost Number of required 
circuits Corridor 

4 2-6 
2 3-5 
1 3-6 

36.59  M$US 

2 4-6 
 

TABLE IX 
PROPOSED CONFIGURATION AND COST FOR NETWORK EXPANSION WITH 

RESPECT TO TO= 14 YEARS 

Expansion cost Number of required 
circuits Corridor 

4 2-6 
2 4-6 48.52  M$US 
3 5-6 

 

It is noted that, by network adequacy (To) increasing, 
required lines which could be appended to the network is 
expanded and therefore expansion cost of the network is 
increased. However, it seems that the network adequacy may 
be acquired with lower relative expansion cost. Network 
adequacy versus network expansion cost has been depicted in 
Fig. 4. 

19.86 23.75 27.69 36.59 48.52

8

9

10

11

12

13

14

Expansion Cost (million dollars)

N
et

w
or

k 
A

de
qu

ac
y 

(y
ea

rs
)

 
Fig. 4 Adequacy curve with respect to network expansion cost  
 
As shown in Fig. 4, increasing in higher expansion cost 

(36.59 to 48.52 million dollars), changes the network 
adequacy more slightly than other expansion costs. Thus, a 
parameter, named adequacy index on expansion cost rate, is 
defined for obtaining best design according to the network 
adequacy and the expansion cost. This parameter is the 
network adequacy rate (year) per the expansion cost. Thus, a 
high value is desirable for this index. This index has been 
acquired according to various expansion costs listed in Tables 
5 to 9, as shown in Fig. 5. According to Fig. 5, the optimized 
point is To=10 years. 
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Fig. 5 The curve of adequacy index on the expansion cost versus To 

 
Also, in order to illustrate the accuracy and validity of the 

proposed method, DCGA method is applied to the desired 
STNEP problem and results (expansion costs) versus To for 
both methods are shown in Figs. 6. Moreover, fitness function 
values of both methods for different iterations are illustrated in 
Figs. 7-9 to compare the convergence speed and precision of 
the DPSO algorithm. It should be mentioned that only three 
cases of To= 6, 8 and 12 years, as instant, have been selected 
to display. 
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Fig. 6 Diagram of expansion cost versus To 
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Fig. 7 Convergence curves of DPSO and DCGA for To=6  
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Fig. 8 Convergence curves of DPSO and DCGA for To=8 
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Fig. 9 Convergence curves of DPSO and DCGA for To=12 

Generally, it can be seen that solution of STNEP problem 
considering network adequacy restriction by DPSO is caused 
that the expansion cost is more decreased in comparison with 
DCGA. Also, it is clear that convergence curves of DPSO 
method for different cases show the fitness function is 
optimized more and faster than DCGA one. Thus, it can be 
concluded that solution of transmission expansion planning 
problem considering the adequacy constraint by discrete PSO 
algorithm is more precise, faster and finally better than DCGA 
method. 

V.  CONCLUSION    
By including the network adequacy restriction in the fitness 

function of STNEP problem, an optimized arrangement is 
acquired for the network expansion using discrete particle 
swarm optimization algorithm that is proportional to a 
specified adequacy rate. This arrangement possesses a proper 
adequacy for feeding the load with a respectively lower cost. 
The obtained conclusions from adequacy-cost curve show that 
a more robust network with respect to lines overloading has 
not been obtained for more expansion cost (indeed, adding 
more new lines to the network). Finally, using the adequacy 
index on the expansion cost, an optimized plan is acquired 
with respectively lower expansion cost, according to a 
specified adequacy. Also, by comparing the results of the 
proposed method with DCGA one, it can be concluded that 
precision and convergence speed of proposed DPSO based 
method is more than DCGA. Moreover, it can be seen that 
solution of STNEP problem considering the network adequacy 
restriction using discrete PSO is caused that the expansion cost 
is more decreased in comparison with decimal codification 
GA. 

APPENDIX 

A.  DCGA and Chromosome Structure of the Problem 
Decimal codification genetic algorithm (DCGA) is a 

random search method that can be used to solve non-linear 
system of equations and optimize complex problems. It 
generally includes the three fundamental genetic operators of 
reproduction, crossover and mutation. These operators conduct 
the chromosomes toward better fitness. In this method 
crossover can take place only at the boundary of two integer 
numbers. Mutation operator selects one of existed integer 
numbers in chromosome and then changes its value randomly. 
Reproduction operator, similar to standard form, reproduces 
each chromosome proportional to value of its fitness function. 
Therefore, the chromosomes which have better fitness 
functions will be selected more probable than other 
chromosomes for the next population (i.e., Elitism strategy) 
[33, 34]. In this study, each gene in the chromosome includes 
number of transmission circuits (the both of constructed and 
new circuits) at each corridor. Fig. 10 illustrates a typical 
chromosome with 12 corridors. Also, the flowchart of the 
DCGA approach has been represented in Fig. 11.  

 

 
Fig. 10 A typical chromosome 

0 1 1 0 0 1 2 1 1 3 2 1 
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The most commonly used strategy to select pairs of 
individuals that has applied in this paper is the method of 
roulette-wheel selection. After selection of the pairs of parent 
strings, the crossover operator is applied to each of these pairs. 
In this work, multiple position crossover is used with 
probability of 0.9. Each individuals (children) resulting from 
each crossover operation will now be subjected to the 
mutation operator in the final step to forming the new 
generation. Practical experience has shown that in the 
transmission expansion planning application the rate of 
mutation has to be larger than ones reported in the literature 
for other application of the GA [34]. In this work mutation is 
used with probability of 0.1 per bit. The process continues and 
it is terminated after production of 1000 generations 
(iterations). It should be mentioned that number of initial 
population is considered 30 in DCGA method. 

 

 
Fig. 11 Flowchart of the DCGA method 
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