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Abstract—This paper is interested in two difficulties encountered 

in practice when observing a continuous time process. The first is that 
we cannot observe a process over a time interval; we only take 
discrete observations. The second is the process frequently observed 
with a constant additive error. It is important to give an estimator of 
the spectral density of such a process taking into account the additive 
observation error and the choice of the discrete observation times. In 
this work, we propose an estimator based on the spectral smoothing 
of the periodogram by the polynomial Jackson kernel reducing the 
additive error. In order to solve the aliasing phenomenon, this 
estimator is constructed from observations taken at well-chosen times 
so as to reduce the estimator to the field where the spectral density is 
not zero. We show that the proposed estimator is asymptotically 
unbiased and consistent. Thus we obtain an estimate solving the two 
difficulties concerning the choice of the instants of observations of a 
continuous time process and the observations affected by a constant 
error. 

 
Keywords—Spectral density, stable processes, aliasing, 

periodogram.  

I. INTRODUCTION 

HIS paper considers a class of symmetric alpha stable 
processes particular family of processes with infinite 

energy. The harmonizable process symmetric  -stable 
process and its proprieties have been considered by numerous 
authors like [1]-[10] to name a few. 

Symmetric alpha processes are considerably accurate 
models for many phenomena in several fields such as: physics, 
biology, electronics and electrical, hydrology, economics, 
communications and radar applications... see [11]-[23]. 

As in [4], we consider the harmonizable symmetric  -
stable process:  = ( ), < <Z Z t t  : 

 

( ) = ( )ituZ t e d u


                                    (1) 

 

where   is a complex-valued S S process with independent 

isotropic increments. The existence of the stochastic integral 
(1) is given [1], [5]. 

The spectral measure: μ(]s,t])=| ξ(s)-ξ (t)|α
α is Lebesgue-

Stieljs measure defined in [1] and [4]. If μ is absolutely 
continuous dμ(x)=f(x) dx, the function f is called the spectral 
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density of the process X. The paper [4] gives an estimate of the 
spectral density function when the process is continuous-time. 
The spectral density is estimated in [24] when the process is 
discrete-time and in [25] when the process is p-adic-time. 

In this paper we consider a case frequently encountered 
during observation of the process: it is a question of observing 
the process with a constant additive unknown error. The 
process 𝑋 𝑎 𝑍  is observed instead of the process Z  
alone. The paper [26] gives an estimate of the constant error
a  when the process is discrete-time. This error is also 
estimated from the discrete observations of the continuous 
time process in [27]. 

Our goal is to give an estimate of the spectral density , 

from sample of the process 𝑋 𝑡  at discrete instants nt , where 

the sampling instants nt  are equally distant, i.e., 𝑡 𝑛𝜏 ,

> 0 .  
To avoid the aliasing phenomenon, we suppose that the 

spectral density   is vanishing for | |>   and (0) 0  , 

where   is a nonnegative real number. The value of   is 

chosen such that <  . For more details about the aliasing 
phenomenon see [28].  

This paper is organized as follows: The second section 
gives some definitions and proprieties Jackson polynomial 
kernel and a periodogram as an estimator of the spectral 
density depending of . We show that this estimate is 
unbiased. In Section III, in order to give unbiased and 
consistent estimator we smooth this periodogram by a spectral 
window. Section IV is reserved for the numerical studies and 
simulation.  

II. PERIODOGRAM CONSTRUCTION 

As in [20], [24], we give the definition of the Jackson 
polynomial kernel: Let 

1, , NZ Z  observations of the process 

Z :  ( ) 0 1n n N
Z

  
, where N satisfies:  

 
 1 = 2 ( 1) 1 / 2N k n with n N k N      

 
if =1/ 2k  then 

1 1= 2 1,n n n N  .  

The Jackson's polynomial kernel is defined by: 
 

 |𝐻 𝜆 | 𝐴 𝐻 𝜆    
 
where  
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In addition, we have 
1

,= ( )N NA B 



 with 

 

( )
, = ( ) .N
NB H d

 

 
 

  

 
The following lemmas are used in the reminder of this 

paper. Their proofs are given in [24].  

Lemma1. There is a non-negative function kh  such as:  

 
( 1)
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= ( 1)
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Lemma2. Let 
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In this paper we assume that the spectral density is 

uniformly continuous and we choose   such that ( )

( )
N

N

H

H





converges to zero for example 
2

1

n
   

We propose the following periodogram defined by  
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By using Lemma 2, we show that  
 

   ( ) = | | ( )N NEexp irRed exp C r 
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Putting = 2v y j  and using the fact that 
NH  is 2 -

periodic, we obtain 
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Let j  be an integer such that 2
< <

y j



  . Using the 

fact that <   and | |<y  , we get 1
| |< < 1

2 2
j




  and then 

= 0j . As   is vanishing for | |>   we obtain 
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Since ( )NH u
  is a kernel, (0) 0   and ( )

( )
N

N

H

H





converges to 

zero, then ( )N  converges to  .    We modify this 

periodogram by taking the power p, 0 < <
2

p
 , and 

multiplying by a normalization constant:  
 

( , )
ˆ ( ) = | ( ) |p

N p NI C d 
 

 
The normalization constant is given by  
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 . As in 

[4] and [24], we show that  
 

 ˆ ( ) = ( )
p

N NEI   
and 

2

,
ˆ( ( )) = ( )

p

N p NVar I V 
    

III. SMOOTHED PERIODOGRAM 

In order to give an unbiased consistent estimate of  , we 

smooth ˆ
NI  by a the following spectral window: 

ˆ( ) = ( ) ( )N N Nf W u I u du



 


  where the spectral window is 

defined by ( ) = ( )N N NW x M W M x  where W  is a non-negative 

even continuous function which is vanishing for | |> 1x  with 
1

1
( ) = 1W x dx

  and NM  is a sequence converging to infinity 

such that 0.NM

N
  

As in [20], to give the best rate of convergence of this 
estimator, we introduce two hypothesis 1( )h  and 2( )h , that 

are called regularity hypothesis, on  : 

1( )h  : 
1( ) ( ) | |u C u        where 0 < 1   

2( )h  : 
2( ) ( ) ( ) | |u u C u            

where 1 2  , 1C  and 2C  are non-negative constants. 

Theorem 1. Let  be a real number. Then  
(i) ( )Nf   is an asymptotically unbiased estimator of the 

( )
p

   

(ii) Taking k  integer number such that 1 < 2k n , where k and 
n are given in the definition of Jackson's polynomial kernel, 
we have  
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( ) ( ) =
1

       if  satisfies ( )

p
N

N

N

O h
M

Ef

O h
M







  



  
  
   

 
   

 

 

(iii)  ( )NVar f  converges to zero. If  satisfies 
1(h ) or 

2(h )  

and c
NM n where c is a real number less than 1/2 and 

2 2

2 2

2 1 2
inf ,

6 3( 1)

k k
c

k k

 
 

  
   

 then  

 

  2(1 2 )

1
( )N c

Var f O
n

 

   
 

 

 
Proof. 
i) From the definition of the estimator 

 

( ) ( ( )) ( )N n nf M W M x I x dx    
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where ( ) ( ) ( )
p

N NBias f Ef     . Since   is uniformly 

continuous, we obtain ( ( )) (1)NBias f o  .  

ii) Choosing k so large that 1< 2k n , we get 
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iii) From the definition of the variance, we have: 

 

 ( ) ( ) ( )cov( , )N
n n

x y
Var f W x W y dxdy

M M
      

 
We split the integral as follows: 
 

 
| | | |

( )
x y x yn n

NVar f
 


   

    

 

where n  is a positive real converging to zero. As in [24], we 

get the result of this theorem. 

Theorem 2. Let   be a real number such that ( ) 0   . 

Then  ( ) p
Nf



 converges in probability to ( )  . 

Proof. We show that ( )Nf  converges in mean quadratic to 

( )
p

  . Indeed, 
 

 
2 2

( ) ( ) ( ) ( ) ( )
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Then from theorem 1, 

2

( ) ( )
p

NE f    converges to 0. 

Thus,  ( ) p
Nf



 converges in probability to ( )  . 

IV. NUMERICAL STUDIES 

We give the simulation of the studied process:  
 

= ( ),iN
NZ e d

 


 

  
 
where 1 < α < 2 and ξ is a complex symmetric α-stable with 
independent and isotropic increments. The control measure m 
such that: mdx = ϕ(x)dx. Indeed, we use the series 
representations given by [29] where the authors have shown 
that the process Z can be expressed as follows: 
 

 
1 1

1

= ( ) ,k kinV i
n k k

k

Z C x dx e e  
  

 



  

 

where k  is a sequence of i.i.d. random variables such as 

    1
0 1

2k kP P     , 
k  is a sequence of arrival times of 

Poisson process, 
kV  is a sequence of i.i.d. random variables 

independent of 
k  and of 

k  having the same distribution of 

control measure m, which has probability density ϕ, 
k  is a 

sequence of i.i.d. random variables that has the uniform 
distribution on ,  , independent of k , of k and of kV . 

To generate N values (N = 1001) of the process Zn, we use 
the following steps: 
• generate 2000 values of k ,  

• generate 2000 values of kV  

• generate 2000 values of k  

• generate 2000 values of k  

Then we calculate for all 0 ≤ n ≤ N 
 

 
1 11001

1

= ( ) ,k kinV i
n k k

k

Z C x dx e e  
  





  with α =1.7 

 
where the spectral density is chosen as  
 

(1.7 )

( ) if [ 2.5, 2.5]    and   ( ) 0   if   [ 2.5, 2.5]xx e x x x        
 

thus we take 2.5  and .
5

   We generate =n nX a Z

where a is chosen equal to 15.  
We calculate the estimator ( )Nf  . Fig. 1 gives the graphic 

of the estimator ( )Nf   and the graphic of the spectral density 

( )  . The curve of the estimator well approximates the curve 

of the spectral density. The result is satisfied.  
 

 

Fig. 1 The blue curve is the spectral   and the red curve is the 

estimator ( )Nf   

V. CONCLUSION 

In this paper, we estimate the spectral density of (S S) 
process with continuous time when the process is observed 
with an additive error. The aliasing phenomenon is avoided by 
assuming that the spectral is a support compact. This work 
could be applied to several cases when processes have an 
infinite variance and the observation of these processes is 
perturbed by a constant noise. For example: 
 The decomposition of audio signals with background 

noise by separating the different musical instruments. 
 The denoising of a degraded historical record. The signal 

is considered infinitely variable. 
The perspective of this work is to optimize the smoothing 

parameters to have a better speed of convergence. For this 
purpose, the cross-validation method will be the most 
appropriate tool. 
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