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Abstract—A water surface slope limiting scheme is tested and 

compared with the water depth slope limiter for the solution of one 
dimensional shallow water equations with bottom slope source term. 
Numerical schemes based on the total variation diminishing Runge-
Kutta discontinuous Galerkin finite element method with slope 
limiter schemes based on water surface slope and water depth are 
used to solve one-dimensional shallow water equations. For each 
slope limiter, three different Riemann solvers based on HLL, LF, and 
Roe flux functions are used. The proposed water surface based slope 
limiter scheme is easy to implement and shows better conservation 
property compared to the slope limiter based on water depth.  Of the 
three flux functions, the Roe approximation provides the best results 
while the LF function proves to be least suitable when used with 
either slope limiter scheme. 
 

Keywords—Discontinuous finite element, TVD Runge-Kutta 
scheme, slope limiters, Riemann solvers, shallow water flow. 

I. INTRODUCTION 
PEN channel flow problems are governed by the shallow 
water equations (SWE), also known as Saint-Venant 

equations. Over the past decades, several numerical schemes 
have been developed to solve the shallow water equations for 
various applications. The finite difference method (FDM) and 
finite volume method (FVM) are the two most widely used 
methods for shallow water equations and fluid dynamics 
problems. Wang et al. [1] used a finite difference TVD 
scheme to compute dam break problem. Lin et al. [2] used 
finite volume method to solve shallow water equations. 

 In general, finite element method (FEM) is preferred for 
complex geometries. However, traditional finite element 
method fails to model the convective terms in general fluid 
dynamics problems and extra efforts are required to overcome 
this shortcoming, such as penalty finite element method [3], 
split-characteristic finite element method [4], characteristic-
mixed finite element method [5] and so on. 

In recent years, the discontinuous Galerkin (DG) method 
has been developed to solve systems of hyperbolic equations. 
The DG method was first introduced by Reed and Hill [6] for 
the solution of neutron transport equation, a time independent 
linear hyperbolic equation. Cockburn and Shu [7], Cockburn 
et al. [8], Cockburn et al. [9], and Cockburn et al. [10] further 
advanced the DG method for conservation laws and 
incorporated TVD explicit Runge-Kutta time integration 
scheme along with flux limiters or slope limiters to ensure the 
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TVD properties for discontinuous Galerkin method. The 
Runge-Kutta discontinuous Galerkin (RKDG) method can be 
viewed as a combination of finite volume method and finite 
element method. As a result, the RKDG method keeps 
advantages of both FVM and FEM. As discontinuous 
elements are used, various upwind scheme used in FVM may 
be incorporated into RKDG method to deal with convective 
dominated problems. Like the FEM, RKDG method can deal 
with complex geometry conveniently and can utilize higher 
order spatial approximation. According to Li [11], the RKDG 
method provides additional advantages. For example, RKDG 
method can easily deal with source term as in FEM. By 
decoupling the elements through the use of boundary flux, a 
local formulation is achieved that does not require assembling 
the global matrix and explicit time schemes can be locally 
applied at an element level. In practical applications, where 
millions of elements may be used, the RKDG method will 
prove advantageous in terms computing speed and memory 
demand. The RKDG method is a conservative scheme, which 
is a suitable choice for physical problems, since most physical 
properties such as mass and momentum are conservative. As 
the solution of DG method is discontinuous, it can be easily 
adopted for problems involving shocks and discontinuities. In 
addition, the hp-adaptive algorithm is much easier to apply to 
the RKDG local formulation. 

Schwanebberg and Köngeter [12] were the first to 
implement the RKDG method for shallow water equations for 
applications to practical problems like shocks, dam-break 
problem, and oblique hydraulic jump. Later Schwanenberg 
and Harms [13] used different cases in transcritical flow to 
investigate the accuracy and convergence of RKDG method. 
Aizinger and Dawson [14] and Dawson and Aizinger [15] 
applied the RKDG method to two-dimensional and three-
dimensional shallow water flows. Kubatko et al. [16] 
demonstrated the applicability of hp-adaptive algorithm for 
RKDG method. 

In the DG method, the elements are decoupled and the 
accuracy with which the boundary flux is calculated 
determines the performance of the method. The calculation of 
boundary flux becomes a generalized Riemann problem 
(GRP). Since the exact Riemann solvers are tedious and time-
consuming, different approximate Riemann solvers are 
developed in recent decades, such as HLL flux [17] and Roe 
flux [18]. Schwanenberg and Harms [13] used RKDG method 
with HLL flux to test one and two dimensional dam break 
problems, while Tassi et al. [19] incorporated HLLC flux for 
shallow water flow problems. 

As in other numerical schemes, using higher order spatial 
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approximation in RKDG method results in unphysical 
spurious oscillation. To circumvent the problem, the scheme 
must satisfy the Total Variation Diminishing (TVD) criterion. 
Flux limiters and slope limiters are widely used to achieve the 
TVD property. Gottlieb and Shu [20] showed that a TVD 
spatial discretization may generate oscillation with non-TVD 
Runge-Kutta time discretization. Cockburn and Shu [7] 
demonstrated that for piecewise polynomials of rth order, with 
a (r +1)th order TVD time integration, the results were (r +1)th 
order accurate. They further proved that the scheme was total 
variation bounded in the means (TVBM), which is a 
modification of the TVD property. 

In addition to the difficulty of dealing with convective 
terms in traditional methods, problems arise when the source 
term appear. Zhou et al. [21] developed the surface gradient 
method to treat the source term in the shallow water equation 
for the data reconstruction. Ying et al. [22] devised a weighted 
average water surface gradient approach to deal with source 
term in one dimensional open channel flows, the weighted 
factors were based on the Courant number. Catella et al. [23] 
proposed a predictor-corrector finite volume method to 
compute one-dimensional open channel flows. The proposed 
method did not need to solve the Riemann problem at cell 
interface and artificial viscosity or shock-capturing techniques 
were not needed to capture discontinuities. A Froude number 
based criterion was used to overcome the difficulty of 
handling the source term. 

In this paper, Runge-Kutta discontinuous Galerkin method 
with TVD based water surface slope limiting scheme for the 
source term is proposed for solving one-dimensional shallow 
water equations. The TVD based slope limiter scheme is 
usually applied to the conservative variables of the hyperbolic 
system to preserve the conservative property of the system. 
Here, the water surface based slope limiter is applied and the 
numerical results are compared to the slope limiter based on 
the water depth. Three different flux functions are investigated 
for each slope limiter scheme. Two channels with variable bed 
slopes are used to test the scheme with different flow 
conditions. The numerical results show a better conservation 
property with the water surface based slope limiter scheme. 

II. FORMULATION OF DISCONTINUOUS GALERKIN METHOD 
The conservative form of one-dimensional shallow water 

flow equations for a rectangular channel, as given by the 
Saint-Venant equations, is given by 
 
 

t x
∂ ∂

+ =
∂ ∂
U F S  (1) 

 
where U is the conservative variable vector, F is the flux 
vector, and S is the source vector.  These terms can be 
expressed as 
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where So is the bed slope, Sf is the energy slope as given by 
Manning’s equation, h is the depth of flow, and q is the 
discharge per unit width.  The Jacobian matrix for the shallow 
water equation is 
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The eigen values of the Jacobian matrix are 
 
 1 2,q h gh u c q h gh u cλ λ= − = − = + = +  (4) 

 
and the two independent eigen vectors are 
 
 [ ] [ ]1 21, , 1, .T Tu c u c= − = +K K  (5) 

 
Applying the discontinuous Galerkin method to the continuity 
and momentum equations over an element (x1, x2) gives 
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where ( , )P x t q=  is the flux function for the continuity 

equation and 2 2( , ) 2G x t q h gh= +  is the flux function for 
the momentum equation. These flux function at the element 
boundaries are calculated using approximate Riemann solvers. 
The approximate variables ĥ  and q̂  as well as any function 
ˆ ( , )f h q  can be expressed as 

 
 ˆ ˆ ˆˆ ˆ ˆ, , ( , , ) ( , , )j j j jh N h q N q f h q n f h q n= = =  (8) 

 
where Ni, Nj represent test and shape functions and  hj, qj, etc. 
represent discrete values. 

III. NUMERICAL FLUX FUNCTIONS 
Since a discontinuity is allowed across the element 

interface, the numerical flux normal to the element interface 
can be attained from the local Riemann solver given the left 
and right states. Since the exact Riemann solvers are complex 
and time consuming, various approximate Riemann solvers 
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are available to give fast approximate solutions to the 
problem. The flux functions used are described below. 

A. HLL Flux 
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where ( )− −F = F U and ( )+ +F = F U . In general, f +  
represents the value of f  just downstream of a node (from 

the downstream element) and f −  is the value of f  just 
upstream of a node (from upstream element). 

B. Lax-Friedrichs Flux 

The wave speed in this case, for LS S += −  and RS S += , 
is estimated as 
 
 max ,S u gh u gh+ − − + +⎛ ⎞= + +⎜ ⎟

⎝ ⎠
 (11) 

 
and the LF flux is given as 
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C. Roe Flux 
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The eigen values λ%  and the eigen vectors K%  are calculated 
using the new variables. 

IV. RUNGE-KUTTA TVD TIME INTEGRATION 
The TVD Runge-Kutta time scheme should be one order 

higher than the order of the spatial or shape functions [7], [8], 
[9]. Equations (6) and (7) can be written as 
 
 ( )L

t
∂

=
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and for linear shape functions within an element, the TVD 
second order Runge-Kutta scheme [20] is given by 
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with the explicit scheme, the Courant-Friedrichs-Lewy (CFL) 
condition is required for the stability. The CFL condition is 
given by 
 

 ( )
elements

1max
2 1

t u c
x r∀
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 (19) 

 
where r is the order of polynomials for space discretization 
[24]. 

V. WATER SURFACE SLOPE LIMITING 
A slope limiter is used to eliminate an oscillatory solution at 

a sharp front. Originally the slope limiter is applied to the 
conservative variables to maintain the conservation property 
of the system. However, in shallow water flow with bed slope, 
the Saint-Venant equations give numerically generated flow 
even for zero water surface gradient. To overcome this 
drawback, the slope limiter based on the water surface 
elevation instead of the water depth may be applied. For an 
element l, the water surface slope limiter is given by 

 
 , 1 2( ) ( ) ( ) ,l mid lZ x Z x x x x x xσ= + − ≤ ≤%  (20) 

 
and for bed elevation zb, the average water surface elevation, 

( )Z x , over an element is given by 
 
 2
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Here the monotonized central slope limiter is used and is 
given by 
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where the upwind slope a and downwind slope b are given by 
 
 1 1

, 1, 1, ,
,

( ) ( )
l l l l

l mid l mid l mid l mid

Z Z Z Za b
x x x x

− +

− +

− −
= =

− −
 (23) 

 
and ,l midx  is the x value at the midpoint of the element. 

VI. NUMERICAL TESTS 

A. Test 1 
A frictionless 1 m wide 25 m long rectangular channel with 

a bump was used for this test. The initial water level was fixed 
at 0.33 m and the flows in and out of the channel were set to 
zero. The bed elevation was given by 
 

 
20.2 0.05( 10) 8 12

0 otherwise
b

x xz
⎧⎪ − − ≤ ≤= ⎨
⎪⎩

 (24) 

 
and described a bump in the bed. 

Simulation results of water surface elevation and discharge 
per unit width for the three different flux functions, with slope 
limiters based on water depth and water surface, are shown in 
Figs. 1 to 4. Numerical results show that when the slope 
limiter based on the water depth slope is used, there are small 
oscillations in water depth and there is unphysical flow rate of 
the order of 0.001 m2/s. On the other hand, when the slope 
limiter based on the water surface slope is used, there is no 
water surface oscillation, and the flow rate drops to the order 
of 10-7 m2/s. In addition, for each of the slope limiter, the three 
different flux functions give results of the same order of 
accuracy. 
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Fig. 1 Numerical solution of water depth for Test 1 with water 

depth slope limiter 
 

B. Test 2 
For this test, the channel width, length, and bed elevation 

were as described for Test 1. In this case, the flow rate at the 
inflow boundary was set to 0.18 m2/s and the downstream 
water surface elevation was set to 0.5 m, describing a 
subcritical flow condition in the channel. 
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Fig. 2 Numerical solution of flow rate for Test 1 with water 

depth slope limiter 
 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x ( m )

Z
(m

)

 

 

HLL
LF
ROE

7 8 9 10 11 12 13
0.325

0.33

0.335

 

 

 
Fig. 3 Numerical solution of water depth for Test 1 with water 

surface slope limiter 
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Fig. 4 Numerical solution of flow rate for Test 1 with water 

surface slope limiter 
 

The results of water surface and flow rate for the two slope 
limiters with three different flux approximations in each case 
are given in Figs 5 to 8. The water surface result shows 
oscillatory solution at the beginning and end of the bump for 
all three flux functions with water depth slope limiter. 
Whereas the water surface is predicted accurately using the 
water surface slope limiter. The result for flow rate in case of 
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water depth slope limiter shows large oscillations over the 
bump. However, the water surface slope limiter preserves the 
conservation property. 
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Fig. 5 Numerical solution of water depth for Test 2 with water 

depth slope limiter 
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Fig. 6 Numerical solution of flow rate for Test 2 with water 

depth slope limiter 
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Fig. 7 Numerical solution of water depth for Test 2 with water 

surface slope limiter 
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Fig. 8 Numerical solution of flow rate for Test 2 with water 

surface slope limiter 
 
 

C. Test 3 
The channel width, length, and bed topography were as 

described for the previous two tests. Inflow boundary 
condition was set to 0.18 m2/s and downstream water surface 
elevation was fixed at 0.33 m. The flow regime changed from 
subcritical to supercritical and back to subcritical flow through 
a hydraulic jump. 

The numerical results for this test are shown in Figs. 9 to 
12. In the figures, the solid line shows the analytical result. 
The water surface level is predicted accurately by both slope 
limiters using three different flux functions. As before the 
simulation results of water surface based slope limiter provide 
better conservation properties for discharge than the water 
depth based slope limiter. Of the three flux functions, Roe flux 
conserves the flow rate most accurately and when used with 
case water surface based flow limiter the discharge is constant 
throughout the domain. 
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Fig. 9 Numerical solution of water depth for Test 3 with water 

depth slope limiter 
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Fig. 10 Numerical solution of flow rate for Test 3 with water 

depth slope limiter 
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Fig. 11 Numerical solution of water depth for Test 3 with 

water surface slope limiter 
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Fig. 12 Numerical solution of flow rate for Test 3 with water 

surface slope limiter 
 

D. Test 4 
For the channel geometry and bed topography as described 

for the previous test cases, the inflow discharge per unit width 
and flow depth at the upstream end was set to 25.0567 m2/s 
and 2 m, respectively. The flow is supercritical throughout the 
domain. 

The simulation results of water surface and discharge are 
shown in Figs. 13 to 16. For this supercritical flow test, the 
simulation results of water depth and flow rate have the  same 
accuracy when the HLL and Roe flux functions are used with 
water surface or water depth slope limiters. However for both 
slope limiters, the LF flux function gives unphysical 
oscillations for flow rate. 
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Fig. 13 Numerical solution of water depth for Test 4 with 

water depth slope limiter 
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Fig. 14 Numerical solution of flow rate for Test 4 with water 

depth slope limiter 
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Fig. 15 Numerical solution of water depth for Test 4 with 

water surface slope limiter 
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Fig. 16 Numerical solution of flow rate for Test 4 with water 

surface slope limiter 
 

E. Test 5 
In this test, a 1 m wide channel with bed topography given 

in Table I was used. There was no flow in or out of the 
domain and the initial water surface level was set to 16 m. The 
aim was to evaluate the performance of the numerical schemes 
in suppressing unphysical flow and flow depth oscillations. 
 

TABLE I 
BED ELEVATION VARIATION WITH DISTANCE 

x (m) zb (m) x(m) zb (m) 
0 0 505 9 
50 0 530 6 

100 2.5 550 5.5 
150 5 565 5.5 
200 5 575 5 
250 3 600 4 
300 5 650 3 
350 5 700 3 
400 7.5 750 2.3 
425 8 800 2 
435 9 820 1.2 
450 9 900 0.4 
470 9 950 0 
475 9.1 1000 0 
500 9 1500 0 
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Fig. 17 Numerical solution of water depth for Test 5 with 

water depth slope limiter 
 

The numerical results for water depth and flow rate are 
shown in Figs. 17 to 20. The results show the superiority of 

the slope limiter based on the water surface for preserving the 
initial condition of depth and zero flow rate. In case of the 
slope limiter based on the water depth, the Roe flux function 
provides the best result for maintaining the prescribed water 
depth and zero flow rate. 
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Fig. 18 Numerical solution of flow rate for Test 5 with water 

depth slope limiter 
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Fig. 19 Numerical solution of water depth for Test 5 with 

water surface slope limite 
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Fig. 20 Numerical solution of flow rate for Test 5 with water 

surface slope limite 
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F. Test 6 
For the channel with irregular bed, as described in the 

previous test, the inflow rate was set to 10 m2/s and the 
downstream water depth was set to 16 m. The flow regime 
throughout the channel is subcritical. 

The simulation results for the water depth and flow rate are 
shown in Figs. 21 to 24. The water surface level is predicted 
accurately by slope limiters based on water surface and water 
depth with all three flux functions. However, the results for 
the flow rate exhibit oscillations in case of water depth based 
slope limiter with the LF flux providing the poorest results 
and the Roe flux the most accurate results. The water surface 
based slope limiter conserves the flow rate throughout the 
simulation domain with the Roe flux function providing the 
best results.  A loss in flow rate is observed for the HLL and 
LF flux functions at the end of the channel. 
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Fig. 21 Numerical solution of water depth for Test 6 with 

water depth slope limiter 
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Fig. 22 Numerical solution of flow rate for Test 6 with water 

depth slope limiter 
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Fig. 23 Numerical solution of water depth for Test 6 with 

water surface slope limiter 
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Fig. 24 Numerical solution of flow rate for Test 6 with water 

surface slope limiter 
 

G. Test 7 
With the irregular bed topography as described for Test 6, 

the flow rate at the inlet was set to 100 m2/s and the depth at 
the downstream end was maintained at 16 m. In this test, the 
flow regime consists of both subcritical and supercritical flow 
with a hydraulic jump. 

The numerical results, presented in Figs 25 to 28, show that 
while the water depth is predicted accurately by both slope 
limiter schemes, the flow rate is predicted more accurately by 
water surface based slope limiter.  In addition, the Roe flux 
function provides better results for the flow rate when used 
with either slope limiter scheme. 
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Fig. 25 Numerical solution of water depth for Test 7 with 

water depth slope limiter 
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Fig. 26 Numerical solution of flow rate for Test 7 with water 

depth slope limiter 
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Fig. 27 Numerical solution of water depth for Test 7 with 

water surface slope limiter 
 

0 500 1000 1500
46

48

50

52

54

56

58

60

x ( m )

q
(m

2
/

s)

 

 

HLL
LF
ROE

400 450 500 550 600
46

48

50

52

54

 

 

 
Fig. 28 Numerical solution of flow rate for Test 7 with water 

surface slope limiter 

VII. CONCLUSION 
The slope limiter scheme based on the water depth shows 

that even for the still water condition (Tests 1 and 5) the zero 
discharge is not preserved, with all three flux functions 
providing similar results. The results show that the non-
physical bed slope generated flow increases as the bed 
becomes more irregular. In the case of water surface based 
slope limiter, the nonphysical flow is kept to minimal using all 
three flux functions, thus achieving better mass conservation. 
In the case of subcritical flow throughout the domain (Tests 2 
and 6), the flow rate results based on the two slope limiter 
schemes follow the same trend as for still water case. 
However, the results for the flow rate show that overall the LF 
flux function performs the worst in conserving the flow rate 
while the Roe flux function has the best overall conservation 
property. In addition, water depth oscillations are observed 
with the use of water depth based slope limiter where there is 
abrupt bed slop change. 

In the case where the flow transitions from subcritical to 
supercritical followed by a hydraulic jump, as in Tests 3 and 
7, both slope limiter schemes provide similar albeit oscillatory 
results for the flow rate with LF flux function. For both slope 
limiter schemes, the Roe flux formulation conserves the flow 
rate most accurately. However, the use of water surface slope 
limiter with Roe flux provides the best solution. In the case of 
supercritical flow throughout the domain (Test 4), LF flux 
function is unable to conserve the initial flow rate. 

In general, the water surface based slope limiter is better 
suited for open channel flows with irregular bed. The tests 
performed show that the Roe flux function has the best 
conservation property among the evaluated flux functions. 
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