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Abstract—Analysis and visualization of microarraydata is
veryassistantfor biologists and clinicians in the field of diagnosis and
treatment of patients. It allows Clinicians to better understand the
structure of microarray and facilitates understanding gene expression
in cells. However, microarray dataset is a complex data set and has
thousands of features and a very small number of observations. This
very high dimensional data set often contains some noise, non-useful
information and a small number of relevant features for disease or
genotype. This paper proposes a non-linear dimensionality reduction
algorithm Local Principal Component (LPC) which aims to maps
high dimensional data to a lower dimensional space. The reduced
data represents the most important variables underlying the original
data. Experimental results and comparisons are presented to show the
quality of the proposed algorithm. Moreover, experiments also show
how this algorithm reduces high dimensional data whilst preserving
the neighbourhoods of the points in the low dimensional space as in
the high dimensional space.

Keywords—Linear Dimension Reduction;Non-Linear Dimension
Reduction; Principal Component Analysis; Biologists.

I. INTRODUCTION

DIMENSIONALITY reduction is one of the most effective and
essential tools in the microarray domain. It aims to
reduce, understand and visualize the structure of complex data
sets by transforming a high-dimensional data set into a lower
dimensional data set which represents the most important
variables that underlie the original data. This significant and
important tool attracts many researchers working in the field
of bioinformatics and deals with gene expression data sets to
work on the dimensionality reduction [1], [2], [3].

High dimensionality with low numbers of observations is
one of characteristics of gene expression data sets. One reason
for this is because microarray experiments are expensive to
produce many replications. As a result, analysis and
visualization is difficult in practice and becomes an obstacle
for clinicians and biologists in the field of diagnosis and
treatment of patients such as childhood leukaemia sufferers
[4]. Visualizing high dimensional data and extracting the
effective dimension of the data set are two important
outcomes achieved by dimensionality reduction.

Center of Quantum Computation and Intelligent Systems (QCIS), Faculty of
Engineering and Information Technology (FEIT),University of Technology,
Sydney (UTS) .P.O. Box 123, Broadway, NSW 2007.Australia

1-e-mail: aanaissi@eng.uts.edu.au,

2- e-mail: Paul.Kennedy@uts.edu.au

3- e-mail: madhu@it.uts.edu.au

Biologists and clinicians may be able to better understand
the structure of a complex microarray data set and the gene
expression in cells when reduced and visualized in 3D or 2D.
Moreover, dimensionality reduction is an essential tool in the
microarray domain in order to extract the effective dimension
of the data set and reduce high dimensional data into more
easily handled low dimensional data [5]. For example, due to
the curse of dimensionality you could not directly find and
retrieve similar data points for a given data point in a very
high dimensional space without applying a dimensionality
reduction technique as a pre-processing step for retrieving
process.

Several algorithms and techniques have been proposed for
dimensionality reduction. Principal component analysis (PCA)
[15] is one of the most popular and widely used techniques.
PCA is considered as a linear method and very simple
effective tool but it is not efficient for high dimensional and
complex data set. This is due to the fact that PCA can not
retrieve precisely the true latent variables of complex and non-
linear data sets [6]. Data in a very high dimensional space
often exists in a lower dimensional nonlinear manifold. With
this kind of data, the intrinsic nonlinear structure could not be
found through a linear dimension reduction technique.
Another drawback of PCA is that the size of the covariance
matrix is proportional to the dimensionality of the data-points.
In microarray datasets, where the number of variables is
muchgreater than the number of data points (a typical
microarray dataset would have a 150 data points with
thousands of variables), the computation of eigenvalues and
eigenvectors is costly and might be impracticable for the
covariance matrix.

In order to overcome the drawback of linear dimensionality
reduction in a very high dimensional dataset, several non-
linear dimensionality reduction methods have been developed.
Non-Linear Dimensionality Reduction methods are often
more powerful than linear ones, because the connection
between the latent variables and observed ones may be much
richer than simple matrix multiplication [6].

A recent development of non-linear algorithm is Local
Linear Embedding (LLE) [2]. LLE is efficient and powerful
for dimensionality reduction among the other algorithms [6],
[7], [8]. However, this algorithm has a good performance
when applied on protein structure description.

Local Tangent Space Analysis (LTSA) is another nonlinear
dimensionality reduction technique that describes local
properties of the high-dimensional data using the local tangent
space of each data point [10]. This technique has been
successfully applied on microarray data. However, it requires

525



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942

Val:5, . ; f
k=d where k is the number of nearest neighbourhoods and {35 SAANg e global eigenvalues and eigenvectors of the squared

the dimensionality target. As a result, LTSA is good in
visualization.

In this paper, a nonlinear dimension reduction algorithm is
proposed to handle the curse of dimensionality of microarray
data. Local Principal Component (LPC) is a new algorithm for
nonlinear dimension reduction. The algorithm is based on the
first principal component of the local neighbourhood of each
data point. The idea behind this algorithm is that the drawback
of PCA is when it applied on a non linear and folded data.
However, if we apply PCA on a local neighbourhood of each
data point, these local data points might not folded and has a
linear structure. For example, in a Swiss roll data, 100 data
points at least are required to have folded shape with the non
linear structure. The experiments show LPC outperforms PCA
in reducing the dimension of non-linear structures and
visualization performance.

The rest of this paper is organized as follows. Section 1l
introduces the algorithm Local Principal Component.Section
Il introduces the different datasets that used in this
study.Section IV discusses the quality of the algorithm and
error estimation.We will discuss the validation of this
algorithm in Section V by applying LPC on Iris, Swiss roll
and microarray dataset.SectionVI presents a comparative
review with other similaralgorithms. In Section VII, we draw
conclusions about the results and present some of the future
work.

Il. ALGORITHM OF LPC

This algorithm takes as input Xe R™Mand produces
outputYeR™where d<m is the dimensionality of the
embedding input vector X in the low dimensional space Y.
Four steps are involved in this algorithm. The first step is to
compute the neighbors for each data point. For that, we
determine the k-nearest neighbors for each data point based on
the Euclidean distance. As with many non NLDR algorithms,
the quality of dimensionality reduction is sensitive to the
value of parameter k which should be carefully chosen.
Otherwise the result will be exposed to the loss of quality. If
this parameter is tuned with a very high value, the algorithm
will loose its nonlinear character and act as a linear
dimensional reduction. On the other hand, if the value is too
small, the data points will be above each other and the
mapping will not reflect any global properties [11].After
computing the k nearest neighbors for each data point, N cells
or matrices are created with d*k size.

The second step is to determine the first principal
component for each matrix by solving the eigenvalues and
eigenvectors problem of the covariance matrix.

The third step is to calculate the orthogonal projection of
the first eigenvector before storing them in a square matrix M

e R""™Mpased on the indexes of the neighbourhoodsindices
obtained from the first step..
The final step is to calculate the embedding coordinates Y

using the M matrix and find the spectral embedding vector
using the eigenvectors of this matrix. This task is achieved by

matrix M.
These steps are accomplished using the following algorithm:
Step 1. Foreachi=1, - -, N find the k local nearest
neighboursof each points and compute the first
principal component of the corresponding matrix. This
couldbe described in the following two steps,
1.1 Determine k nearest neighbors x;; of x;, j =1, - -
matrices with d*k size are obtained from this step.
1.2 Compute the first principal componentPe R*“ofthe N
matrixes obtained from the step 1.1.
1.3 Compute the local orthogonal projection Oe R**.
O =P*P’-l 1)
Where | is identity matrix of size k*k
1.4 Let Ii= {iy ...i}the set of indices forthe k nearest
neighbors of xi.Construct the square matrix Mby
locally summing the orthogonal projection based on
the neighborhoods indices I;:
M(li, Ii) = M(li, 1))+O (2)

-k, N

Step 2.Solve the eigenvalues and eigenvectors problem for
theglobalmatrix M.

I11. DATASETS USED

Several datasets have been used in this study for validation,
error estimation and experiments. A Swiss-roll, which was
created to test out various dimensionality reduction algorithms,
has been used in this study for different purposes. It is
generated randomly by sampling a 3D Swiss-roll surface with
no class label information. The second one is the famous Iris
data set provided by Anderson [12]. The data set has 4
features and 150 samples consisting of three species of Iris
flower with 50 samples of each species.Microarray is another
data set has been used in this study. The data is composed of
72 observations with 255 features. The 72 observations are
divided into two clusters which separate individuals between
the diseased (-1) and healthy (1).This data set has been pre-
processed by applying a feature selection algorithm in order to
remove the noise and irrelevant features which affect the
result of dimensionality reduction algorithm [16].

IV.ERROR ESTIMATION oF LPC

Different methods have been proposed for error estimation
and quality measurement of dimensionality reduction. For this
algorithm, we have wused trustworthiness measurement
proposed by Kaski et al [13] to measure the quality of the
algorithm LPC. As our main issueof dimensionality reduction
is to preserve the neighbourhoods of the points in the input
space and output space, we have decided to use this type of
quality measurement thatis based on the comparison of the
neighbourhood of the points in the input and output space. For
example if point x is close to points w and z in the input
spaceX, then point x should be also close to pointsw and z in
the output reduced spaceYotherwise an error arises after
reduction. In Figure 1, we have a point X;in the input space
(left image) with the nearest neighbours points represented in
red colour (point w and z). These points transformed and
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mapped into lower dimensional space. The pointv%an 1

transformed into another point Y;. The red points still nearest
neighbours for the point Y;except the point z which becomes
out of the nearest neighbours points. On the other hand, a blue
point becomes a new nearest point for the point Yi whereit
was not in the input space.In this case, we don’t have a
complete trustworthinessbecause the neighbourhood of the
point Xi have been changed between the input and output
space.

i

Fig. 1: Types of errors in reduction.

Trustworthiness aims to find to which extent neighbors in
the input space also have corresponding neighbors in the
output space by ranking of neighbourhood point sets in input
and output space. The rule of trustworthiness can be defined
as follows: Let N be the number of data samples and r(i, j) be
the rank of the data sample j in the ordering according to the
distance from i in the original data space. Denote by U,(i) the
set of those data samples that are in the neighbourhood of size
k of the sample i in the visualization display but not in the
original data space [14]. The measure of trustworthiness
Mirust(K) of the dimensionality reduction is

M) =1-AKY. 06 DK g

i=1 jeU, (i)

Two data sets have been examined by trustworthiness; the
first dataset is a Swiss-roll data set and the second one is
microarray data set. The two data setshave been reduced
several times with different values of the parameter k. Figure
2 and 3 show the obtained result of the trustworthiness of LPC
applied on Swiss-roll data set and Microarray data set
respectively. As can be seen from Figure 2, the
trustworthiness is quite stable around the value of 0.98 for
different values of parameter k.In Figure 3, the trustworthiness
is dramatically changed based the parameterk, but it can be
noticed that the trustworthiness has highestvalues for k>10and
especially at k=14.
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Fig. 2: Trustworthiness of LPC on Swiss-roll data set
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Fig. 3: Trustworthiness of LPC on Microarray data set

V. EXPERIMENTS
In order to demonstrate the validity of the proposed
algorithm, we performed experiments using Iris data set and
artificial Swiss roll data set.

A. Validation Experiments

Iris data set: The algorithm is tested on thelris data set
described in Section I11.

Figure 4a represents the scattering of the original data set in
2D space. As can be seen, some data points from different
classes are mixed together in the original 2D space. Figure 4b
shows the data reduced to 2D data by LPC. In Figure 4b, the
visualization performance shows that the three different
classes are still separated even after the data has been reduced
into two dimensions. Moreover, the trustworthiness
measurement of this reduction is 0.995 for k=12. The number
0.995 means that the neighbourhoods of the data set are

preserved with a very small error in the low dimensional space.
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Original Iris data

Original Swigz-roll data
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Fig. 4b: Iris data set processed by LPC

Swiss Roll data set: As Roll data set was created to test out
various dimensionality reduction algorithms, The algorithm is
tested on the this data. In this experiment, we have generated
1000 points to test our algorithm.

Figure 5a represents the original data set in 3D space. As
can be seen, the data are folded to have the Swiss-roll form.
Figure 5b shows the data which reduced to 2D data by PCA is
lacking the quality of visualization performance and
dimensionality reduction. In Figure 5c, the data has better
visualization than PCA and it shows that an adequate
embedding preserving the shape of manifold can be achieved
by LPC. In order to quantify the comparison between the two
outputs, we have measured the trustworthiness of
dimensionality reduction performed by PCA and LPC. The
trustworthiness of LPC for Swiss-roll is 0.997 compared to
0.848 for PCA which suggests that LPC embedding is better
than PCA for maintaining neighbourhood relationships.

Fig. 5b: Swiss roll data reduced to 2D by PCA

B. Testing Experiments

Microarray Data:As our target from this algorithm is
microarray data, a Leukaemia dataset has been used to
demonstrate this algorithm.

The images below show the result of the obtained data set
after applying PCA algorithm and LPC algorithm (Figure 6a
and Figure 6b respectively).

It can be clearly seen that LPC reduced the data much
better than PCA in terms of preserving the intrinsic
dimensionality of the data. Also the trustworthiness of LPC is
much better than PCA which has a value of 0.80. On the other
hand, LPC has 0.86 value as a trustworthiness of preserving
the neighbourhoods of the point in the low dimensional space.
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Fig. 6a: Leukaemia data reduced to 2D by PCA

V1. COMPARISON WITH OTHER METHODS

Local principal component is a technique that is similar to
locally embedding algorithms (LTSA [10] and LLE [2]) in
that it constructs a local linear embedding of the k nearest
neighbors. The idea of LPC is to have less instructions and
computations with a good trustworthiness result because it is
proposed for a complex microarray dataset. The algorithm of
LPC aims to find local principal component around a data
point x; based on the k nearest neighbors of that point. This is
followed by another step to extract the first principal

_01%2 0,15 -0,1  -0,08 ] 005 0l 015 02
Fig. 6b: Leukaemia data reduced to 2D by LPC

Local Tangent Space Analysis (LTSA) is a technique that is
similar to LPC as it describes local properties of the high-
dimensional data using the local tangent space of each data
point. However LPC has no restriction on the parameter k as
in LTSA. On the other hand, LLE algorithm computes a
different local quantity of the k nearest neighbors. Then, each
data point is approximated with the best coefficients by a
weighted linear combination of its neighbors in order to form
a square matrix from these calculated values.

Several experiments have been done to make sure that LPC
has good dimensionality reduction in terms of preserving the
neighbourhoods of the points in the low dimensional space as
in the high dimensional space. As our algorithm is similar to
LLE, we present some experiment comparing LPC to LLE.
Consequently, we have compared the trustworthiness of LPC
to LLE applied on a Swiss-roll and microarray data set. Figure
4 and 5 present the result of these measurements.

As can be seen from the Figure 7 and 8, the trustworthiness
of LPC is quite better than LLE at different values of the
parameter k especially for k>10 for the microarray data.
However, the trustworthinessof LPC is less than LLE just at
k=6. With respect to the Swiss-roll comparison, the
trustworthiness of LPC is quite stable around the value of 0.98
for different values of parameter k where the trustworthiness
of LLE is in dramatically changes based on the parameter k.
For example at k=14 the trustworthiness of LPC applied on
Microarray data set is 0.89 which represent the maximum
value. On the other hand, the trustworthiness of LLE is 0.85 at
k=9 which represent maximum value as well.
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Fig. 7: Trustworthiness of LPC Vs LLE using Swiss-roll data set
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Fig. 8: Trustworthiness of LPC Vs LLE using Micro array data set

VI11. CONCLUSION AND FURTHER STUDY

In this paper we have proposed an algorithm for high
dimensional data reduction based on local principal
component. We have discussed the validation experiment by
applying the LPC on two different data sets (Iris and Swiss-
roll). Moreover, we have applied LPC on a Leukaemia
microarray data set. A good dimension reduction results have
been demonstrated through these experiments and the
algorithm outperform PCA in some aspects.

This algorithm provides a way to visualize data in order to
see the position of a patient with respect to other patients. It
also reduces high dimensional data into more easily handled
low dimensional data.

Our future work is to make this algorithm as a supervised
algorithm in order to have more accurate result. Another

’@ﬁé%ti%lﬂxlan is to weight the features and include theses

weights in the Euclidean distance measurement for retrieving
the knearest neighbours.
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